説明

固体撮像装置

【課題】雑音が小さい積層型の固体撮像装置を実現できるようにする。
【解決手段】固体撮像装置は、行列状に配置された複数の画素11と、列ごとに形成された垂直信号線141と、垂直信号線と接続された負荷部23とを備えている。画素11は、増幅トランジスタ113、アドレストランジスタ115、リセットトランジスタ117及び光電変換部111を有している。光電変換部111は、半導体基板の上に形成された光電変換膜と、光電変換膜の基板側の面に形成された画素電極及び光電変換膜の画素電極と反対側の面に形成された透明電極とを含む。リセットトランジスタ117は、ソースが画素電極と接続され、ドレインが増幅トランジスタ113のドレインと共に電源線と接続され、負荷部23は、負性抵抗23Bを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体撮像装置に関し、特に積層型の固体撮像装置に関する。
【背景技術】
【0002】
近年、結晶シリコンからなる半導体基板の内部にフォトダイオードが設けられ、CCD(Charge Coupled Device)又はMOS(Metal Oxide Semiconductor)を走査回路とするCCD型又はMOS型の固体撮像装置の画素は急速に微細化されている。2000年頃には3μmであった画素サイズは、2007年には2μm以下となった。2010年には画素サイズが1.4μmの固体撮像装置が実用化される予定であり、このペースで画素サイズの微細化が進むと、数年以内に1μm以下の画素サイズを実現できると期待される。
【0003】
しかし、1μm以下の画素サイズを実現するためには結晶シリコンの光吸収係数が小さいことにより生じる第1の課題と、取り扱い信号量に関する第2の課題とを解決する必要があることを本願発明者は見出した。第1の課題について詳細に述べると、結晶シリコンの光吸収係数は光の波長に依存する。固体撮像装置の感度を決める波長550nm近傍の緑色の光をほぼ完全に吸収し光電変換するには約3.5μの厚さの結晶シリコンが必要である。従って、半導体基板の内部に形成するフォトダイオードの深さを3.5μ程度とする必要がある。平面的な画素サイズを1μmとした場合には、深さが3.5μ程度のフォトダイオードを形成することは非常に困難である、仮に深さが3.5μm程度のフォトダイオードを形成できたとしても斜めに入射する光が隣接する画素のフォトダイオードに入射するという問題が発生するおそれが高い。斜めに入射する光が隣接する画素のフォトダイオードに入射すると、混色(クロストーク)が生じ、カラーの固体撮像素子においては大きな問題である。混色を防ぐためにフォトダイオードをこれより浅く形成すると緑の光吸収効率が劣化しイメージセンサの感度が劣化する。画素の微細化では画素サイズが小さくなるので1つの画素の感度が低下するため、これに加えて光吸収効率が低下することは致命的である。
【0004】
第2の課題について詳細を述べると、取り扱い信号量は、一般的な固体撮像装置に用いられているフォトダイオード構造である埋め込みフォトダイオードの飽和電荷量により決まる。埋め込みフォトダイオードは、内部に蓄積された信号電荷をほぼ完全に隣接する電荷検出部に転送できる(完全転送)という長所がある。このため、電荷転送に関わる雑音がほとんど発生せず、埋め込みフォトダイオードは広く固体撮像装置に採用されている。しかし、完全転送を実現するためにフォトダイオードの単位面積あたりの容量を大きくできない。このため画素を微細化すると飽和電荷の減少が問題となる。コンパクトデジカメにおいては、一画素あたり10000電子の飽和電子数が必要であったが、画素サイズが1.4μ程度となると飽和電子数は5000電子程度が限界となる。現在は、デジタル信号処理技術による雑音抑圧処理等により画像を作製することにより、飽和電子数の減少に対応しているが、自然な再生画像を得ることは困難である。さらに、高級な一眼レフカメラの場合には、一画素あたり30000電子程度の飽和電子数が必要であると言われている。
【0005】
なお、結晶シリコン基板を用いたMOS型イメージセンサにおいて、基板を薄く削ることにより画素回路が形成された表面側ではなく裏面側から光を入射させる構造が検討されている。しかし、画素回路を構成する配線等により入射する光が妨げられることを回避できるだけであり、第1の課題及び第2の課題を解決することはできない。
【0006】
これら、2つの課題を解決するために有望な技術として、積層型の固体撮像装置があげられる(例えば、特許文献1を参照。)。積層型の固体撮像装置は、画素回路が形成された半導体基板の上に絶縁膜を介して光電変換膜が形成された構成を有している。このため、光電変換膜にアモルファスシリコン等の光吸収係数が大きい材料を用いることが可能となる。例えば、アモルファスシリコンの場合、波長550nmの緑色の光は、0.4nm程度の厚さでほとんど吸収することができる。
【0007】
また埋め込みフォトダイオードを用いないため、光電変換部の容量を大きくすることが可能であり、飽和電荷を大きくすることができる。さらに、電荷を完全転送しないため付加容量を積極的に付加することも可能であり、微細化された画素においても十分な大きさの容量が実現でき、第2の課題も解決できる。ダイナミックランダムアクセスメモリにおけるスタックセルのような構造とすることも可能である。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開昭58−050030号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、従来の積層型の固体撮像装置は、ランダム雑音が大きいという問題を有している。従来の積層型の固体撮像装置は、信号電荷をリセットするときに雑音が発生する。雑音が発生した状態において次の信号電荷が加算されるためにリセット雑音が重畳された信号電荷を読み出す。このため、ランダム雑音が大きくなる。
