説明

工具位置測定装置

【課題】微小な回転工具の刃先位置を、XYZ軸の3方向について高分解能かつ高精度に検出可能な工具位置測定装置を提供する。
【解決手段】回転工具12の刃先12aにZ軸方向の光を入射させ、その反射光を受光する第一光学装置22を備える。刃先12aをZ軸方向から見た底刃画像を撮像する第一撮像装置24と、底刃画像を基に、回転工具12の位置を測定する処理装置を備える。第一光学装置22は、X軸方向に照射光を発する第一光源30を有する。照射光をZ軸方向に偏向して刃先12aに入射させ、刃先12aからの反射光を逆向きのX軸方向に偏向する第一偏向ミラー38を有する。刃先12aと第一偏向ミラー38との間に、入射光及び反射光が通過する第一対物レンズ20を有する。第一撮像装置24は、第一偏向ミラー38によって偏向された刃先12aからの反射光による底刃画像を撮像する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、マイクロエンドミル等の微小な回転工具の位置を非接触で検出する工具位置測定装置に関する。
【背景技術】
【0002】
近年、オプトエレクトロニクス関連部品や医療関連部品などの分野では、直径0.01mm〜0.2mm程度の微小なマイクロエンドミルを用いた微細加工が行われることがある。このような微小な回転工具を使用する際には、高精度な加工を行うため、回転工具の位置を正確に検出する必要がある。
【0003】
切削加工用の工具の位置検出には種々の方法があり、例えば、特許文献1に開示されているように、レーザ光を平行に走査して工具寸法を測定する透過型レーザ測定装置、電気マイクロメータ、及び顕微鏡等を用いて工具の測定を行う工具測定装置がある。
【0004】
また、特許文献2に開示されているように、CCD等の撮像素子と、エンドミル等の撮像対象を照明する照明手段と、撮像対象からの光が入射する対物レンズ、並びに対物レンズを通過した光が通過する撮像レンズを含み撮像対象の像を撮像素子の受像面に結像させる光学系と、各部材を収納するハウジングとを備えた撮像装置もある。この撮像装置の光学系は、それぞれの光軸の向きを変える複数個の光学素子を含み、入射した光を入射位置とは異なる位置から逆向きに出射させる反転部を含み、その反転部は撮像レンズを通過した光を反射する反射鏡を含む構成を備えている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平6−109440号公報
【特許文献2】特開2007−49489号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に開示されているような非接触式の工具測定装置の場合、透過型レーザ測定装置のレーザ発振器側の装置と受光側の装置とを、測定対象の回転工具を挟んで両側に配置しなければならず、装置の全長が長くなるものであった。このため、この工具測定装置を加工機に搭載して、工具の測定に用いると、測定装置によるスペースを多く取ってしまい、加工機全体も大きくなってしまうという問題があった。さらに、マイクロエンドミル等の微小な回転工具を用いる小型の加工機には取り付けることができず、マイクロエンドミル等の微小な回転工具の刃先測定には、誤差が生じやすいという問題もあった。
【0007】
特許文献2に開示されている撮像装置を用いた測定の場合、高い分解能を実現することが困難であるという問題があった。ここで、分解能εとは、物体面を分解して認識し得る最小の間隔をいい、一般的に、分解能εの目安として式(1)が用いられる。
【数1】

【0008】
λは使用波長、NAは対物レンズの開口数である。また、対物レンズの開口数NAは、式(2)のように表わされる。
【数2】

【0009】
ここで、nは回転工具の刃先等の測定対象とレンズ先端の間の媒質の屈折率であり、空気中であれば1と考えることができる。また、図8(a)に示すように、θは光軸aに対してレンズLの一番外側を通る光線がなす角度であり、回転工具Mの刃先からレンズLの先端までの距離WDに応じて変化するものである。
【0010】
式(1),(2)から分かるように、分解能εを向上させるためには、開口数NAを大きくする必要があり、そのために角度θを大きくし距離WDを短くすることが望ましい。
【0011】
