説明

微小流体サイズ排除デバイス、システム、および方法

【課題】微小流体デバイス、アセンブリおよびシステム、同様に、流体の微小サイズのサンプルを操作するための方法が提供される。
【解決手段】微小流体デバイス(498)の例示的な実施形態は、カラム(406)に配置されたフィルタフリット材料(412)を含む。このフィルタフリット材料(412)は、ゲル濾過材料(418)を保持するチャンバ(413)を備える。この微小流体デバイス(498)は、基材(400)、投入開口(402)、第1のチャネル(404)、第2のチャネル(408)、排出開口(410)、ならびに第1および第2のカバー(414、416)を備える。複数の特定の処理特徴を有する微小流体デバイスもまた、提供される。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の引用)
本出願は、米国特許出願第10/336,274号、同第10/336,330号、および同第10/336,706号(全て2003年1月3日出願);米国特許出願第10/403,640号および同第10/403,652号(ともに2003年3月31日出願);米国仮特許出願第60/398,851号および同第60/398,946号(ともに2002年7月26日出願);ならびに米国仮特許出願第60/399,548号(2002年7月30日出願)からの優先権を主張する。本明細書中で引用される出願全ては、それらの全体が本明細書中に参考として援用される。
【0002】
(分野)
本出願は、微小流体デバイス、このようなデバイスを備えるシステム、ならびにこのようなデバイスおよびシステムを使用する方法に関する。より具体的には、本発明は、流体および流体サンプルの微小サイズの量を操作、処理、またはさもなければ改変するデバイスに関する。
【背景技術】
【0003】
(背景)
微小流体デバイスは、流体サンプルを操作するために有用である。迅速で、信頼性の高い、消耗品であり、かつ多数のサンプルを同時に処理するために使用され得る、微小流体デバイス、これらを使用するシステム、これらを処理するためのシステム、および流体を操作するための方法に対する要求が続けて存在している。
【発明の開示】
【課題を解決するための手段】
【0004】
種々の実施形態に従って、微小流体デバイスが提供され、この微小流体デバイスは、基材、第1のチャネル、第2のチャネル、第1のチャネルと第2のチャネルとを接続するカラム、およびカラム中に配置されたフィルタフリット材料を備える。この基材は、第1および第2の対向する表面および厚みを有し得る。この第1のチャネルは、第1の表面に形成され得、第1の表面に対して垂直な方向にかつ第2の表面に向かって延びる第1の深さを有し得る。第1の深さは、その基材の厚みに等しいかまたはこの厚みより小さい。第2のチャネルは、第2の表面に形成され得、第2の表面に対して垂直な方向にかつ上記第1の表面に向かって延びる第2の深さを有し得る。第2の深さは、その基材の厚みに等しいかまたはこの厚みより小さい。このカラムは、第1の表面から第2の表面まで延びる高さを有し得る。このカラムは、上記第1の表面に対して平行に、かつ上記第1の表面から上記第2の表面まで存在する平面に沿って、一定の断面積および/または一定の直径を有し得る。
【0005】
種々の実施形態に従って、組込型ゲル濾過フリットが提供され、この組込型ゲル濾過フリットは、形態安定フィルタフリット材料を備える本体、この本体に形成されたチャンバ、およびこのチャンバ中に配置されたゲル濾過材料を備える。
【0006】
種々の実施形態に従って、微小流体デバイスが提供され、この微小流体デバイスは、基材、第1のチャネル、第2のチャネル、この第1のチャネルと第2のチャネルとの間の流体連絡、およびこの流体連絡において積み重ねられているかまたは詰め込まれている流動制限粒状材料を備える。このような実施形態に従って、この基材は、第1の表面、この第1の表面に対向する第2の表面、および厚みを有し得る。この第1のチャネルは、基材に
形成され得、第1の方向に延び得る。この第1のチャネルは、少なくとも第1の最小寸法および第1の深さによって規定される第1の断面積を有し得、この第1の深さは、上記第1の表面に対して垂直な方向に、かつ第2の表面に向かって延びる。この第2のチャネルは、基材に形成され得、第2の方向に延び得る。この第2のチャネルは、少なくとも第2の最小寸法および第2の深さによって規定される第2の断面積を有し得、この第2の深さは、この第1の表面に沿って垂直な方向にかつこの第2の表面に向かって延びる。この流体連絡は、この第1のチャネルと第2のチャネルとの間の基材に形成され得、少なくとも第3の最小寸法によって規定される第3の断面積を有し得る。ここで第3の断面積は、第1の断面積よりも小さい。この流動制限材料は、第1のチャネルに、流体連絡に、または第1のチャネルおよび流体連絡の両方に配置され得る。この流動制限材料は、ゲル濾過粒子を含み得、ここでこの流動制限粒子の少なくとも10重量%は、第3の最小寸法よりも小さい平均粒径を有する流動制限粒子を含む。
【0007】
種々の実施形態に従って、微小流体デバイスが提供され、この微小流体デバイスは、基材、基材に形成された第1のチャネル、および基材に形成された第1のチャンバを備え、ここでこの第1のチャンバは、深さおよびこの深さに沿って垂直に断面にした場合に涙滴形状の断面積を有する。この第1のチャンバは、実質的に円形の第1の端部およびより狭くかつ対向する第2の端部を有し得る。これらの端部は、まとめて涙滴形状の断面を規定する。第1のチャンバの断面は、第1のチャンバの深さに沿って一定であり得る。第1のチャンバの第2の端部は、その第1のチャネルと流体連絡状態にあり得る。
【0008】
種々の実施形態に従って、微小流体デバイスが提供され、この微小流体デバイスは、第1の表面、第1の表面に対向する第2の表面、および厚みを有する基材、ならびにこの基材に形成された複数の平行な経路を備え、ここでこの経路の各々は、投入開口、排出開口、この投入開口と排出開口との間に位置した少なくとも1つの処理チャンバを備え、ここで各経路における投入開口、少なくとも1つの処理チャンバ、および排出開口は、直線的に配置される。この複数の平行な経路の各々は、少なくとも1つのバルブを備え得、このバルブは、少なくとも1つの処理チャンバと、投入開口および排出開口のうちの少なくとも一方との間に流体連絡を設けるように作動され得る。この複数の経路の各々は、少なくとも1つのバルブを備え得、このバルブは、第1の弾性を有する第1の変形可能材料、この第1の弾性とは異なる第2の弾性を有する第2の変形可能材料、および接着材料を備え得る。
【0009】
種々の実施形態に従って、サンプル処理システムが提供され、このシステムは、本明細書中に記載の微小流体デバイス、圧盤、ドライブユニット、および制御ユニットを備える。ここでこの圧盤は、微小流体デバイスを保持する微小流体デバイスホルダを備える。この微小流体デバイスは、第1の表面、第1の表面に対向する第2の表面、および厚みを有する基材、ならびにこの基材に形成された複数の平行な経路を有し得、この経路の各々は、投入開口、排出開口、およびこの投入開口と排出開口との間にあり、かつこれらの開口と流体連絡状態にある少なくとも1つの処理チャンバを備える。この圧盤は、回転軸を有し得、上記ホルダは、この回転軸から間隔を空けられ得、かつこの回転軸に関して中心を外して配置されている。ドライブユニットは、その回転軸の周りに圧盤を回転させ得、制御ユニットは、そのドライブユニットを制御し得る。
【0010】
種々の実施形態に従って、微小流体デバイスを制作する方法が提供され、この微小流体デバイスは、基材、基材に形成された投入開口、この基材に形成され、かつ投入開口と流体連絡状態にある第1のチャネル、基材に形成された第2のチャネル、ならびに第1のチャネルと第2のチャネルとの間の流体連絡を備える。この方法は、流動制限材料を、その投入開口を通って第1のチャネルへと導入する工程、およびその微小流体デバイスに求心力を付与して、この流動制限材料を流体連絡状態にある第1のチャネルにおいて充填し、
流動制限材料の実質的な部分がこの流体連絡を通って第2のチャネルへと動くことを妨げる工程を包含し得る。
【0011】
種々の実施形態に従って、微小流体デバイスが提供され、このデバイスは、基材、基材に形成された第1の凹部、基材に形成された第2の凹部、および第1の凹部と第2の凹部との間に挟まれた中間壁を有し、ここでこの中間壁部分は、第1の弾性を有する変形可能材料から形成される。弾性的に変形可能なカバー層がまた提供され、このカバー層は、第1の凹部を覆い、粒状流動制限材料は、第1の凹部に配置され得る。この弾性的に変形可能なカバー層は、その第1の弾性よりも小さな第2の弾性を有し得る。ここでこの弾性的に変形可能なカバーされた層は、中間壁が非変形状態にある場合に中間壁と接触し、ここでこの弾性的に変形可能なカバー層は、中間壁が変形状態にある場合に中間壁と接触せず、それによって、第1の凹部と第2の凹部との間に流体連絡を形成する。その第1の凹部と第2の凹部との間のこの流体連絡は、本明細書中に記載されるように、流動制限因子として設計または形成され得る。
【0012】