【0010】
本発明は、前記の問題を解決し、雑音が小さい積層型の固体撮像装置を実現できるようにすることを目的とする。
【課題を解決するための手段】
【0011】
前記の目的を達成するため、本発明は固体撮像装置を、増幅トランジスタのドレインとリセットトランジスタのドレインとを直接又はアドレストランジスタを介して接続し、垂直信号線の負荷に負性抵抗負荷を用いる等のリセットノイズ低減手段を備えた構成とする。
【0012】
具体的に、第1の固体撮像装置は、半導体基板と、半導体基板に行列状に配置された複数の画素と、列ごとに形成された垂直信号線と、垂直信号線と接続された負荷部とを備え、画素は、増幅トランジスタ、アドレストランジスタ、リセットトランジスタ及び光電変換部を有し、光電変換部は、半導体基板の上に形成された光電変換膜と、光電変換膜の基板側の面に形成された画素電極及び光電変換膜の画素電極と反対側の面に形成された透明電極とを含み、増幅トランジスタは、ゲートが画素電極と接続され、ソースが垂直信号線と接続され、ドレインが電源線と接続され、リセットトランジスタは、ソースが画素電極と接続され、ドレインが電源線と接続され、アドレストランジスタは、増幅トランジスタのソースと垂直信号線との間又はドレインと電源線との間に接続され、負荷部は、負性抵抗を含む。
【0013】
第1の固体撮像装置は、負荷部が負性抵抗を含む。このため、増幅トランジスタと負荷部とにより構成されるソースフォロア回路のゲインを1よりも大きくすることができる。従って、リセット時の雑音を大幅に低減することができる。また、リセットトランジスタのドレインが増幅トランジスタのドレインと共に電源線と接続されているため、リセットトランジスタと増幅トランジスタとを分離する素子分離領域が不要となり、固体撮像装置を小さくすることができる。
【0014】
第1の固体撮像装置において、抵抗部は、負性抵抗と正抵抗とを含み、画素の信号をリセットする場合には、負性抵抗を垂直信号線と接続し、画素から信号を読み出す場合には、正抵抗を垂直信号線と接続する構成としてもよい。
【0015】
第1の固体撮像装置において、負性抵抗は、増幅トランジスタと負性抵抗とにより形成されたソースフォロア回路のゲインが1から(Cs+Cox)/Cox(但し、Csは蓄積容量の容量値であり、Coxは増幅トランジスタのゲート絶縁膜の容量値である)の間となるように設定してもよい。
【0016】
第1の固体撮像装置において、画素から信号を読み出す場合には、増幅トランジスタと負性抵抗とにより形成されたソースフォロア回路のゲインが、画素の信号をリセットする場合よりも小さい構成としてもよい。
【0017】
第1の固体撮像装置において、画素は、画素電極と接続されたゼロバイアス容量を有する構成としてもよい。
【0018】
第2の固体撮像装置は、半導体基板と、半導体基板に行列状に配置された複数の画素と、列ごとに形成された垂直信号線と、一方の端子が垂直信号線と接続された差動増幅器とを備え、画素は、増幅トランジスタ、アドレストランジスタ、リセットトランジスタ及び光電変換部を有し、光電変換部は、半導体基板の上に形成された光電変換膜と、光電変換膜の基板側の面に形成された画素電極及び光電変換膜の画素電極と反対側の面に形成された透明電極とを含み、増幅トランジスタは、ゲートが画素電極と接続され、ソースがアドレストランジスタを介して垂直信号線と接続され、リセットトランジスタは、ソースが画素電極と接続され、差動増幅器の出力端子は、対応する列に設けられた増幅トランジスタ及びリセットトランジスタのドレインと接続されている。
【0019】
第2の固体撮像装置は、一方の端子が垂直信号線と接続された差動増幅器の出力端子が、対応する列に設けられた増幅トランジスタ及びリセットトランジスタのドレインと接続されている。このため、リセットトランジスタにおいて発生する雑音を負帰還させることができる。従って、リセット時のノイズを大幅に低減することが可能となる。また、リセットトランジスタと増幅トランジスタとを分離する素子分離領域が不要となり、固体撮像装置を小さくすることができる。また、雑音抑圧のために設けられたフィードバック用の配線を電源配線と共通化するため画素の微細化に有効である。
【0020】
第3の固体撮像装置は、半導体基板と、半導体基板に行列状に配置された複数の画素と、列ごとに形成されたアドレスドレイン線と、列ごとに形成された垂直信号線と、一方の端子が垂直信号線と接続された差動増幅器とを備え、画素は、増幅トランジスタ、アドレストランジスタ、第1のフィードバックトランジスタ及び光電変換部を有し、光電変換部は、半導体基板の上に形成された光電変換膜と、光電変換膜の基板側の面に形成された画素電極及び光電変換膜の画素電極と反対側の面に形成された透明電極とを含み、増幅トランジスタは、ゲートが画素電極と接続され、ソースが垂直信号線と接続され、第1のフィードバックトランジスタは、ソースが画素電極と接続され、ドレインが増幅トランジスタのドレインと共にアドレストランジスタのソースと接続され、アドレストランジスタのドレインは、列ごとに対応するアドレスドレイン線と接続され、アドレスドレイン線は、スイッチを介して電源線及び対応する列の差動増幅器の出力端子と接続されている。
【0021】
第3の固体撮像装置は、第1のフィードバックトランジスタのドレインが増幅トランジスタのドレインと共にアドレストランジスタのソースと接続され、アドレストランジスタのドレインが列ごとに対応するアドレスドレイン線と接続され、アドレスドレイン線は、スイッチを介して電源線及び対応する列の差動増幅器の出力端子と接続されている。このため、リセット時のノイズを負帰還させることができるだけでなく、列ごとに雑音抑制を行うローリングリセット動作が可能となる。また、雑音抑圧のために設けられたフィードバック用の配線を電源配線と共通化するため画素の微細化に有効である。
【0022】