しかしながら、特許文献2の撮像装置の場合、回転工具の刃先(撮像対象)と対物レンズとの間に反転部である入射側反射鏡が存在する構造のため、距離WDをあまり短くすることができない。従って、一定以上の高い分解能εを得ることが困難であった。
【0012】
また、例えば光学部品の金型などの微細加工の分野では、回転工具の刃先位置をX,Y,Z軸の3方向について高精度に検出することが不可欠であるが、特許文献1,2の何れの装置も、3方向の位置を精度よく同時に測定することができる装置ではなかった。
【0013】
さらに、高精度な加工機の場合、回転工具のできるだけ近傍に工具位置測定装置を取り付け、その取付精度を維持した状態で加工可能にするため、工具位置測定装置が加工機内に常設されることが多い。従って、ワークを切削する時に、冷却用・潤滑用の切削液が加工機の周囲に飛散し、工具位置測定装置もそれを浴びることになるので、この切削液が工具位置測定装置の内部に浸入するのを防ぐ必要があった。
【0014】
この発明は、上記背景技術に鑑みて成されたもので、微小な回転工具の刃先位置を、XYZ軸の3方向について高分解能かつ高精度に検出することができる工具位置測定装置を提供することを目的とする。
【課題を解決するための手段】
【0015】
この発明は、互いに直交するXYZ三次元座標系のZ軸と平行な回転軸を有する切削加工用の回転工具の刃先に向けてZ軸方向の光を照射させ、前記刃先からの反射光を受光する第一光学装置と、前記反射光により前記刃先をZ軸方向から見た底刃画像を撮像する第一撮像装置と、前記底刃画像を基に前記回転工具の位置を測定する処理装置とを備えた非接触式の工具位置測定装置であって、前記第一光学装置は、X軸方向に照射光を発する第一光源と、前記照射光をZ軸方向に偏向して前記刃先に照射させると共に、当該照射光による前記刃先からの反射光を前記照射光と逆向きのX軸方向に偏向する第一偏向ミラーと、前記刃先と前記第一偏向ミラーとの間に配置され、前記反射光を結像させる第一対物レンズとを備え、前記第一撮像装置は、前記第一対物レンズにより得られた前記底刃画像を撮像する工具位置測定装置である。
【0016】
前記第一対物レンズを除く前記第一光学装置及び前記第一撮像装置が第一筺体内に設けられ、前記第一対物レンズは前記第一筺体に対して封止手段により水密に封止されて取り付けられているものである。
【0017】
さらにこの発明は、前記回転工具の前記刃先に向けてZ軸と直角方向の照射光を照射させ、前記刃先の外縁部分を通過した通過光を受光する第二光学装置と、前記通過光により前記刃先をZ軸と直角方向から見た外周刃画像を撮像する第二撮像装置とで構成された補助測定装置が設けられ、前記第二光学装置は、前記照射光を発する第二光源と、前記照射光をZ軸と直角方向に偏向して前記刃先に照射させ、前記刃先部分を通過した前記通過光をZ軸と直角な前記通過光に偏向する複数の第二偏向ミラーと、前記刃先と前記第二偏向ミラーとの間に配置され、前記通過光を結像させる第二対物レンズと備え、前記第二撮像装置は、前記第二対物レンズにより得られた前記外周刃画像を撮像する工具位置測定装置である。
【0018】
前記処理装置は、前記底刃画像の測定結果及び前記外周刃画像の測定結果に基づいて、前記回転工具の位置を特定するものである。
【0019】
前記第二光学装置の前記第二偏向ミラーは、前記刃先部分を通過した通過光を前記第二光源の照射光と平行で逆向きに偏向するものである。
【0020】
前記第一対物レンズを除く前記第一光学装置及び前記第一撮像装置が第一筺体内に設けられ、前記第二光学装置及び第二撮像装置が第二筺体内に設けられ、前記第一及び第二筺体が有する開口縁部は、それぞれ封止手段により水密に封止されているものである。
【発明の効果】
【0021】
この発明の工具位置測定装置は、回転工具の底刃画像を撮像することによって、X,Y,Z軸の3方向について、回転工具の刃先位置を精度よく検出し測定することができる。特に、この第一光学装置は、回転工具の回転軸方向に短く構成することができるので、回転工具の位置の検出結果について、環境温度の変化による第一光学装置の構造体の熱膨張や歪みに起因する検出誤差を最小限に抑えることができる。
【0022】
さらに、回転工具の刃先からの反射光を受ける第一対物レンズを当該刃先の近傍に配置できる構造のため、非常に高い分解能を実現することができる。
【0023】