本明細書中の教示は、添付の図面およびその説明を参照して十分に理解され得る。当業者によって認識される改変は、本発明の教示の一部と考えられる。
【0013】
本発明の他の種々の実施形態は、本明細書の考慮事項、ならびに本明細書中に記載のデバイス、システムおよび方法の実施から、そして以下の詳細な説明から当業者に明らかである。本明細書および実施例は、例示としてのみ考慮され、本発明の真の範囲および趣旨は他の種々の実施形態を包含することが意図される。したがって、本発明は以下をも提供する。
(1)微小流体デバイスであって、該デバイスは、以下:
第1および第2の対向する表面および厚みを有する基材;
該第1の表面に形成され、該第1の表面に対して垂直な方向にかつ該第2の表面に向かって延びる第1の深さを有する第1のチャネルであって、該第1の深さは、該基材の該厚みより小さい、第1のチャネル;
該第2の表面に形成され、該第2の表面に対して垂直な方向にかつ該第1の表面に向かって延びる第2の深さを有する第2のチャネルであって、該第2の深さは、該厚みより小さい、第2のチャネル;
該第1のチャネルと該第2のチャネルの間の流体接続を提供するカラムであって、該カラムは、該第1の表面および第2の表面のうちの少なくとも一方から、該第1の表面および第2の表面のうちの他方に向かって延びる、カラム;ならびに
該カラム中に配置された、フィルタフリット材料、
を備える、微小流体デバイス。
(2)項目1に記載の微小流体デバイスであって、前記カラムは、該第1の表面から該第2の表面まで延びる高さ、および該第1の表面から該第2の表面まで、該第1の表面に対して平行に存在する平面に沿った一定の断面積を有する、微小流体デバイス。
(3)項目1に記載の微小流体デバイスであって、前記カラムの前記高さは、前記基材の前記厚みと同じである、微小流体デバイス。
(4)項目1に記載の微小流体デバイスであって、前記基材の前記第1の表面を接続する第1のカバーをさらに備える、微小流体デバイス。
(5)項目1に記載の微小流体デバイスであって、前記基材の前記第2の表面を接続する第2のカバーをさらに備える、微小流体デバイス。
(6)項目1に記載の微小流体デバイスであって、前記フィルタフリットは、外側周辺形状を有し、前記カラムは、内側周辺形状を有し、該外側周辺形状は、該内側周辺形状に対して相補的である、微小流体デバイス。
(7)項目1に記載の微小流体デバイスであって、前記第1のチャネル中に配置されたゲル濾過材料をさらに含む、微小流体デバイス。
(8)項目7に記載の微小流体デバイスであって、前記ゲル濾過材料は、イオン交換材料を含む、微小流体デバイス。
(9)項目1に記載の微小流体デバイスであって、前記第1の表面に形成された複数の第1のチャネル、前記第2の対向する表面に形成されたそれぞれの複数の第2のチャネル、およびそれぞれの複数のカラムを備え、該複数のカラムは、それぞれ、該複数の第1のチャネルを、該それぞれの複数の第2のチャネルに接続して、複数の独立した経路を形成し、各経路は、該複数の第1のチャネルのうちの1つ、該それぞれの複数の第2のチャネルのうちの1つ、および該それぞれの複数のカラムのうちの1つを含み、ここで該複数の独立した経路は、互いに平行である、微小流体デバイス。
(10)項目1に記載の微小流体デバイスであって、前記第1のチャネルと流体連絡状態にある投入開口をさらに備える、微小流体デバイス。
(11)項目1に記載の微小流体デバイスであって、前記フィルタフリット材料は、本体、該本体に配置されたゲルチャンバ、および該ゲルチャンバと流体連絡状態にある、該本体における開口を備え;ここで該フィルタフリット材料は、前記カラムに配置され、該開口は、前記第1のチャネルに向かって面している、微小流体デバイス。
(12)項目4に記載の微小流体デバイスを製造する方法であって、該方法は、以下の工程:
前記フィルタフリット材料を前記カラムへと押す工程;および
前記第1の表面に前記第1のカバーを適用する工程であって、ここで該第1のカバーは、該フィルタフリット材料を覆う、工程、
を包含する、方法。
(13)組込型ゲル濾過フリットであって、以下:
形態安定フィルタフリット材料を含む本体;
該本体に形成されたチャンバ;および
該チャンバに配置されたゲル濾過材料、
を含む、組込型ゲル濾過フリット。
(14)項目13に記載の組込型ゲル濾過フリットであって、前記ゲルチャンバと流体連絡状態にある前記本体中に開口をさらに備える、組込型ゲル濾過フリット。
(15)項目13に記載の組込型ゲル濾過フリットであって、前記ゲル濾過材料は、イオン交換材料を含む、ゲル濾過フリット。
(16)項目13に記載の組込型ゲル濾過フリットであって、前記形態安定フィルタフリット材料は、親水性ポリエチレン材料を含む、組込型ゲル濾過フリット。
(17)項目13に記載の組込型ゲル濾過フリットであって、前記本体は、矩形様形状を有する、組込型ゲル濾過フリット。
(18)項目13に記載の組込型ゲル濾過フリットであって、長さ寸法、幅寸法、および深さ寸法を有し、ここで該寸法の各々は、50mm未満である、組込型ゲル濾過フリット。
(19)項目13に記載の組込型ゲル濾過フリットであって、前記チャンバは、矩形様形状または円筒形状を有する、組込型ゲル濾過フリット。
(20)項目13に記載の組込型ゲル濾過フリットであって、前記本体は、矩形様形状または円筒形状を有する、組込型ゲル濾過フリット。
(21)項目20に記載の組込型ゲル濾過フリットであって、前記本体は、前記チャンバと流体連絡状態にある開口を備える、組込型ゲル濾過フリット。
(22)微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する基材;
該基材に形成され、投入開口および排出開口を有する、チャネル;ならびに
該チャネルに配置された、項目13に記載の組込型ゲル濾過フリット、
を備える、微小流体デバイス。
(23)微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する、基材;
該基材に形成され、投入開口および排出開口を有するチャネル;ならびに
該チャネルに配置された項目14に記載の組込型ゲル濾過フリット、
を備え、
ここで該チャネルの該投入開口は、該組込型ゲル濾過フリットの該開口と流体連絡状態にある、
微小流体デバイス。
(24)微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する、基材;
投入開口、排出開口および該第1の表面に対して垂直に延び、かつ該第2の表面に向かう方向の第1の深さを有する第1の表面における、チャネル;ならびに
該チャネルに相補的な形状を有する、項目14に記載の組込型ゲル濾過フリット、
を備え、
ここで該組込型ゲル濾過フリットの該開口は、該チャネルの該投入開口に面し、該チャネルの該投入開口と流ライブラリー連絡状態にある、
微小流体デバイス。
(25)微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する、基材;
該基材に形成され、第1の方向に延びる第1のチャネルであって、該第1のチャネルは、少なくとも第1の最小寸法および第1の深さによって規定される第1の断面積を有し、該第1の深さは、該第1の表面に対して垂直な方向にかつ該第2の表面に向かって延びる、第1のチャネル;
該基材に形成され、第2の方向に延びる第2のチャネルであって、該第2のチャネルは、少なくとも第2の最小寸法および第2の深さによって規定される第2の断面積を有し、該第2の深さは、該第1の表面に対して垂直な方向にかつ該第2の表面に向かって延びる、第2のチャネル;
該第1のチャネルと該第2のチャネルとの間に、該基材に形成され、少なくとも第3の最小寸法によって規定される第3の断面積を有する、流体連絡であって、ここで該第3の断面積は、該第1の断面積よりも小さい、流体連絡;ならびに
該第1のチャネルに配置され、流動制限粒子を含む、粒状流動制限材料であって、ここで該流動制限粒子の少なくとも10重量%は、該第3の最小寸法より小さい粒径を有する流動制限粒子を含む、粒状流動制限材料、
を備える、微小流体デバイス。
(26)項目25に記載の微小流体デバイスであって、前記第1の方向および前記第2の方向は、前記流体連絡において互いに並んでいる、微小流体デバイス。
(27)項目25に記載の微小流体デバイスであって、前記第1のチャネルおよび前記第2のチャネルのうちの少なくとも一方は、丸形の断面を備える、微小流体デバイス。
(28)項目25に記載の微小流体デバイスであって、前記流動制限粒子の少なくとも50重量%は、前記第3の最小寸法より小さい粒径を有する流動制限粒子を含む、微小流体デバイス。
(29)項目25に記載の微小流体デバイスであって、前記流動制限粒子の少なくとも95重量%は、前記第3の最小寸法より小さい粒径を有する流動制限粒子を含む、微小流体デバイス。
(30)項目25に記載の微小流体デバイスであって、前記流動制限粒子は、前記第2の最小寸法より小さい粒径を有する、微小流体デバイス。
(31)項目25に記載の微小流体デバイスであって、前記流動制限材料は、前記第1のチャネルに配置されたゲル濾過材料を含み、該ゲル濾過材料は、該第3の断面積より小さい平均直径断面積を有する、微小流体デバイス。