第3の固体撮像装置において、画素が第1のフィードバックのソースと画素電極との間に接続された第2のフィードバックトランジスタ及びフィードバック容量を有している構成としてもよい。また、第1のフィードバックのソースと画素電極との間に接続されたフィードバック容量と、画素電極とアドレストランジスタのソースとの間に接続された第2のフィードバックトランジスタとを有している構成としてもよい。このような構成とすることにより、容量値が小さいフィードバック容量により雑音を低減することが可能となる。
【0023】
さらに、第3の固体撮像装置において、画素が第1のフィードバックトランジスタのソースと画素電極との間に接続されたフィードバック容量と、ソースが画素電極と接続されたリセットトランジスタとを有している構成としてもよい。
このような構成とすることにより、容量値が小さいフィードバック容量により雑音を低減できると共に、暗電流を低減することも可能となる。
【0024】
本発明に係る第4の固体撮像装置は、半導体基板と、半導体基板に行列状に配置された複数の画素と、列ごとに形成された電源線と、列ごとに形成された垂直信号線と、一方の端子が垂直信号線と接続された差動増幅器とを備え、垂直信号線と接続された負荷部とを備え、画素は、増幅トランジスタ、アドレストランジスタ、リセットトランジスタ及び光電変換部を有し、光電変換部は、半導体基板の上に形成された光電変換膜と、光電変換膜の基板側の面に形成された画素電極及び光電変換膜の画素電極と反対側の面に形成された透明電極とを含み、増幅トランジスタは、ゲートが画素電極と接続され、ソースが垂直信号線と接続され、ドレインが電源線と接続され、リセットトランジスタは、ソースが画素電極と接続され、ドレインが電源線と接続され、アドレストランジスタは、増幅トランジスタのソースと垂直信号線との間又は増幅トランジスタのドレインと電源線との間に接続され、差動増幅器の出力は、垂直信号線と結合していることを特徴とする。
【0025】
第4の固体撮像装置は、差動増幅器の出力が垂直信号線と結合している。このため、垂直信号線の電圧を反転して垂直信号線に負帰還をかけることができる。従って、リセット時のノイズを低減することが可能となる。
【0026】
第4の固体撮像装置において、画素は、画素電極と接続されたゼロバイアス容量を有していてもよい。
【発明の効果】
【0027】
本発明に係る固体撮像装置によれば、雑音が小さい積層型の固体撮像装置を実現できる。
【図面の簡単な説明】
【0028】
【図1】第1の実施形態に係る固体撮像装置を示す回路図である。
【図2】第1の実施形態に係る固体撮像装置の画素セルを示す断面図である。
【図3】第1の実施形態に係る固体撮像装置の負性抵抗を示す回路図である。
【図4】第1の実施形態に係る固体撮像装置の負性抵抗を示す回路図である。
【図5】ソースフォロア回路を示す回路図である。
【図6】ソースフォロア回路の動作を示す電流電圧特性図である。
【図7】(a)〜(c)は、ソースフォロア回路の電流電圧特性の拡大図であり、(a)は負荷の抵抗値が無限大の場合であり、(b)は負荷が正抵抗負荷の場合であり、(c)は負荷が負性抵抗負荷の場合である。
【図8】(a)及び(b)はソースフォロア回路のドライバトランジスタの電位であり、(a)は負荷が正抵抗負荷の場合を示す図であり、(b)は負荷が不静定高負荷の場合を示す図である。
【図9】第1の実施形態に係る固体撮像装置の画素セルの一部を示す回路図である。
【図10】第1の実施形態の一変形例に係る固体撮像装置を示す回路図である。
【図11】第2の実施形態に係る固体撮像装置を示す回路図である。
【図12】第3の実施形態に係る固体撮像装置を示す回路図である。
【図13】第4の実施形態に係る固体撮像装置を示す回路図である。
【図14】(a)及び(b)は弱反転動作の際のトランジスタの状態を示し、(a)は回路図であり、(b)は電位の状態を示す図である。
【図15】(a)及び(b)は弱反転フィードバック動作の際のトランジスタの状態を示し、(a)は回路図であり、(b)は電位の状態を示す図である。
【図16】(a)及び(b)は容量挿入弱反転フィードバック動作の際のトランジスタの状態を示し、(a)は回路図であり、(b)は電位の状態を示す図である。
【図17】第4の実施形態係る固体撮像装置の一変形例を示す回路図である。
【図18】第5の実施形態に係る固体撮像装置を示す回路図である。
【発明を実施するための形態】
【0029】
(第1の実施形態)
図1は本実施形態に係る固体撮像装置の回路構成を示している。図1に示すように、行列状に配置された複数の画素11と、画素11に種々のタイミング信号を供給する垂直走査部13と、画素11の信号を順次水平出力142へ読み出す水平信号読み出し部15とを備えている。図1においては画素11は2行2列分だけを記載しているが、行数及び列数は任意に設定してよい。
【0030】
画素11は、光電変換部111と、ゲートが光電変換部111と接続された増幅トランジスタ113と、ソースが光電変換部111と接続されたリセットトランジスタ117と、ドレインが増幅トランジスタ113のソースと接続されたアドレストランジスタ115とを有している。光電変換部111は、増幅トランジスタ113のゲート及びリセットトランジスタ117のソースと、光電変換部制御線131との間に接続されている。アドレストランジスタ115のソースは対応する垂直信号線141と接続されている。アドレストランジスタ115のゲートは、アドレス制御線121を介して垂直走査部13と接続されている。リセットトランジスタ117のゲートはリセット制御線123を介して垂直走査部13と接続されている。増幅トランジスタ113のドレインとリセットトランジスタ117のドレインとは、ドレイン制御線133を介して電源(図示せず)と接続されている。
【0031】