また、回転工具の外周刃画像を高分解能で撮像する補助測定装置を付加し、底刃だけでなく外周刃の測定を行ったり、底刃及び外周刃画像に基づく測定結果を補間して回転工具の位置を特定したりすることによって、より高い測定精度を得ることができる。その他、外周刃の摩耗状態を観察したりすることもできる。
【0024】
さらに、この工具位置測定装置は、第一筺体及び第二筺体が所定の封止手段によって水密に封止されているので、加工機内に常設され切削液を浴びても測定装置の故障や動作不良が生じる心配がない。
【図面の簡単な説明】
【0025】
【図1】この発明の工具位置測定装置の第一実施形態を示す斜視図である。
【図2】第一実施形態の工具位置測定装置の内部構造を説明する分解斜視図である。
【図3】第一実施形態の工具位置測定装置の内部構造及び動作を説明する縦断面図(a)、A−A断面図(b)である。
【図4】この発明の工具位置測定装置の第二実施形態を示す斜視図である。
【図5】第二実施形態の工具位置測定装置を構成する補助測定装置を示す斜視図(a)、その内部構造を説明する分解斜視図(b)である。
【図6】図5の補助測定装置の内部構造及び動作を説明する横断面図である。
【図7】第二実施形態の工具位置測定装置の変形例を示す斜視図である。
【図8】分解能εを決定するパラメータである角度θ、距離WDについて説明する模式図(a),(b)である。
【発明を実施するための形態】
【0026】
以下、この発明の第一実施形態の工具位置測定装置10について、図1〜図3に基づいて説明する。工具位置測定装置10は、加工機のチャック部に装着された回転工具12の回転中心である回転軸αの位置を測定する機能と、刃先12aの突端の回転軸α方向の位置を測定する機能とを備えている。回転工具12の回転軸αは、互いに直交するXYZ三次元座標系の任意の方向であるZ軸と平行であり、ここでは、鉛直線方向にZ軸が定義されている。
【0027】
工具位置測定装置10は、図1に示すように、上方が開口した第一箱部14の開口端を第一蓋部16で塞いだ直方体形状の第一筺体18を備えている。第一蓋部16の底部にはレンズ突出孔16aが設けられ、後述する第一対物レンズ20が、回転工具12の刃先12aに向けて突出している。
【0028】
第一筺体18の内部には、図2に示すように、第一光学装置22及び第一撮像装置24が設けられ、第一光学装置22の構成部品である第一対物レンズ20が、光軸をZ軸方向に一致させて上向きに立設されている。第一筺体18は、組み立て状態で、第一箱部14と第一蓋部16の開口端面同士が対面している開口縁部に、Oリングを用いたパッキン26aとその位置決め用のガイド溝26bとで成る封止手段26が設けられ、当該開口縁部を水密に封止して、外部から切削液が浸入するのを防止している。同様に、第一筺体18の組み立て状態で、第一蓋部16のレンズ突出孔16aの内壁下端部と第一対物レンズ20の外側面とが対面している開口縁部にも、Oリングを用いたパッキン28aを収容する溝部が、位置決め用の押え金具28bとレンズ突出孔16a下端部の切り欠き部により設けられ、水密に封止する封止手段28を形成している。
【0029】
第一光学装置22は、第一対物レンズ20に加えて、図3(b)に示すように、第一光源30、照明用ミラー32、コリメートレンズ34、ハーフミラー36、第一偏向ミラー38、及び結像レンズ40で構成されている。これにより、第一光源30からX軸方向に照射された照射光は、照明用ミラー32でY軸方向に偏向され、コリメートレンズ34を通して平行光に形成された後、ハーフミラー34でX軸方向に偏向される。そして、X軸方向に偏向された照射光は、第一偏向ミラー38でZ軸方向に偏向され、第一対物レンズ20を通して刃先12aに照射される。
【0030】
刃先12aでは、照射光を反射して反射光を発生させ、その反射光は、Z軸の逆方向に進行し、第一対物レンズ20を通過して第一偏向ミラー38でX軸の逆方向に偏向され、ハーフミラー36、結像レンズ40を通して第一撮像装置24で結像する。
【0031】
上記のように、第一光学装置22では、第一光源30から照射光を、第一偏向ミラー38に向けて進行させ、及び第一偏向ミラー38から第一撮像装置24に向けて進行させる構造が、XY平面内に設けられている。また、第一偏向ミラー38から第一対物レンズ20を介して刃先12aに向けてZ軸方向に照射光を進行させ、反射光を逆向きに進行させる構造が設けられている。従って、第一光学装置22は、Z軸方向(回転軸αの方向)の高さを、非常に短く構成することができる。