(32)項目25に記載の微小流体デバイスであって、前記流動制限粒子の前記平均直径断面積は、前記第3の断面積の約0.1〜約0.2倍である、微小流体デバイス。
(33)項目25に記載の微小流体デバイスであって、前記流体連絡において流動制限粒子の積み重ねを含む、微小流体デバイス。
(34)項目25に記載の微小流体デバイスであって、前記流動制限材料は、以下:
前記流体連絡において一緒に充填された、第1の平均直径の粒子を有する第1の流動制限材料、および
前記第1のチャネルにおいて一緒に充填され、該一緒に充填された第1の流動制限材料と隣接する第2の平均直径の粒子を有する第2の流動制限材料
を含み、
ここで該第1の流動制限材料粒子の平均直径は、該第2の流動制限材料粒子の平均直径より大きく、該第2の一緒に充填された流動制限材料は、該一緒に充填された第1の流動制限材料よりも、該第2のチャネルから離れて間隔が空けられている、
微小流体デバイス。
(35)項目25に記載の微小流体デバイスであって、前記第1および第2のチャネルのうちの少なくとも一方に配置された第2の材料をさらに含み、そして核酸配列とハイブリダイズする粒子を含む、微小流体デバイス。
(36)項目25に記載の微小流体デバイスであって、前記流体連絡は、前記第1のチャネルから前記第2のチャネルまでのテーパー状伝達領域を含む、微小流体デバイス。
(37)項目36に記載の微小流体デバイスであって、前記テーパー状伝達領域は、円錐形状を有する、微小流体デバイス。
(38)項目25に記載の微小流体デバイスであって、前記基材の前記第1の表面と接触し、前記第1のチャネル、前記第2のチャネル、および前記流体連絡のうちの少なくとも1つを覆う、第1のカバーをさらに備える、微小流体デバイス。
(39)微小流体デバイスであって、以下:
基材;
該基材に形成された第1のチャネル;および
該基材に形成された第1のチャンバであって、該第1のチャンバは、深さ、および該深さに対して垂直な断面にされる場合に涙滴形状の断面積を有し、該第1のチャンバは、実質的に円形の第1の端部およびより狭くかつ対向する第2の端部を有し、ここで該第1のチャンバの該第2の端部は、該第1のチャネルと流体連絡状態にある、第1のチャンバ、を備える、微小流体デバイス。
(40)項目39に記載の微小流体デバイスであって、前記涙滴形状のチャンバは、該チャンバの前記深さに沿って一定の断面積を有する、微小流体デバイス。
(41)項目39に記載の微小流体デバイスであって、前記基材に形成された第2のチャンバをさらに備え、該第2のチャンバは、深さ、および第2の深さに対して垂直に断面にされる
場合に涙滴形状の断面積を有し、該第2のチャンバは、実質的に円形の第1の端部およびより狭くかつ対向する第2の端部を有し、ここで該第2のチャンバの該第2の端部は、該第1のチャネルと流体連絡状態にある、微小流体デバイス。
(42)液体を操作する方法であって、該方法は、以下の工程:
項目39に記載の微小流体デバイスを提供する工程;
第1のチャンバに前記液体をロードする工程;および
該デバイスを回転軸の周りに回転させて、該第1のチャンバから第1のチャネルへと該液体に求心力を付与する工程、
を包含する、方法。
(43)液体を操作する方法であって、該方法は、以下の工程:
項目39に記載のデバイスを提供する工程;
液体を前記第1のチャネルにロードする工程;
該デバイスを回転軸の周りに回転させて、該第1のチャネルから第1のチャンバへと該液体に求心力を付与する工程、
を包含する、方法。
(44)微小流体デバイスであって、以下:
第1の表面、該第1の表面に対向する第2の表面、および厚みを有する基材;
該基材に形成された複数の平行な経路であって、該経路の各々は、
投入開口、
排出開口、
該投入開口と該排出開口との間に位置した少なくとも1つの処理チャンバであって、該投入開口、該少なくとも1つの処理チャンバ、および該排出開口は、直線的に配置されている、複数の平行な経路;
該投入開口と該少なくとも1つの処理チャンバとの間の第1の流体連絡、および
該少なくとも1つの処理チャンバと該排出開口との間の第2の流体連絡;
を備える、複数の平行な経路、
を備え、
ここで該複数の経路の各々は、開放されて、流体連絡を形成することができる少なくとも1つのバルブを備える、
微小流体デバイス。
(45)項目44に記載の微小流体デバイスであって、前記第1および第2の流体連絡のうちの少なくとも一方は、前記第1の表面に形成されたチャネルを備え;そして
該第1および第2の流体連絡のうちの他方は、前記第2の表面に形成されるチャネルを備える、微小流体デバイス。
(46)項目44に記載の微小流体デバイスであって、前記少なくとも1つのバルブは、第1の弾性を有する第1の変形可能材料を含み、第2の変形可能材料は、該第1の弾性とは異なる第2の弾性を有する、微小流体デバイス。
(47)項目46に記載の微小流体デバイスであって、前記基材の前記第1の表面と接触している第1のカバーをさらに備え、ここで該第1のカバーは、前記第2の変形可能材料である、微小流体デバイス。
(48)項目44に記載の微小流体デバイスであって、前記少なくとも1つの処理チャンバに配置されたサイズ排除濾過材料をさらに含む、微小流体デバイス。
(49)項目44に記載の微小流体デバイスであって、少なくとも1つの処理チャンバ中に配置された核酸配列のポリメラーゼ連鎖反応を可能にするための成分をさらに含む、微小流体デバイス。
(50)項目44に記載の微小流体デバイスであって、前記少なくとも1つの処理チャンバは、前記基材の前記第1の表面においてチャネルとして形作られている、微小流体デバイス。
(51)項目44に記載の微小流体デバイスであって、前記基材は矩形である、微小流体デバイス。
(52)項目44に記載の微小流体デバイスであって、前記第1のチャネルおよび前記第1のチャンバは、前記基材において少なくとも部分的に形成された第1の経路の一部であり、前記基材は、複数の経路を備え、それぞれの経路は、それぞれのチャネルおよびそれぞれのチャンバを有し、かつ該それぞれのチャンバは、各々、それぞれの深さ、および該深さに対して垂直に断面にされた場合に涙滴形状の断面積を有し、該それぞれのチャンバは、各々、実質的に円形の第1の端部およびより狭くかつ対向する第2の端部を有し、該それぞれのチャンバの該第1の端部は、該それぞれのチャネルと流体連絡状態にある、微小流体デバイス。
(53)項目52に記載の微小流体デバイスであって、前記複数の経路のうちの経路は、互いに平行している、微小流体デバイス。
(54)微小流体デバイスであって、以下:
第1の表面、該第1の表面に対向する第2の表面、および厚みを有する基材;ならびに
該基材に形成された複数の平行な経路であって、該経路の各々は、投入開口、排出開口、該投入開口と該排出開口との間の少なくとも1つの処理チャンバ、ならびに該少なくとも1つの処理チャンバと、該投入開口および該排出開口のうちの少なくとも一方との間に流体連絡を遮断または提供するための少なくとも1つのバルブ、
を備える、微小流体デバイス。
(55)項目54に記載の微小流体デバイスであって、前記少なくとも1つのバルブは、以下:
前記基材に形成された第1の凹部;
該基材に形成された第2の凹部;
該第1の凹部と該第2の凹部との間に挟まれた中間壁であって、ここで該中間壁部分は、第1の弾性を有する変形可能材料から形成される中間壁;
該第1の凹部を覆い、かつ該第1の弾性よりも大きい第2の弾性を有する弾性的に変形可能なカバー層であって、ここで該弾性的に変形可能なカバーされた層は、該中間壁が非変形状態にある場合は該中間壁と接触し、弾性的に変形可能なカバー層は、該中間壁が変形状態にある場合には該中間壁と接触せず、それによって、該第1の凹部と第2の凹部との間に流体連絡を形成する、弾性的に変形可能なカバー層、
を備える、微小流体デバイス。
(56)項目54に記載の微小流体デバイスであって、各バルブは、以下:
前記基材に形成された第1の凹部であって、該第1の凹部は、第1の凹部部分および第2の凹部部分を備え、該第1の凹部は、対向壁表面部分によって少なくとも部分的に規定され、該対向壁表面部分のうちの少なくとも1つは、第1の弾性を有する第1の変形可能材料および弾性的に変形可能なカバーされた層を含み、ここで該第1の凹部部分および該第2の凹部部分は、該第1の変形可能材料が、非変形状態にある場合には互いと流体連絡状態にあり;該弾性的に変形可能なカバーされた層は、該第1の弾性よりも大きい第2の弾性を有し、かつ少なくとも該第1の凹部部分を覆い、ここで該第1の変形可能材料を含
む該対向壁表面部分は、該障壁壁が変形状態にある場合に、該第1の凹部部分と該第2の凹部部分との間に挟まれた障壁壁を形成して、該第1の凹部部分と該第2の凹部部分との間の流体連絡を妨げるように変形可能である、第1の凹部、
を備える、
微小流体デバイス。
(57)サンプル処理システムであって、以下:
微小流体デバイスであって、以下:
第1の表面、該第1の表面に対向する第2の表面、および厚みを備える基材;
該基材に形成された複数の平行な経路であって、該経路の各々は、投入開口、排出開口、および該投入開口と該排出開口との間にあって、該投入開口と排出開口とが流体連絡状態にある少なくとも1つの処理チャンバ