垂直信号線141は、列ごとに設けられ、カラム信号処理部21を介して水平信号読み出し部15と接続されている。カラム信号処理部21は、相関2重サンプリングに代表される雑音抑圧信号処理及びアナログデジタル変換等を行う。また、垂直信号線141には、負荷部23が接続されている。負荷部23は、通常の正抵抗である負荷抵抗23Aと負性抵抗23Bとを有している。負荷抵抗23A及び負性抵抗23Bはそれぞれ第1のスイッチ143及び第2のスイッチ144を介して垂直信号線141と接続されている。アドレス制御線121、リセット制御線123は行ごとに設けられている。光電変換部制御線131及びドレイン制御線133は、全画素に共通となっている。増幅トランジスタ113とアドレストランジスタ115とは直列に配置されているが、この位置関係が入れ替わっても動作上問題ない。従って、増幅トランジスタ113のソースが垂直信号線141と直接接続され、ドレインがアドレストランジスタ115を介してドレイン制御線133と接続されていてもよい。また、正抵抗である負荷抵抗23Aに代えて定電流負荷を設けてもよい。
【0032】
本実施形態の固体撮像装置は積層型の固体撮像装置であり、各画素11は次のような構成を有している。図2は、本実施形態の固体撮像装置における画素11の断面構成を示している。図2に示すようにシリコンからなる半導体基板31に増幅トランジスタ、アドレストランジスタ及びリセットトランジスタが形成されている。増幅トランジスタは、ゲート電極41と、ソースである拡散層51及びドレインである拡散層52とを有している。アドレストランジスタはゲート電極42と、ソースである拡散層52及びドレインである拡散層53とを有している。リセットトランジスタは、ゲート電極43と、ソースである拡散層55及びドレインである拡散層51とを有している。増幅トランジスタのソースとアドレストランジスタのドレインとは共通の拡散層であり、増幅トランジスタ113のドレインとリセットトランジスタのドレインとは共通の拡散層である。
【0033】
半導体基板31の上には、各トランジスタを覆うように絶縁膜35が形成されている。絶縁膜35の上には光電変換部111が形成されている。光電変換部111は、アモルファスシリコン等からなる光電変換膜45と光電変換膜45の下面に形成された画素電極46と、光電変換膜45の上面に形成された透明電極47とを有している。画素電極46は、コンタクト36を介して増幅トランジスタのゲート電極41及びリセットトランジスタのソースである拡散層54と接続されている。画素電極46と接続された拡散層54は蓄積ダイオードとして機能する。
【0034】
図3は、本実施形態における負性抵抗23Bの回路構成を示している。負荷トランジスタ151とインバータ回路152とにより構成されている。インバータ回路152の反転出力が負荷トランジスタ151のゲートと接続されているため、入力端子150の電圧が上昇すると回路に流れる電流が低下する。入力端子150の電圧が低下すると逆に回路に流れる電流は上昇する。なお、図4に示すように負荷トランジスタ151及びインバータ回路152をトランジスタ153を介して接地してもよい。このようにすれば、回路を差動的に動作させることができるので動作を安定させることができる。
【0035】
以下に、負性抵抗23Bを設けることによりリセット雑音を低減する原理について説明する。まず、図5に示すようなドライバトランジスタ161と、ゲートに一定電圧が入力された負荷トランジスタ162とからなるソースフォロア回路の動作を考える。ドライバトランジスタ161のゲートに入力するする入力電圧をVg、ドレイン電流をId、ソースからの出力電圧をVsとすると、これらの関係は図6に示すようになる。
【0036】
負荷トランジスタ162は、理想的な状態においては飽和領域において抵抗が無限大の定電流特性を示す。このため、理想的な状態の場合には、負荷トランジスタ162の電流電圧特性は、図6においA1の符号を附した負荷カーブとなる。一方、ドライバトランジスタ161は、Vsが小さくなると電流が増大する。このため、ドライバトランジスタの電流電圧特性は図6においてB1の符号を附した放物線状のドライバカーブとなる。負荷カーブA1とドライバカーブB1との交点がソースフォロア回路の動作点となり、ソースフォロア回路の出力電圧が決まる。ドライバトランジスタ161のゲートに信号が入力されVgが上昇すると、ドライバカーブB1は右方向にシフトし、ドライバカーブB2となる。このため、ソースフォロア回路の出力は増大する。しかし、実際の負荷トランジスタ162は、アーリー効果と呼ばれる現象により、定電流特性を示さず、若干右上がりの正抵抗負荷特性を示す。このため、A2のような負荷カーブとなる。一方、本実施形態のように、負荷トランジスタを負性抵抗とすると、A3に示すように若干右下がりの負荷カーブとなる。
【0037】
図7(a)〜(c)は、図6のソースフォロア回路の動作点の部分を拡大して示している。図7(a)に示すように、負荷の抵抗が無限大であり定電流特性を示す場合には、入力電圧Vgの変化量ΔVgと出力電圧Vsの変化量ΔVsとは等しくなる。このためソースフォロア回路のゲインGは1となる。負荷が正抵抗性負荷の場合には、図7(b)に示すようにΔVsはΔVgよりも小さくなる。このため、ゲインGは1未満となる。負荷が負性抵抗負荷の場合には、図7(c)に示すようにΔVsはΔVgよりも大きくなり、ゲインGは1よりも大きくなる。
【0038】
図8(a)及び(b)は、ドライバトランジスタの各部の電位を示している。なお、図8においてハッチングを施した部分は電荷が蓄積されている状態を示している。ドライバトランジスタのソースSからゲートGの下を通りドレインDへ電子が流れ込む。入力信号を受けるとゲートGのチャネル電位は、Vc1からVc2へと変化する。図8(a)に示すように、負荷が正抵抗負荷の場合には、ソースSにおける出力電圧の変化ΔVsは チャネル電位の変化ΔVcよりも小さくなり、ゲインGは1未満となる。従って、図8(a)に示すようにゲートGの電圧が上昇すると、チャネル部分に蓄積されている電荷の量が増大する。増大した電荷は、ゲートに対しては容量値がCox(1−G)の容量となる。この場合のCoxはゲート絶縁膜の容量である。このことは、ゲインGが小さくなると、ドライバトランジスタの入力ゲートの容量が大きくなることを示している。