【0032】
第一撮像装置24は、ここではCMOS型の画像センサを用いた撮像装置であり、結像レンズ40を通過した反射光を受光して刃先12aの底刃画像を撮像し、図示しない信号伝送手段を通じて図示しないコンピュータ等の処理装置に送信する。CMOSセンサは比較的発熱が大きいので、図3(a)に示すように、第一箱部14の側壁を開口し、放熱エアーを供給するエアー供給管42とその放熱エアーを排出するエアー排気管44とが設けられている。第一箱部14の内壁と、エアー供給管42及びエアー排気管44との外側面が対面する開口縁部は、それぞれOリング等のパッキンである封止手段46,48によって水密に封止されている。この第一撮像装置24は、CMOSセンサに代えて、例えばCCDセンサ等に置き換えてもよい。
【0033】
第一撮像装置24から得られた画像データを処理して、位置検出を行う図示しない処理装置は、底刃画像のデータを取得し、X,Y,Z軸の3方向について、回転工具12の刃先12a位置を算出するもので、光学的解析と画像処理技術を利用した位置測定方法を用いる。
【0034】
以上説明したように、第一実施形態の工具位置測定装置10は、回転工具12の底刃画像データを解析することによって、X,Y,Z軸の3方向について、刃先12aの位置を精度よく検出することができる。特に、第一光学装置22の構造は、回転工具12の回転軸αの方向に短く構成することができるので、位置検出の結果について、環境温度の変化による第一光学装置22の構造体の熱膨張や歪みに起因する誤差を最小限に抑えることができる。また、第一光学装置22の構造は、刃先12aからの反射光を受ける第一対物レンズ20を刃先12aの近傍に配置することができるので、図8(b)及び式(1),(2)に基づき、距離WDを小さくして高い分解能εを実現することができる。
【0035】
また、この工具位置測定装置10は、第一筺体18の開口縁部が封止手段26,28,46,48によって水密に封止されているので、工具位置測定装置10が加工機内で切削液を浴びても、内部の光学系や素子が確実に保護され、故障したり動作不良を起こしたりすることがない。
【0036】
次に、この発明の第二実施形態の工具位置測定装置50について、図4〜図6に基づいて説明する。この実施形態の工具位置測定装置50は、第一実施形態の工具位置測定装置10の構成に加え、回転工具12の刃先12aを側方から見た外周刃画像に基づき、刃先12aの回転軸α方向の位置を認識するための補助測定装置52を備えている。以下、工具位置測定装置50について、補助測定装置52に関連する部分を中心に説明し、第一実施形態の工具位置測定装置10と同様の構成は同一の符号を付して説明を省略する。
【0037】
工具位置測定装置50は、略直方体の側面の一部がコの字状に内側に窪んだ外形の第二筺体18を有する補助測定装置52が、第一筺体18上面に載置固定されている。上述した回転工具12及び第一対物レンズ20は、図4に示すように、第二筺体18のコの字状の窪み54aの部分に位置し、回転軸α方向(Z軸方向)に対向している。
【0038】
補助測定装置52は、図5に示すように、中央部56、側蓋部58,60、側面部62及びレンズカバー部材65から成る第二筺体54の内部に設けられた第二光学装置64、及び第二撮像装置96を備えている。第二筺体58の窪み54aの内壁には、レンズ突出孔56aが設けられ、先端がガラス板等の透明部材84で閉じられた有底筒状のレンズカバー部材65が被せられた第二対物レンズ66が回転工具12の刃先12aの方向に突出している。
【0039】
第二筺体54は、図5に示すように、組み立て状態で、側蓋部58の開口端面と中央部56の一方の側の側面とが対面する開口縁部に、Oリングによるパッキン68aとその位置決め用のガイド溝68bとで成る封止手段68が設けられ、同様に、側蓋部60の開口端面と中央部56の他方の側の側面とが対面する開口縁部に、Oリングによるパッキン70aとその位置決め用のガイド溝70bとで成る封止手段70が設けられている。また、側面部62と周縁部と中央部56の背面とが対面する開口縁部にも、0リングによるパッキン72aとその位置決め用のガイド溝72bとで成る封止手段72が設けられ、同様に、レンズカバー部材65の開口端面と中央部56のレンズ突出孔56aの周縁部とが対面する開口縁部に、Oリングによるパッキン74aとその位置決め用のガイド溝74bとで成る封止手段74が設けられている。封止手段68,70,72,74は、当該各開口縁部を水密に封止することによって外部から切削液が浸入するのを防止している。