を備える微小流体デバイス;
該微小流体デバイスを保持し得、かつ回転軸を有し得るホルダを備える圧盤であって、該ホルダは、該回転軸から間隔を空けて、かつ該回転軸に関して中心を外して配置されている、圧盤;
該回転軸の周りに該圧盤を回転させるドライブユニット;ならびに
該ドライブユニットを制御する制御ユニット、
を備える、サンプル処理システム。
(58)項目57に記載のシステムであって、前記微小流体デバイスは、前記ホルダに配置され、前記複数の経路の各投入開口は、該複数の経路の各それぞれの排出開口よりも前記回転軸に近い、システム。
(59)項目57に記載のサンプル処理システムであって、前記複数の平行な経路の各々は、直線的な配置において、それぞれの投入開口、処理チャンバ、および排出開口を備える、サンプル処理システム。
(60)項目57に記載のサンプル処理システムであって、以下:
前記ホルダに配置されたデバイスの前記少なくとも1つの処理チャンバを加熱する、加熱要素;および
該加熱要素を制御する、加熱制御ユニット、
をさらに備える、サンプル処理システム。
(61)項目57に記載のサンプル処理システムであって、前記微小流体デバイスは、以下:
前記複数の経路の各々における少なくとも1つのバルブであって、各バルブは、前記少なくとも1つの処理チャンバと、前記投入開口および前記排出開口のうちの少なくとも一方との間の流体連絡を遮断または提供するためのものである、バルブ、
をさらに備える、サンプル処理システム。
(62)項目57に記載のサンプル処理システムであって、前記圧盤は、複数のホルダを備え、各ホルダは、前記微小流体デバイスを保持し得る、サンプル処理システム。
(63)項目57に記載のサンプル処理システムであって、前記微小流体デバイスは、長さ、幅、および厚みを有する矩形様として形作られ、該ホルダは、該複数の経路のいずれも、前記回転軸に対して半径方向に並べられて位置していないように、該微小流体デバイスを保持し得る、サンプル処理システム。
(64)項目57に記載のサンプル処理システムであって、前記微小流体デバイスは、対向する第1の矩形表面および第2の矩形表面を有し、該表面の各々は、その幅よりも大きい長さ
を有する、サンプル処理システム。
(65)項目64に記載のサンプル処理システムであって、前記微小流体デバイスは、前記ホルダに配置され、前記圧盤の半径は、該微小流体デバイスの長さに対して垂直である、サンプル処理システム。
(66)項目64に記載のサンプル処理システムであって、前記微小流体デバイスは、前記ホルダに配置され、前記圧盤の半径は、前記微小流体デバイスの幅に対して垂直である、サンプル処理システム。
(67)項目57に記載のサンプル処理システムであって、以下:
前記圧盤に対して、前記少なくとも1つの処理チャンバを加熱し得る位置に配置された加熱要素;および
該加熱要を制御する、加熱制御ユニット
をさらに備える、サンプル処理システム。
(68)サンプル処理の方法であって、該方法は、以下の工程:
項目57に記載のサンプル処理システムを提供する工程;
前記複数の経路の投入開口のうちの少なくとも1つにサンプルを導入する工程;
前記ホルダ中に該微小流体デバイスを配置する工程;ならびに
該圧盤を回転させて、該サンプルを動かす工程、
を包含する、方法。
(69)微小流体デバイスを製作する方法であって、該方法は、以下の工程:
基材、該基材に形成された投入開口、該基材に形成され、該投入開口と流体連絡状態にある、第1のチャネル、該基材に形成された、第2のチャネル、および該第1のチャネルと該第2のチャネルとの間の流体連絡を備える微小流体デバイス、を提供する工程;
該投入開口を通って該第1のチャネルへゲル濾過材料を導入する工程;ならびに
該ゲル濾過材料を該流体連絡において充填し、該ゲル濾過材料の実質的な部分を、該流体連絡を通って該第2のチャネルへ動かさないように妨げるデバイスに求心力を付与する工程、
を包含する、方法。
(70)微小流体デバイスであって、以下:
基材;
該基材に形成された第1の凹部;
該基材に形成された第2の凹部;
該第1の凹部と該第2の凹部との間に挟まれた中間壁であって、ここで該中間壁部分は、第1の弾性を有する変形可能材料から形成される、中間壁;
第1の凹部を覆い、該第1の弾性の弾性よりも大きい第2の弾性を有する弾性的に変形可能なカバーされた層であって、ここで該弾性的に変形可能なカバーされた層は、該中間壁が非変形状態にある場合には該中間壁と接触し、該弾性的に変形可能なカバーされた層は、該中間壁が変形状態にある場合には該中間壁と接触せず、それにより該第1の凹部と該第2の凹部との間に流体連絡を形成する、弾性的に変形可能なカバーされた層;ならびに
該第1の凹部に配置された粒状流動制限材料、
を備える、微小流体デバイス。
(71)項目70に記載の微小流体デバイス、変形ブレード、および位置づけユニットを備えるシステムであって、該位置づけユニットは、該変形ブレードを該微小流体デバイスと接触
させて、該ブレードが該中間壁を変形させ、前記第1の凹部と前記第2の凹部との間に流動制限チャネルを形成し得、該第1の凹部は、少なくとも第1の最小寸法によって規定される第1の断面積を有し、該流動制限チャネルは、少なくとも第2の最小寸法によって規定される第2の断面積を有し、ここで該第1の凹部および該流動制限チャネルは、流体連絡において互いと交差し、該流体連絡は、少なくとも第3の最小寸法によって規定される第3の断面積を有し、ここで該第3の断面積は、該第1の断面積よりも小さく、該粒状流動制限材料は、流動制限粒子を含み、該流動制限粒子の少なくとも10重量%は、該第3の最小寸法よりも小さい粒径を有する粒子を含む、システム。
(72)サンプル処理デバイスを備えるサンプル処理アセンブリであって、該サンプル処理デバイスは、以下:第2の側面に取り付けられた第1の側面を備える本体;該第1の側面と第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体を備える複数のプロセスアレイと、長さを備える主要導管と、該主要導管に沿って分配された複数のプロセスチャンバと、該ローディング構造体と該複数のプロセスチャンバとの間に位置した変形可能シールとを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイ;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面した第1の表面と、該サンプル処理デバイスから離れて面した第2の表面とを備える、担体;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールの1つの主要導管支持レールと並べられる、主要導管支持レール;ならびに該担体の該第1の表面および第2の表面を介して形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバの1つのプロセスチャンバと並べられる、サンプル処理アセンブリ。
(73)項目72に記載のアセンブリであって、前記担体は、該担体の前記第1の表面の近位にある複数の圧縮構造体をさらに備え、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にある、アセンブリ。
(74)項目72に記載のアセンブリであって、前記担体は、該担体の前記第1の表面の近位にある複数の圧縮構造体であって、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にある圧縮構造体;および複数の力伝達構造体であって、該複数の力伝達構造体の各々の力伝達構造体は、該担体の該第2の表面の近位にある別個の継手領域を備え、該複数の力伝達構造体の各々の力伝達構造体は、該複数の圧縮構造体の複数に操作可能に接続され、ここで各力伝達構造体の該継手表面に付与される力は、該力伝達構造体に操作可能に接続された該複数の圧縮構造体に伝達される、力伝達構造体、をさらに備える、アセンブリ。
(75)項目72に記載のアセンブリであって、前記担体は、該担体の前記第1の表面に対して近位にある複数のカラーをさらに備え、該複数のカラーの各カラーは、前記複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられ、かつ近位にある、アセンブリ。
(76)項目72に記載のアセンブリであって、前記担体の前記第1の表面に対して近位にある複数のカラーをさらに備え、ここで該複数の開口の各開口は、該複数のカラーのうちの1つのカラーと並べられ、さらに該複数のカラーの各カラーは、前記複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、アセンブリ。
(77)サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各
プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該複数のプロセスアレイの各プロセスアレイにおいて該ローディング構造体と該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、担体と;該担体の該第1の表面の近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、主要導管支持レールと;該担体の該第1の表面および第2の表面を通って形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備えるサンプル処理デバイス、
を備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通って分配する工程;
該複数のプロセスアレイの各プロセスアレイにおいて該変形可能シールを閉じる工程であって、該閉じる工程は、該主要導管支持レールのうちの1つで該主要導管を支持すると同時に、該サンプル処理デバイスの該第1の側面および該第2の側面を、該主要導管に沿って一緒に圧縮する工程を包含する、工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させた状態で位置づける工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
(78)項目77に記載の方法であって、前記複数のプロセスアレイの各プロセスアレイにおいて前記変形可能シールを閉じる工程は、該複数のプロセスアレイの各プロセスアレイにおいて該変形可能シールを同時に閉じる工程を包含する、方法。
(79)項目77に記載の方法であって、前記複数のプロセスアレイの各プロセスアレイに対して、前記変形可能シールを閉じる工程は、前記本体の前記第2の側面の変形可能部分を変形させる工程を包含する、方法。
(80)サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;前記第1の側面と第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管に沿って分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、担体と;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備えるサンプル処理デバイスとを備える、サンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;
該サンプル処理デバイスの該第1の側面および第2の側面を、該複数のプロセスチャンバの近位の各プロセスチャンバとともに選択的に圧縮する工程であって、該選択的圧縮は、該担体と該熱ブロックとの間で起こる工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
(81)項目80に記載の方法であって、前記担体は、圧縮性材料を含み、さらに前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
(82)項目80に記載の方法であって、前記担体は、前記担体の前記第1の表面の近位にある複数の圧縮構造体をさらに備え、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にあり、さらに前記選択的に圧縮する工程は、該圧縮構造体を使用して、該プロセスチャンバの各々に対して近位にある別個の領域を圧縮する工程を包含する、方法。
(83)サンプル処理デバイスを備えるサンプル処理アセンブリであって、該サンプル処理アセンブリは、以下:第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管に沿って分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、複数のプロセスアレイと;該担体の該第1の表面および該第2の表面を通して形成される複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、開口と;該担体の該第1の表面の近位にある複数の圧縮構造体であって、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にある、複数の圧縮構造体を備える、サンプル処理アセンブリ。
(84)項目83に記載のアセンブリであって、前記圧縮構造体の各々は、前記プロセスチャンバの1つと並べられたカラーを備える、アセンブリ。
(85)サンプル処理デバイスを備えるサンプル処理アセンブリであって、該サンプル処理デバイスは、第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管に沿って分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディング構造体と、該複数のプロセスアレイの各プロセスアレイにおける複数のプロセスチャンバとの間に位置する変形可能シールと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通って形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャン
バのうちの1つのプロセスチャンバと並べられている、複数の開口と;該担体の該第1の表面に対して近位にある複数の圧縮構造体であって、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバに対して近位にある、複数の圧縮構造体とを備える、サンプル処理アセンブリ。
(86)項目85に記載のアセンブリであって、前記圧縮構造体の各々は、前記プロセスチャンバのうちの1つと並べられたカラーを備える、アセンブリ。
(87)サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディング構造体と、該複数のプロセスアレイの各プロセスアレイにおける該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、担体と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備えるサンプル処理デバイスを備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該複数のプロセスアレイの各プロセスアレイにおける変形可能シールを閉じる工程であって、該閉じる工程は、該サンプル処理デバイスの該第1の側面および該第2の側面を該主要導管の該長さの少なくとも一部に沿って一緒に圧縮する間に、該主要導管を該主要導管支持レールのうちの少なくとも1つで支持する工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;
該サンプル処理デバイスの該第1の側面および第2の側面を、該複数のプロセスチャンバの近位の各プロセスチャンバとともに選択的に圧縮する工程であって、該選択的圧縮は、該担体と該熱ブロックとの間で起こる工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
(88)項目87に記載の方法であって、前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
(89)項目87に記載の方法であって、前記担体は、圧縮性材料を含み、さらに前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
(90)項目87に記載の方法であって、前記選択的に圧縮する工程は、前記プロセスチャンバの各々の近位にある別個の領域を圧縮する工程を包含する、方法。
(91)項目87に記載の方法であって、前記担体は、前記担体の前記第1の表面に対して近位
にある複数のカラーをさらに備え、該複数のカラーの各カラーは、前記複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられており;さらに前記選択的に圧縮する工程は、該プロセスチャンバの各々に対して近位にある別個の領域を、該複数のカラーのうちの1つのカラーで圧縮する工程を包含する、方法。
(92)サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディング構造体と、該複数のプロセスアレイの各プロセスアレイにおける該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備える、サンプル処理デバイスを備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該複数のプロセスアレイの各プロセスアレイにおける変形可能シールを閉じる工程であって、該閉じる工程は、該サンプル処理デバイスの該第1の側面および該第2の側面を該主要導管の該長さの少なくとも一部に沿って一緒に圧縮する間に、該主要導管を該主要導管支持レールのうちの1つで支持する工程;
該複数のプロセスアレイの各プロセスアレイの該ローディング構造体を、該サンプル処理デバイスから分離する工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