【0039】
一方、負荷が負性抵抗負荷である場合には、図8(b)に示すように出力電圧の変化ΔVsはゲートGのチャネル電位の変化ΔVcよりも大きくなり、ゲインGは1よりも大きくなる。このため、ゲートGの電圧が上昇すると、チャネル部分に蓄積されている電荷の量は減少し、電気的に負の容量となる。
【0040】
図9は本実施形態における画素セルの一部を示している。蓄積容量Csは光電変換膜の容量、画素電極が結合しているソースの容量及びその他の浮遊容量の和である。ソースフォロア回路となる、増幅トランジスタ113のゲートの容量Cgは、先に示したようにCox(1−G)となる。リセットの際におけるリセットトランジスタ117の雑音は電荷領域において√kT(Cs+Cg)となる。つまり√kT(Cs+Cox(1−G))となる。ソースフォロア回路のゲインGを(Cs+Cox)/Coxつまり1+Cs/Coxとなるように設定すれば雑音をゼロにすることができる。
【0041】
つまり、図1に示す増幅トランジスタ113と負性抵抗23Bとにより構成されるソースフォロア回路のゲインを1よりも大きくすることにより、リセット時の雑音を大幅に低減することができる。ゲインが1+Cs/Coxに近いほど雑音を低減する効果が大きくなる。特に、ソースフォロア回路のゲインを1+Cs/Coxとすることにより、リセット雑音をほとんどゼロとすることができる。このときリセットパルスの立下り時間を緩やかにするテーパーリセット動作を用いることが好ましい。これはリセットトランジスタの雑音帯域をソースフォロア回路の帯域より狭くするためである。
【0042】
また、負荷抵抗23Aではなく、負性抵抗23Bを接続した状態で信号の読み出しを行ってもよい。ソースフォロア回路のゲインを1から1+Cs/Coxの間に設定すれば、増幅した信号を読み出すことが可能となる。
【0043】
本実施形態の固体撮像装置はリセットトランジスタ117のドレインと増幅トランジスタ113のドレインとを接続している。このため、リセットトランジスタ117と増幅トランジスタ113とを分離する素子分離領域が不要となる。また、リセットトランジスタ117のドレインと増幅トランジスタ113のドレインとを共通の拡散層とすることができる。これにより、画素セルの面積を小さくできる。例えば、リセットトランジスタ117と増幅トランジスタとが分離されており、リセットトランジスタ117のソースと増幅トランジスタのドレインとに別々の配線が接続されている場合と比べると、画素セルの面積を75%程度に抑えることが可能となる。
【0044】
CCDイメージセンサの出力回路に用いられる2段又は3段ソースフォロア回路の初段のソースフォロア回路の負荷部に負性抵抗を用いると、ソースフォロア回路のゲインが向上し雑音が低減するため、非常に有効である。
【0045】
(第1の実施形態の一変形例)
図10は第1の実施形態の一変形例に係る固体撮像装置を示している。増幅トランジスタ113のゲートとゼロバイアス容量制御線125との間にゼロバイアス容量118が接続されている。リセットされるリセットトランジスタ117のソース電圧は電源電圧に保持されるが、電源電圧は正の高い電圧である。このためソースの暗電流が大きくなるおそれがある。リセットした後、ゼロバイアス容量118に負方向のパルスを印加して、信号蓄積時のソース電圧を0V近傍まで下げることにより暗電流を低減することができる。
【0046】
(第2の実施形態)
図11は、第2の実施形態に係る固体撮像装置の回路構成を示している。図11において図1と同一の構成要素には同一の符号を附すことにより説明を省略する。
【0047】
第2の実施形態の固体撮像装置は、−側の入力(反転入力)端子が垂直信号線141と接続された差動増幅器221を有している。差動増幅器221の出力はドライバ222を介して増幅トランジスタ113のドレイン及びリセットトランジスタ117のドレインと接続されている。
【0048】
リセットトランジスタ117のドレインが電源電位に固定されている場合には、信号をリセットする際にリセットトランジスタ117により大きな熱雑音が発生する。本実施形態の固体撮像装置は、リセットトランジスタ117のドレインに垂直信号線141の出力を反転増幅した信号を入力している。これにより、リセットトランジスタ117において発生する雑音を負帰還させて抑制することが可能となる。増幅トランジスタ113により構成されるソースフォロア回路は、電源が変動しても特性に影響が生じないため、このような回路構成としても問題ない。
【0049】
なお、差動増幅器221の駆動能力によってはドライバ222を介さず、差動増幅器221の出力を増幅トランジスタ113のドレイン及びリセットトランジスタ117のドレインと直接接続してもよい。また、リセット時においてのみこのような駆動を行い、信号読み出し時には増幅トランジスタ113のドレイン及びリセットトランジスタ117のドレインを固定の電源電圧と接続してもよい。さらに、増幅トランジスタのゲートにゼロバイアス容量を付加してもよい。
【0050】
本実施形態の固体撮像装置もリセットトランジスタ117のドレインと増幅トランジスタ113のドレインとを接続している。このため、リセットトランジスタ117と増幅トランジスタ113とを分離する素子分離領域が不要となる。また、リセットトランジスタ117のドレインと増幅トランジスタ113のドレインとを共通の拡散層とすることができ、画素セルの面積を小さくできる。
【0051】
なお、第1の実施形態と同様に増幅トランジスタ113とアドレストランジスタ115との配置は入れ替えても問題ない。
【0052】
(第3の実施形態)