【0040】
第二光学装置64は、図6に示すように、第二光源76、照明用ミラー78,80、コリメートレンズ82、第二対物レンズ66、結像レンズ86、第二偏向ミラー88,90で構成されている。これにより、第二光源76からX軸方向に照射された照射光は、照明用ミラー78でY軸方向に偏向され、照明用ミラー80でX軸の逆方向に偏向される。そして、X軸の逆方向に偏向された照射光が、中央部56の窪み54a側の内壁にある透明部材84を通過し、窪み54aにある刃先12aの側方に照射される。
【0041】
刃先12aの外縁部分を通過した通過光は、そのままX軸の逆方向に進行し、レンズカバー部材65の端面の透明部材84、第二対物レンズ66、結像レンズ86を通して、第二偏向ミラー88でY軸の逆方向に偏向され、第二偏向ミラー90でX軸方向に偏向され、その先に設置された第二光源76背面同士が対面した第二撮像装置92で結像する。
【0042】
上記のように、第二光学装置64では、第二光源76から照射光を照射し、刃先12a部分を通過した通過光を第二撮像装置92に向けて進行させる光学系の構成が、XY平面内にコンパクトに納められている。
【0043】
第二撮像装置92は、第一撮像装置24と同様に、例えばCMOSセンサを用いた撮像装置であり、結像レンズ86を通った通過光を受光して刃先12aの外周刃画像を撮像し、画像データを図示しない信号伝送手段を通して図示しないコンピュータ等の処理装置に送信する。この処理装置は、第一撮像装置24の処理装置と独立に設けても良く、兼用するものでも良い。また、CMOSセンサの撮像装置の放熱のため、図6に示すように、側面部62の一部を開口し、放熱エアーを供給するエアー供給管94とその放熱エアーを排出するエアー排気管96とが設けられている。従って、側面部62の当該開口の内壁と、エアー供給管94及びエアー排気管96の外側面とが対面する開口縁部も、図示しない封止手段によって水密に封止されている。また、側面部62は信号伝送手段の接続用に2箇所が開口し、コネクタ97が設けられている。このコネクタ97の周囲の開口縁部も、図示しない封止手段によって水密に封止されている。
【0044】
この実施形態による処理装置は、外周刃画像のデータを取得し、回転工具12の刃先12aのZ軸方向の位置を測定する他、刃先12aの外周刃の摩耗状態を観察したりする。これにより、工具位置測定装置10による底刃画像に基づく刃先12aのZ軸方向の位置情報に加えて、補助測定装置52による外周刃画像に基づく刃先12aのZ軸方向の位置の情報を盛り込んで補正を加え、刃先12aのZ軸方向の位置をより高い精度で特定する。
【0045】
以上説明したように、第二実施形態の工具位置測定装置50は、第一実施形態の工具位置測定装置10の構成に補助測定装置52を付加することによって、刃先12aのZ軸方向の位置について、検出精度を一層向上させることができる。また、上述した第一実施形態の工具位置測定装置10と同様に、この工具位置測定装置50においても、第二光学装置64の構造によって高い分解能εを実現することができる。さらに、第二筺体62の各開口縁部に設けた封止手段により、切削液の浸入を確実に防止することができる。
【0046】
この実施形態の工具位置測定装置50は、図7に示す変形例のように、コリメートレンズ82や透明部材84に切削液が付着しにくくするため、第二筺体54の窪み54aをカバー部材98で覆う構造にしてもよい。この場合、カバー部材98には、回転工具12を挿入可能な工具挿入孔98aを小さく開口し、未使用時に切削液が入らないように工具挿入孔98aを塞いでおくためのスライド蓋部98bを設けることが好ましい。
【0047】