(93)サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディングチャンバ、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディングチャンバおよび該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディングチャンバと、該複数のプロセスアレイの各プロセスアレイにおける該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備える、サン
プル処理デバイスを備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該複数のプロセスアレイの各プロセスアレイにおける変形可能シールを閉じる工程であって、該閉じる工程は、該サンプル処理デバイスの該第1の側面および該第2の側面を該主要導管の該長さの少なくとも一部に沿って一緒に圧縮する間に、該主要導管を該主要導管支持レールのうちの1つで支持する工程;
該複数のプロセスアレイの各プロセスアレイの該ローディングチャンバを、該サンプル処理デバイスから分離する工程;
該サンプル処理デバイスの該第1の側面および該第2の側面を、該複数のプロセスチャンバの近位の各プロセスチャンバと一緒に選択的に圧縮する工程であって、該選択的圧縮は、該担体と該熱ブロックとの間で起こる工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
(94)項目93に記載の方法であって、前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
(95)項目93に記載の方法であって、前記選択的に圧縮する工程は、前記プロセスチャンバの各々に対して近位にある別個の領域を圧縮する工程を包含する、方法。
(96)サンプル処理システムであって、以下:第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該サンプル処理デバイスが位置される熱ブロックと;該サンプル処理デバイスの該第1の側面および第2の側面を、該サンプル処理デバイスの該第2の側面を熱ブロックと接触させて位置させた後に、該複数のプロセスチャンバの各プロセスチャンバに対して近位にある別個の領域においてともに同時にかつ選択的に圧縮するための手段と、を備えるサンプル処理デバイスを備えるサンプル処理システム。
(97)項目96に記載のシステムであって、前記複数のプロセスアレイの各プロセスアレイは、前記ローディング構造体と前記複数のプロセスチャンバとの間に位置した変形可能シールを備える、システム。
【0014】
(特定の実施形態の詳細な説明)
図1は、種々の実施形態に従う微小流体デバイス98の上面図であり、このデバイスは、基材100、投入開口102、排出開口110、第1のチャネル104、第2のチャネル108、第1のチャネル104と第2のチャネル108とを相互連結するチャンバ106、およびそのチャンバ106に配置されたフィルタフリット材料112を備える。そのチャンバ106は、カラム、例えば、示されるように、垂直円筒状カラムの形態であり得る。
【0015】
図2は、図1のライン2−2に沿って切りとられた、図1の微小流体デバイス98の側面断面図である。図1および2に示されるように、カバー114、116、および118は、基材100と接触した状態で設けられる。カバー114は、図2に示されるように、基材100の底部を覆い、一部、チャネル104を規定し得る内側表面115を提供する。投入開口102に導入される流体サンプルは、投入開口102から第1のチャネル104へ、第1のチャネル104を通ってチャンバ106へ、チャンバ106におけるフィルタフリット材料112を通って第2のチャネル108へ、および第2のチャネル108から排出開口110へと通り得る。第1のチャネル104は、ゲル濾過材料(示さず)、例えば、イオン交換ゲル濾過材料がロードされ得る。
【0016】
投入開口102は、入り口ポート、層を貫通する穴、開口部、または流体連絡状態にあるチャネルまたはチャンバへの入り口を提供する任意の他の外形として設計され得る。排出開口110は、ポート、開口部、層を貫通する穴、または流体連絡状態にあるチャネルまたはチャンバからの出口を提供する任意の他の外形として設計され得る。投入開口102および/または排出開口110は、もろい材料または穿通可能材料カバー116、118によって覆われるかまたは部分的に覆われ得る。このカバーは、テープ、フィルム、シート、膜、またはこれらの組み合わせの形態であり得る。デバイスの底部(示される)のカバー114は、テープ、フィルム、シート、膜、またはこれらの組み合わせであり得る。カバー114、116および118のいずれかは、基材100に貼付されるか、固定さ
れるか、接着されるか、または他の方法で接続される第2の基材の形態であり得る。第1のチャネル104、第2のチャネル108、チャネル106、またはこれらの組み合わせは、それぞれのカバーが基材100に適用される前に、試薬、反応物質、または当該分野で公知の緩衝液が予め充填され得る。従って、第1のチャネル104、第2のチャネル108、チャンバ106、またはこれらの組み合わせは、投入開を通ってロードされ得る。
【0017】
図3は、微小流体デバイス498の上面図であり、このデバイスは、フィルタフリット材料412が配置されるカラム406の形状を補完する形状を有するフィルタフリット材料412を備える。このフィルタフリット材料412は、ゲル濾過材料418を保持するチャンバ413を備え得る。図4は、図3に示される微小流体デバイス498の側面図である。図3および4に示される実施形態において、デバイスは、基材400、投入開口402、第1のチャネル404、フィルタフリット材料412を収容するためのチャンバ406、第2のチャネル408、および排出開口410をさらに備える。図3および4に示されるデバイス498はまた、第1のカバー414および第2のカバー416を備え得る。このフィルタフリット材料412は、チャンバ406の内側形状に相補的な外側形状を有し得る。
【0018】
図5および6は、基材701およびチャンバ713を補完する形状を有するフィルタフリット材料712を備える微小流体デバイス700の実施形態を示す。フィルタフリット材料712の開口720は、基材701に形成された投入開口702に面する。このフィルタフリット材料712は、基材701に形成された排出開口710に向かって配向された閉じた端部722をさらに備える。このフィルタフリット材料712は、濾過材料718、例えば、イオン交換ゲル濾過材料で充填され得る。カバー714および716は、基材701に、接着剤715を使用して、固定され得るか、接着され得るか、接着され得るか、他の方法で貼付され得る。接着剤は、例えば、感圧式接着剤であり得る。
【0019】
図1〜6に示されるその微小流体デバイス98、498および700は、液体を濾過するために使用され得、この液体は、デバイスを通るように操作される。このデバイスは、例えば、ゲル濾過、サイズ排除濾過、イオン交換濾過、またはこれらの濾過技術の組み合わせのために使用され得る。例えば、濾過材料は、デバイスにロードされ得、そして/またはデバイスに含まれ得、そして濾過材料の小さなビーズを含み得る。水性サンプルの低分子を保持し得る一方で、そのサンプルのより大きな分子を通過させるサイズ排除材料が使用され得る。例えば、Bio−Rad製のP−10 BIO−GEL材料が使用され得、およそ45〜90μmの平均粒子サイズ直径であるアクリルアミド粒子から構成される。これらの粒子は、水和される場合、サンプルがその材料を通って移動するときに、サンプルから遊離色素、望まれないヌクレオチド、および塩イオンを捕捉し得る。
【0020】
サンプルは、デバイス98、498および700を通じて、例えば、重力圧差、または求心力によって操作され得る。次いで、そのデバイスから溶出する得られた濾液は、can be 分析され得るか、使用され得るか、またはその後にデバイスを通して処理の次の段階へと、例えば、PCR反応チャンバ、配列決定反応チャンバ、または他の処理反応チャンバへと通過させ得る。
【0021】
種々の実施形態に従って、図1〜6に示されるそのフィルタフリット材料112、412または712は、それぞれのチャンバへ「プレスばめされ」得るか、それぞれのチャンバへ配置され得るか、または他の方法で、それぞれのチャンバに位置づけられ得る。
【0022】
上記のカバーは、図1〜6を参照すると、プラスチック材料、例えば、ポリオレフィン材料を含み得る。種々の実施形態に従って、カバーは、感圧式接着剤で覆われたテープもしくはフィルム材料、またはそれぞれの基材に加熱により接着される可塑性材料を含み得
る。
【0023】
図1〜6に示される実施形態を含め、種々の実施形態に従って、そのデバイスは、断面形状が矩形であり得る1以上のチャネルを備え得る。このデバイスは、例えば、約0.1mm〜約1.0cmの深さ、約0.1mm〜約1.0cmの幅、および約0.1mm〜約10.0cmの長さであり得るチャネルを備え得る。例示的なチャネルは、0.50mmの深さ、0.50mmの幅、および20mmの長さであり得、従って、約5μLの総容積を提供し得る。