図12は第3の実施形態に係る固体撮像装置の回路構成を示している。図12において図1と同一の構成要素には同一の符号を附すことにより説明を省略する。
【0053】
第1の実施形態及び第2の実施形態は、列ごとに雑音抑制を行うローリングリセット動作の固体撮像装置を示した。本実施形態の固体撮像装置は、全画素を同時にリセットするグローバルリセットにおいて雑音抑制を行うことができる。図12に示すように、増幅トランジスタ113とアドレストランジスタ115との間に、フィードバックトランジスタ311が接続されている。また、−側の入力が垂直信号線141と接続された差動増幅器321を有している。差動増幅器321の出力はスイッチ323を介してアドレストランジスタ115のドレインと接続されている。また、アドレストランジスタ115のドレインはスイッチ324を介してドレイン制御線133と接続されている。スイッチ323をオフ状態とし、スイッチ324をオン状態とし、この後全画素のアドレストランジスタ115をオフ状態とする。これにより増幅トランジスタ113のドレイン電圧が低下し、その電圧がフィードバックトランジスタ311を介して増幅トランジスタ113のゲートにフィードバックされる。従って、全画素に対して同時にフィードバック動作を行うことができる。本実施形態の固体撮像装置においては、フィードバックトランジスタ311がリセットトランジスタの機能を果たす。スイッチ324をオフ状態とし、スイッチ323をオン状態として、一ラインごとにアドレストランジスタ115とフィードバックトランジスタ311とを介して差動増幅器321の出力を増幅トランジスタ113のゲートに雑音抑圧電圧としてフィードバックすれば、ローリングリセット動作を行うことができる。
【0054】
本実施形態においても、増幅トランジスタ113のゲートにゼロバイアス容量を接続することが可能である。全画素リセットの場合においても、ローリングリセットの場合においてもリセット動作が終了した後に、ゼロバイアス容量により増幅トランジスタ113のゲート電圧を0V近傍の正の電圧に設定することが好ましい。これにより、増幅トランジスタ113のゲート電圧に接続されたアドレストランジスタ311のソースドレイン拡散層の電圧を下げることができ、アドレストランジスタ311のソースドレイン拡散層において発生する暗電流を抑圧することができる。
【0055】
(第4の実施形態)
図13は第4の実施形態に係る固体撮像装置の回路構成を示している。図13において図1と同一の構成要素には同一の符号を附すことにより説明を省略する。図13に示すように、増幅トランジスタ113とアドレストランジスタ115との間に、第1のフィードバックトランジスタ411及び第2のフィードバックトランジスタ412が接続されている。第2のフィードバックトランジスタのソースが増幅トランジスタ113のゲートと接続され、第1のフィードバックトランジスタ411のソースは第2のフィードバックトランジスタ412のドレインと接続されると共に、フィードバック容量413を介して増幅トランジスタ113のゲートと接続されている。第1のフィードバックトランジスタ411のゲート及び第2のフィードバックトランジスタ412のゲートは、それぞれ第1のフィードバックトランジスタ制御線431及び第2のフィードバックトランジスタ制御線432を介して垂直走査部13と接続されている。また、−側の入力が垂直信号線141と接続された差動増幅器421を有している。全画素リセットを行う場合には、まず全画素のアドレストランジスタ115、第1のフィードバックトランジスタ411及び第2のフィードバックトランジスタ412をオン状態とし、第3の実施形態と同様に1回目のフィードバック動作を行う。この後、さらに雑音抑圧をするために第2のフィードバックトランジスタ412をオフ状態とし、フィードバック容量413を直列に介して2回目のフィードバック動作を行う。後で説明するように、このような動作とすることにより雑音抑圧効果をさらに向上させることができる。2回目のフィードバック動作の方が雑音抑圧効果が大きいが、2回目のフィードバック動作だけでは増幅トランジスタ113のゲートに蓄積される信号電荷の直流成分をリセットできない。このため、1回目のフィードバック動作が必要である。ローリングリセットに関しては、第1のフィードバックトランジスタ411と第2のフィードバックトランジスタ412とをオン状態とし、第3の実施形態と同様に行えばよい。第2のフィードバックトランジスタ412をオフ状態とし雑音抑圧効果をさらに向上させることも可能である。
【0056】
本実施形態の固体撮像装置は、フィードバック容量413を有しており、フィードバック容量413の容量値を小さくすることにより雑音を小さくすることができる。ローリングリセットを行う場合にも雑音を低減することが可能である。
【0057】
フィードバック容量413を設けることにより雑音を低減できる原理は以下の通りである。図14(a)はソースSに容量Cが接続され、ドレインDにバイアス電圧Vdが印加され、ゲートGの電圧が固定されたトランジスタを示し、(b)は各部の電位を示している。ソースSはフローティング状態であるため、ドレインDに電子が流れるとその電位は徐々に高くなる。ゲートGの下側に形成されたチャネルの電位とソースの電位とが同程度となると弱反転電流と呼ばれる電子の熱拡散により電流が流れる。この場合における雑音は電荷領域では√(kTC/2)である。これは、ソースから電子1個が飛び出すと、ソースの電位がq/Cだけ上昇することにより、次に飛び出す電子の確率がexp(q2/kTC)倍小さくなることに起因している。
【0058】
図15(a)はソースSにバイアス電圧Vsが印加され、ドレインD及びゲートGが容量Cと接続されたトランジスタを示し、(b)は各部の電位を示している。この場合にはソースSからドレインDに電子流れ込むことにより、ドレインDの電位が低下するとゲートGの電圧も低下するためソースSからの電子の流入は徐々に小さくなる。この場合における雑音は、電子1個が飛び出すと、次に電子の飛び出す確率がexp(q2/kTC)倍小さくなるので、√(kTC/2)となる。