なお、この発明は、上記実施形態に限定されるものではない。第一及び第二光学装置は、測定対象の回転工具の刃先の近傍に第一又は第二対物レンズを配置することができる構造であればよく、例えば、第一実施形態に使用されている第一光学装置22であれば、対物レンズ20から結像レンズ40を通って第一撮像装置24に至る距離を短縮又は延長する構造変更を行い、分解能ε以外の要素の条件についても調整をすることができる。また、第二実施形態に使用されている第二光学装置64であれば、対物レンズ66から結像レンズ86を通って第二撮像装置92に至る構造についても同様である。
【0048】
さらに、第二実施形態に使用されている補助測定装置52において、窪み54aの部分にある透明部材84にワイパー装置を取り付け、切削液が付着して解像度が落ちたり、照射光が屈折したり減衰するのを防止する構造にしてもよい。
【符号の説明】
【0049】
10,50 工具位置測定装置
14 第一箱部
16 第一蓋部
18 第一筺体
20 第一対物レンズ
22 第一光学装置
24 第一撮像装置
26,28,46,48,68,70,72,74 封止手段
30 第一光源
32,78,80 照明用ミラー
38 第一偏向ミラー
52 補助測定装置
54 第二筺体
66 第二対物レンズ
76 第二光源
88,90 第二偏向ミラー


【特許請求の範囲】
【請求項1】
互いに直交するXYZ三次元座標系のZ軸と平行な回転軸を有する切削加工用の回転工具の刃先に向けてZ軸方向の光を照射させ、前記刃先からの反射光を受光する第一光学装置と、前記反射光により前記刃先をZ軸方向から見た底刃画像を撮像する第一撮像装置と、前記底刃画像を基に前記回転工具の位置を測定する処理装置とを備えた非接触式の工具位置測定装置において、
前記第一光学装置は、X軸方向に照射光を発する第一光源と、前記照射光をZ軸方向に偏向して前記刃先に照射させると共に、当該照射光による前記刃先からの反射光を前記照射光と逆向きのX軸方向に偏向する第一偏向ミラーと、前記刃先と前記第一偏向ミラーとの間に配置され、前記反射光を結像させる第一対物レンズとを備え、
前記第一撮像装置は、前記第一対物レンズにより得られた前記底刃画像を撮像することを特徴とする工具位置測定装置。
【請求項2】
前記第一対物レンズを除く前記第一光学装置及び前記第一撮像装置が第一筺体内に設けられ、前記第一対物レンズは前記第一筺体に対して封止手段により水密に封止されて取り付けられている請求項1記載の工具位置測定装置。
【請求項3】
前記回転工具の前記刃先に向けてZ軸と直角方向の照射光を照射させ、前記刃先の外縁部分を通過した通過光を受光する第二光学装置と、前記通過光により前記刃先をZ軸と直角方向から見た外周刃画像を撮像する第二撮像装置とで構成された補助測定装置が設けられ、
前記第二光学装置は、前記照射光を発する第二光源と、前記照射光をZ軸と直角方向に偏向して前記刃先に照射させる照明用ミラーと、前記刃先部分を通過した前記通過光をZ軸と直角な方向に偏向する第二偏向ミラーと、前記刃先と前記第二偏向ミラーとの間に配置され、前記通過光を結像させる第二対物レンズと備え、
前記第二撮像装置は、前記第二対物レンズにより得られた前記外周刃画像を撮像する請求項1又は2記載の工具位置測定装置。
【請求項4】
前記処理装置は、前記底刃画像の測定結果及び前記外周刃画像の測定結果に基づいて、前記回転工具の位置を特定する請求項3記載の工具位置測定装置。
【請求項5】
前記第二光学装置の前記第二偏向ミラーは、前記刃先部分を通過した通過光を前記第二光源の照射光と平行で逆向きに偏向する請求項3記載の工具位置測定装置。
【請求項6】
前記第一対物レンズを除く前記第一光学装置及び前記第一撮像装置が第一筺体内に設けられ、前記第二光学装置及び第二撮像装置が第二筺体内に設けられ、
前記第一及び第二筺体が有する開口縁部は、それぞれ封止手段により水密に封止されている請求項3乃至5のいずれか記載の工具位置測定装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−93243(P2012−93243A)
【公開日】平成24年5月17日(2012.5.17)
【国際特許分類】
【出願番号】特願2010−241032(P2010−241032)
【出願日】平成22年10月27日(2010.10.27)
【出願人】(000236920)富山県 (197)
【出願人】(504237050)独立行政法人国立高等専門学校機構 (656)
【出願人】(504381087)株式会社フォワード (1)
【出願人】(510286293)甲信商事株式会社 (1)
【Fターム(参考)】