【0024】
図1〜6の実施形態を含め、種々の実施形態に従って、ゲル濾過材料は、そのデバイスのチャネルに配置され得る。このゲル濾過材料は、そのデバイスに、そのデバイスの投入開口へピペッティングし、そして/または真空力(例えば、そのデバイスの排出開口に適用される)を使用することによってそのデバイスへ材料を引き込むことによってロードされ得る。そのデバイスのチャネルは、ゲル濾過材料をそのデバイスの投入開口を通ってロードして、そのデバイスのチャネルまたはチャンバにゲル濾過材料を与える圧力によって、ゲル濾過材料が充填され得る。例示的な実施形態において、十分に水和されたゲル濾過材料は、そのデバイスのチャネルに、例えば、図1のデバイス98の第1のチャネル104にロードされる。一旦そのチャネルに、水和されたゲル濾過材料が充填されると、そのデバイスは、ゲル濾過材料を脱水して、ゲル濾過材料を「充填」するように遠心分離され得、精製カラムを形成する。このプロセスは、サンプル濾過のためのデバイスを調製するために使用され得、不要なまたは過剰な水または緩衝液をゲル濾過材料から除去するために使用され得る。このプロセスの変形例において、過剰な水または緩衝液は、出口チャネルまたはチャンバに集められ得、後に、濾過サンプルの容積を希釈および増大させて、サンプル注入準備をするために使用され得る。
【0025】
図1〜6の実施形態を含め、種々の実施形態に従って、このデバイスは、さらなるチャンバおよび/またはチャネルを備え得る。例えば、そのデバイスは、PCR増幅チャンバ、配列決定反応チャンバ、またはPCR増幅チャンバおよび配列決定反応チャンバの両方を備え得る。種々の実施形態に従って、そのデバイスは、サンプルを配列検出システムまたは他の分析検出器に注入する前に、サンプルを保持するために有用な排出チャンバを備え得る。
【0026】
種々の実施形態に従って、微小流体デバイスが提供され、このデバイスは、本明細書中に記載されるように、単一のデバイスにおいて、複数のサンプル処理経路を含む。
【0027】
種々の実施形態に従って、多孔性フィルタフリット材料は、チャネルにロードしたゲル濾過材料がチャネルから流出しないようにするために使用され得る。そのフィルタフリット材料の平均孔サイズは、流体が通過する(水、サンプルなど)一方で、ゲル濾過材料(例えば、アクリルアミドビーズ)の移動を制限するように選択され得る。例えば、図1〜6に示される微小流体デバイスは、約33ミクロンの平均孔サイズを有する親水性ポリエチレンフィルタフリット材料を利用し得る。P−10 BIO−GELゲル濾過材料とともに使用される場合、このようなフリットは、ゲル濾過材料を適切に制限し得ると同時に、水およびサンプル流体がゲル材料を通過するようにし得る。このような目的で使用され得る例示的な多孔性フィルタフリット材料は、焼結された、適切な平均孔サイズを有する高密度ポリエチレン(HDPE)フリットである。
【0028】
種々の実施形態に従って、ゲル濾過保持機構は、デバイス中に設けられ得、基材に形成され、かつゲル濾過材料の通過を妨げる、小さなチャネルまたは蛇行経路の形態にある流動制限因子を備える。
【0029】
図1〜4の実施形態を含め、種々の実施形態に従って、2つのチャネルは濾過チャンバまたはカラムによって設けられ、分離される場合、チャネルのうちの1つは、基材の第1の表面に形成され得、第2のチャネルは、基材の対向する表面に形成され得る。例えば、第2のチャネル108(図2)または408(図4)は、基材の第1の表面に形成され得、処理チャンバとそれぞれの排出開口とに間に流体連絡を提供し得る。
【0030】
第2のチャネルは、図3および4において例示されるように、第1のチャネルの寸法に類似しているかまたは同じ寸法を有し得る。第2のチャネルは、約0.1mm〜約1.0cmの深さ、約0.1mm〜約1.0cmの幅、および約0.1mm〜約10.0cmの長さを有し得る。例示的な第2のチャネルは、約0.50mmの深さ、約0.75mmの幅および約3.0mmの長さを有する。第2のチャネルは、カバー(例えば、図1および2に示されるように、カバー116または図3および4に示されるように外形416)によって少なくとも部分的に規定され得る。そのデバイスが、ゲル濾過材料が充填された第1のチャネルを備えるかどうかに関係なく、そのデバイスの第2のチャネルは、そこにロードされたゲル濾過材料とともに設けられ得る。ゲル濾過材料は、濾過フリットがデバイス内に位置づけられる前、後または同時に、第2のチャネルにロードされ得る。
【0031】
種々の実施形態に従って、排出開口110、410、710は、サンプルが微小流体デバイスにおける処理チャンバを通過した後に、処理されたサンプルを捕捉または保持するために働き得る。始めに、排出開口110、410、710は、真空がゲル濾過材料のロードのためのデバイスに付与され得るように開かれ得る。その排出開口は、微小流体デバイスの遠心分離の間に開いたままで、ゲル濾過材料をさらに充填および/または脱水し得る。このような充填プロセスの間に、過剰な水または緩衝液は、デバイスからパージされ得、そのデバイスから、出口開口110、410、710を通って逃げ得る。サンプルが、例えば、遠心分離によるように、微小流体デバイスを通って操作される場合、出口開口110、410、710は、カバーフィルム116、416、716でシールされて、デバイス中のサンプルがデバイスから失われないようにするか、または他の方法でデバイス中のサンプルが保持されるようにする。
【0032】
種々の実施形態に従って、基材に形成された複数の経路を有する微小流体デバイスが提供され得、各経路は、図1〜6に示される経路のうちの1つと類似している。例えば、約0.50mm以下の幅を有するチャネルおよびチャンバを使用すると、基材において96までまたはそれ以上のこのような経路を提供し、かつ標準的なマイクロタイタートレイ(例えば、長さ約4.75インチおよび幅約3.25インチ)に等しい得られる基材サイズを提供することが可能である。このような設計の例示的デバイスは、図20に示され、5μLゲル濾過カラムを組み込む。
【0033】
種々の実施形態に従って、微小流体デバイスが提供され、このデバイスは、図1〜4に示されるデバイスに類似であり、第1のチャネルの深さおよび第2のチャネルの深さの合計よりお大きい厚みを備える基材を有する。種々の実施形態に従って、微小流体デバイスが提供され、このデバイスは、図5および6に示され、フィルタチャンバ713の深さと同じ厚みを備える基材を有するデバイスに類似する。
【0034】
図1〜6の実施形態を含め、種々の実施形態に従って、微小流体デバイスが提供され、その濾過フリット材料112、412、712が外側周辺形状(outer peripheral shape)を有し、チャンバ106、406、713が内側周辺形状(inner peripheral shape)を有し、この外側周辺形状は、内側周辺形状をに対して相補的である。
【0035】
図7および9は、組込型ゲル濾過フリット750、950の例示的実施形態を示し、こ
のフリットは、形態安定フリット材料から構成され、チャンバ721、921および開口728、928を規定する、本体712、772を備える。このチャンバ721、921は、ゲル濾過材料778、978が充填され、このゲルろ過材料は、チャンバ721、921にロードされている。このゲル濾過フリット750、950は、それぞれ、図8および10において示される方法によって作成され得る。
【0036】
図8および10は、組込型ゲル濾過フリット750、950に、希釈液132およびゲル濾過材料778、978を開口728、928を介して充填するプロセスにおけるノズル130を例示する。
【0037】
図11は、複数の組込型ゲル濾過フリットを同時に充填するためのマルチノズル充填機械140の実施形態を示す。
【0038】
種々の実施形態に従って、組込型ゲル濾過フリット750、950は、図8および10において例示されるように形成され得、その後、微小流体デバイス(例えば、図3〜6に示されるようなデバイス)に充填され得る。例えば、水和P−10 BIO−GEL粒子のスラリーは、多孔性形態安定フリット本体にポンプ輸送され得、得られたフリットは、微小流体デバイスに組み立てられ得る。このよう製造手順は、微小流体デバイスを形成することに関する基材操作の数を減少させ得、オフライン濾過フリット製造を可能にし、微小流体デバイスの製造コスト全体を低下させ得る。
【0039】
種々の実施形態に従って、組込型ゲル濾過フリットの本体および/またはチャンバは、矩形様(rectanguloid)または円筒状形状に構築され得、そのチャンバは、単一ノズルまたはマルチノズルを使用してゲルの1つを超える型で予め充填され得る。
【0040】
組込型ゲル濾過フリットは、そこにゲル濾過材料を保持し得、なお水および液体サンプルがそこを通って流れることを可能にする。
【0041】