【0059】
図16(a)は、ソースSにバイアス電圧Vsが印加され、ゲートGに容量Cpが接続され、ゲートG及びドレインDが容量Cと接続され、ドレインDとゲートGと間に微小な容量C0が挿入されたトランジスタを示し、(b)は各部の電位を示している。ゲートGに接続された容量Cpは、光電変換膜の容量をイメージしている。C0がC及びCpと比べ十分に小さい場合には、ソースSから1個の電子が飛び出すと、次に電子が飛び出す確立はexp(q2/kTC・(C0/Cp))分小さくなる。これにより、ドレインDにおける雑音は√(kTC・Cp/2C0)となり増加する。しかしゲートGにおける雑音は√(kTC・C0/2Cp)となり減少する。CとCpとがほぼ同等である場合には、雑音は√(kTC0/2)となり、微小な容量C0により小さな雑音に変換される。このように、容量値が小さいフィードバック容量413を用いることにより、容量の変換による雑音の抑圧が可能となる。
【0060】
ここでフィードバックについて簡単に説明する。ソースからドレインに電子が飛び出すと、ドレインの電圧が低下する。ドレインの電圧が低下する度合いはゲートの電圧が高い程大きい。従って、ゲートの電圧に対してドレインの電圧は反転した電圧となる。ゲートの電圧に対して反転したドレインの電圧をゲートに返すことにより、負帰還(ネガティブフィードバック)をかけることができる。
【0061】
本実施形態の画素セルを図17に示すように、第2のフィードバックトランジスタ412のドレインが第1のフィードバックトランジスタ411のソースではなく、アドレストランジスタ115と接続された構成としてもよい。この場合にも、同様の効果が得られる。
【0062】
なお、本実施形態においても、増幅トランジスタ113のゲートにゼロバイアス容量を接続することが可能である。
【0063】
(第5の実施形態)
図18は第5の実施形態に係る固体撮像装置の回路構成を示している。図18において図17と同一の構成要素には同一の符号を附すことにより説明を省略する。図18に示すように、第2のフィードバックトランジスタに代えて、増幅トランジスタ113のゲートとリセットバイアス線145との間に接続されたリセットトランジスタ117を有している。本実施形態の固体撮像装置は、リセットバイアス線145の電圧を0V近傍に設定することにより、暗電流を抑圧できる。また、容量値が小さいフィードバック容量413を用いているため、大きな雑音抑圧効果が得られる。本実施形態の固体撮像装置は、リセットバイアス線145の電圧を0V近傍に設定すればゼロバイアス容量を付加しなくても、暗電流を低減できる。但し、ゼロバイアス容量を設けてもよい。
【0064】
なお、第3〜第5の実施形態において、フィードバックトランジスタは信号のリセットを行うリセットトランジスタとしての機能を有している。
【0065】
各実施形態において、光電変換素子、転送トランジスタ、フローティングディフュージョン、リセットトランジスタ及び増幅トランジスタが各画素にそれぞれ設けられた、いわゆる1画素1セル構造の例を示した。しかし、画素内に複数の光電変換素子を含み、さらにフローティングディフュージョン、リセットトランジスタ及び増幅トランジスタのいずれか又はすべてを画素内において共有する、いわゆる多画素1セル構造としてもよい。
【産業上の利用可能性】
【0066】
本発明に係る固体撮像装置は、雑音が小さい積層型の固体撮像装置を実現でき、特に小型の画像ピックアップ装置等として有用である。
【符号の説明】
【0067】
11 画素
13 垂直走査部
15 水平信号読み出し部
21 カラム信号処理部
23 負荷部
23A 負荷抵抗
23B 負性抵抗
31 半導体基板
35 絶縁膜
36 コンタクト
41 ゲート電極
42 ゲート電極
43 ゲート電極
45 光電変換膜
46 画素電極
47 透明電極
51 拡散層
52 拡散層
53 拡散層
54 拡散層
55 拡散層
111 光電変換部
113 増幅トランジスタ
115 アドレストランジスタ
117 リセットトランジスタ
118 ゼロバイアス容量
121 アドレス制御線
123 リセット制御線
125 ゼロバイアス容量制御線
131 光電変換部制御線
133 ドレイン制御線
141 垂直信号線
142 水平出力
143 第1のスイッチ
144 第2のスイッチ
145 リセットバイアス線
150 入力端子
151 負荷トランジスタ
152 インバータ回路
153 トランジスタ
161 ドライバトランジスタ
162 負荷トランジスタ
221 差動増幅器
222 ドライバ
311 フィードバックトランジスタ
321 差動増幅器
323 スイッチ
324 スイッチ
411 第1のフィードバックトランジスタ
412 第2のフィードバックトランジスタ
413 フィードバック容量
421 差動増幅器
423 スイッチ
424 スイッチ
431 第1のフィードバックトランジスタ制御線
432 第2のフィードバックトランジスタ制御線

【特許請求の範囲】
【請求項1】
半導体基板と、
前記半導体基板に行列状に配置された複数の画素と、
列ごとに形成された垂直信号線と、
前記垂直信号線と接続された負荷部とを備え、
前記画素は、増幅トランジスタ、アドレストランジスタ、リセットトランジスタ及び光電変換部を有し、
前記光電変換部は、前記半導体基板の上に形成された光電変換膜と、前記光電変換膜の前記基板側の面に形成された画素電極及び前記光電変換膜の前記画素電極と反対側の面に形成された透明電極とを含み、
前記増幅トランジスタは、ゲートが前記画素電極と接続され、ソースが前記垂直信号線と接続され、ドレインが電源線と接続され、
前記リセットトランジスタは、ソースが前記画素電極と接続され、ドレインが電源線と接続され、
前記アドレストランジスタは、前記増幅トランジスタのソースと前記垂直信号線との間又は前記増幅トランジスタのドレインと前記電源線との間に接続され、
前記負荷部は、負性抵抗を含むことを特徴とする固体撮像装置。
【請求項2】
前記抵抗部は、前記負性抵抗と正抵抗又は定電流負荷とを含み、
前記画素の信号をリセットする場合には、前記負性抵抗を前記垂直信号線と接続し、
前記画素から信号を読み出す場合には、前記正抵抗又は定電流負荷を前記垂直信号線と接続することを特徴とする請求項1に記載の固体撮像装置。
【請求項3】
前記負性抵抗は、前記増幅トランジスタと前記負性抵抗とにより形成されたソースフォロア回路のゲインが1から(Cs+Cox)/Cox(但し、Csは蓄積容量の容量値であり、Coxは前記増幅トランジスタのゲート絶縁膜の容量値である)の間となるように設定することを特徴とする請求項1に記載の固体撮像装置。
【請求項4】
前記増幅トランジスタと前記負性抵抗とにより形成されたソースフォロア回路のゲインは、前記画素から信号を読み出す場合に、前記画素の信号をリセットする場合よりも小さいことを特徴とする請求項1に記載の固体撮像装置。
【請求項5】
前記画素は、前記画素電極と接続されたゼロバイアス容量を有することを特徴とする請求項1〜4のいずれか1項に記載の固体撮像装置。
【請求項6】
半導体基板と、
前記半導体基板に行列状に配置された複数の画素と、
列ごとに形成された垂直信号線と、
一方の端子が前記垂直信号線と接続された差動増幅器とを備え、
前記画素は、増幅トランジスタ、アドレストランジスタ、リセットトランジスタ及び光電変換部を有し、
前記光電変換部は、前記半導体基板の上に形成された光電変換膜と、前記光電変換膜の前記基板側の面に形成された画素電極及び前記光電変換膜の前記画素電極と反対側の面に形成された透明電極とを含み、
前記増幅トランジスタは、ゲートが前記画素電極と接続され、ソースが前記アドレストランジスタを介して前記垂直信号線と接続され、
前記リセットトランジスタは、ソースが前記画素電極と接続され、
前記差動増幅器の出力端子は、対応する列に設けられた前記増幅トランジスタ及びリセットトランジスタのドレインと接続されていることを特徴とする固体撮像装置。
【請求項7】
半導体基板と、
前記半導体基板に行列状に配置された複数の画素と、
列ごとに形成されたアドレスドレイン線と、
列ごとに形成された垂直信号線と、
一方の端子が前記垂直信号線と接続された差動増幅器とを備え、
前記画素は、増幅トランジスタ、アドレストランジスタ、第1のフィードバックトランジスタ及び光電変換部を有し、
前記光電変換部は、前記半導体基板の上に形成された光電変換膜と、前記光電変換膜の前記基板側の面に形成された画素電極及び前記光電変換膜の前記画素電極と反対側の面に形成された透明電極とを含み、
前記増幅トランジスタは、ゲートが前記画素電極と接続され、ソースが前記垂直信号線と接続され、
前記第1のフィードバックトランジスタは、ソースが前記画素電極と接続され、ドレインが前記増幅トランジスタのドレインと共に前記アドレストランジスタのソースと接続され、
前記アドレストランジスタのドレインは、列ごとに対応する前記アドレスドレイン線と接続され、
前記アドレスドレイン線は、スイッチを介して電源線及び対応する列の前記差動増幅器の出力端子と接続されていることを特徴とする固体撮像装置。
【請求項8】
前記画素は、前記第1のフィードバックのソースと前記画素電極との間に接続された第2のフィードバックトランジスタ及びフィードバック容量を有していることを特徴とする請求項7に記載の固体撮像装置。
【請求項9】
前記画素は、
前記第1のフィードバックのソースと前記画素電極との間に接続されたフィードバック容量と、
前記画素電極と前記アドレストランジスタのソースとの間に接続された第2のフィードバックトランジスタとを有していることを特徴とする請求項7に記載の固体撮像装置。
【請求項10】
前記画素は、
前記第1のフィードバックトランジスタのソースと前記画素電極との間に接続されたフィードバック容量と、
ソースが前記画素電極と接続されたリセットトランジスタとを有していることを特徴とする請求項7に記載の固体撮像装置。
【請求項11】
半導体基板と、
前記半導体基板に行列状に配置された複数の画素と、
列ごとに形成された電源線と、
列ごとに形成された垂直信号線と、
一方の端子が前記垂直信号線と接続された差動増幅器とを備え、
前記垂直信号線と接続された負荷部とを備え、
前記画素は、増幅トランジスタ、アドレストランジスタ、リセットトランジスタ及び光電変換部を有し、
前記光電変換部は、前記半導体基板の上に形成された光電変換膜と、前記光電変換膜の前記基板側の面に形成された画素電極及び前記光電変換膜の前記画素電極と反対側の面に形成された透明電極とを含み、
前記増幅トランジスタは、ゲートが前記画素電極と接続され、ソースが前記垂直信号線と接続され、ドレインが電源線と接続され、
前記リセットトランジスタは、ソースが前記画素電極と接続され、ドレインが電源線と接続され、
前記アドレストランジスタは、前記増幅トランジスタのソースと前記垂直信号線との間又は前記増幅トランジスタのドレインと前記電源線との間に接続され、
前記差動増幅器の出力は、前記垂直信号線と結合していることを特徴とする固体撮像装置。
【請求項12】
前記画素は、前記画素電極と接続されたゼロバイアス容量を有していることを特徴とする請求項11に記載の固体撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2013−30820(P2013−30820A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2009−259157(P2009−259157)
【出願日】平成21年11月12日(2009.11.12)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】