種々の実施形態に従って、組込型ゲル濾過フリットが提供され得、このフリットは、フリット本体における開口を備え、内側ゲル濾過材料チャンバと流体連絡状態にある。種々の実施形態に従って、イオン交換ゲル濾過材料を備えるゲル濾過材料を有する組込型ゲル濾過フリットが提供され得る。種々の実施形態に従って、多孔性親水性ポリエチレン材料を備える形態安定フィルタフリット本体を有する組込型ゲル濾過フリットが、提供され得る。この本体はまた、膜または他のフィルタ材料を使用して形成され得るが、必ずしも形態安定でなくてもよい。この組込型ゲル濾過フリットは、長さ寸法、幅寸法、および深さ寸法を有し得、ここでこれらの寸法の各々は、50mm未満である。
【0042】
種々の実施形態に従って、基材に形成されたチャネル、および例えば、図6に示されるように、チャネルに配置された組込型ゲル濾過フリットを有する微小流体デバイスが提供される。種々の実施形態に従って、基材に形成されたチャネル、基材に形成された投入開口、基材に形成された排出開口、投入開口と排出開口との間の基材に形成され、かつ流体連絡状態にある濾過カラムまたはチャンバ、ならびにカラムに配置され、本明細書中に記載される組込型ゲル濾過フリットを有する微小流体デバイスが提供され得る。ここでチャネルの投入開口は、組込型ゲル濾過フリットの開口と流体連絡状態にある。
【0043】
図12〜16は、種々の微小流体デバイス200を示し、これらの各々は、濾過材料のデバイスを通る流動を制限するために1以上の外形で設計される。図12および14〜16において、これらの外形は、基材220に形成される。図13のデバイスにおいて、そのチャネルは、微小流体デバイスに組み込まれ得る挿入可能な構成要素に形成され得る。各デバイスにおいて、第1のチャネル208は、第2のチャネル210と流体連絡状態に
ある。領域の形態における流体連絡212は、第1のチャネル208と第2のチャネル210との間の各デバイスにおいて設けられる。図12および14〜16において、流体連絡212はまた、基材220に形成される。図12〜16の各々は、第1のチャネル208および/または流体連絡212に配置された流動制限材料202を示す。図12および13に示されるように、材料202よりも小さな平均直径粒子断面積の第2の材料204は、第1のチャネル208において提供される。図13において、なおより小さい平均直径粒子の断面積を有する第3の材料206は、第1のチャネル208において提供される。材料202、204、および206の各々は、ゲル濾過材料(例えば、イオン交換ゲル濾過材料)を含み得る。材料202、204、および206の各々は、本明細書中で記載されるような不活性の平均直径粒子断面積を有する材料(例えば、硝子またはシリコンシード)であり得る。この微小流体デバイス200はまた、図14および15に示されるように、バッフル214を有して、流動制限材料202の第2のチャネル210への流動をさらに制限し得る。このバッフル214は、流体連絡212に、第2のチャネル210に、または流体連絡212および第2のチャネル210の両方に設けられ得る。
【0044】
材料202、204、および206の粒子のうちのいくつかは、材料202、204、および206の積み重ねが流体連絡212において形成される前に、第2のチャネル210に流動し得る。流体連絡212における積み重ねの形成および/または積み重ねの崩壊は、どのくらいの力が微小流体デバイスに付与されるか(例えば、求心力、または空気力)を制御することによって操作され得る。流体連絡212は、テーパー状の移動領域(例えば、漏斗形状の移動領域)であり得る。この流体連絡212は、図12〜15に示されるように、円錐形状の移動領域であり得る。
【0045】
種々の実施形態に従って、図12〜15のいずれか1つに示される微小流体デバイス200を形成する方法が提供される。粒状流動制限材料202は、第1の断面積を有する第1のチャネル208に配置される。この第1のチャネル208は、流体連絡212において、領域の形態で終わる。第1の材料202の粒子は、第2のチャネル210の直径断面積の5%〜約90%である平均直径粒子断面積を有し得る。種々の実施形態に従って、さらなる材料204は、第1の材料の粒子よりも小さい断面積を有する粒子から構成され、次いで、これは、第1の材料の粒子202の積み重ねに加えられ得る。第3の型の材料206は、粒状材料204の後に加えられ得、この第3の材料206は、別の流動制限粒状材料であり、同じ組成であるが、粒状材料202もしくは204のいずれかよりも小さいサイズであり得るか、または非粒状物質であり得るゲルもしくは樹脂材料であり得る。第1の材料および/または第2の材料をロードするために最初に付随しているかまたは使用される希釈液は、第1のチャネル208から流体連絡212を通って、そして第2のチャネル210へと、例えば、求心力を使用して動かされ得る。その希釈液は、第2のチャネル210からさらに動かされ得、例えば、デバイスから取り除かれ得るか、または収集チャンバまたは排出チャンバにおいて保存され得る。
【0046】
種々の実施形態に従って、粒状材料202、204、および206は、ゲル濾過粒子または他の粒子であり得る。この粒子は、引き続いてロードされたゲルまたは樹脂材料の流動を制限する以外の機能を提供するために、 化学的に誘導体化または物理学的に改変され得る。例えば、材料202、204、および206は、DNAまたはDNAフラグメントとのハイブリダイゼーションを可能にするように改変され得る。材料202、204または206のうちのいずれかがハイブリダイゼーションを可能にするように改変される場合、ハイブリダイズした成分が、例えば、変性によってその材料から引き続いて放出され得ることによる方法が提供され得る。よって、種々の実施形態は、ハイブリダイズ可能な成分の精製または濃縮を提供し得る。
【0047】
図12〜16に示される微小流体デバイス200は、適切な場所で組み立てられ得るの
で、このデバイスを作製する方法は、当該分野で公知の濾過フリットを使用することに関連する利用および取り扱いの問題を避け得る。例えば、デバイス200は、当該分野で公知のフリットを組み込むデバイスよりも小さく作製され得る。
【0048】
種々の実施形態に従って、微小流体デバイス(例えば、図12〜16において示されるデバイス)が提供され得、ここで第1のチャネルを通る流体の流動の方向は、流体の第2のチャネルを通る流動の方向と並べられる。種々の実施形態に従って、微小流体デバイスは提供され得、ここで第1のチャネルおよび第2のチャネルのうちの少なくとも一方が、丸い形状を有する、流体流動の方向に対して直交する断面積(例えば、円形の断面積)を備え得る。
【0049】
種々の実施形態、例えば、図12〜16に示される実施形態に従って、第1の表面を有する基材、第1の表面に対向する第2の表面、および厚みを備える微小流体デバイスが提供され得る。この基材は、この基材に形成され、かつ第1の方向に延び、少なくとも第1の最小寸法および第1の深さによって規定される第1の断面積を有する第1のチャネルを備え、この第1の深さは、第1の表面に対して垂直な方向に、かつ第2の表面に向かって延びる。この基材はまた、この基材に形成され、かつ第2の方向に延びる第2のチャネルを備え、ここでこの第2のチャネルは、少なくとも第2の最小寸法および第2の深さによって規定される第2の断面積を有する。この第2の深さは、第1の表面に対して垂直な方向に、かつ第2の表面に向かって延びる。このデバイスは、第1のチャネルと第2のチャネルとの間にの基材に形成され、少なくとも第3の最小寸法によって規定される第3の断面積を有する流体連絡をさらに備える。ここでこの第3の断面積は、第1の断面積よりも小さい。このデバイスは、第1のチャネルに配置され、流動制限粒子を含む粒状流動制限材料をさらに含む。ここで流動制限粒子の少なくとも10重量%は、第3の最小寸法よりも小さい粒径を有する流動制限粒子を含む。種々の実施形態に従って、第1の方向および第2の方向は、流体連絡において互いと並べられ得る。種々の実施形態に従って、第1のチャネルおよび第2のチャネルのうちの少なくとも一方は、丸形の形状を有する断面積を備える。種々の実施形態に従って、流動制限粒子の少なくとも50重量%は、第3の最小寸法よりも小さい粒径を有する流動制限粒子を含む。例えば、流動制限粒子の少なくとも95重量%は、第3の最小寸法より小さい粒径を有する流動制限粒子を含む。種々の実施形態に従って、その流動制限粒子は、第2の最小寸法より小さい粒径を有する。種々の実施形態に従って、この流動制限材料は、第1のチャネルに配置され、第3の断面積よりも小さい平均直径断面積を有するゲル濾過材料を含み得る。流動制限粒子の平均直径断面積は、第3の断面積の約0.1〜約0.2倍であり得る。種々の実施形態に従って、この流動制限粒子は、流体連絡において積み重ねを形成し得る。この流動制限材料は、流体連絡において一緒に充填される第1の平均直径の粒子を有する第1の流動制限材料、および第1のチャネルにおいて一緒に充填され、かつこの一緒に充填された第1の流動制限材料に隣接している第2の平均直径の粒子を有する第2の流動制限材料を含み得る。ここで第1の流動制限材料の粒子の平均直径は、第2の流動制限材料の粒子の平均直径より大きい。さらに、第2の一緒に充填される流動制限材料は、その一緒に充填される第1の流動制限材料よりも、第2のチャネルからさらに間隔を空けて配置され得る。
【0050】
図16および17において示されるように、微小流体デバイスが提供され得、この微小流体デバイスは、第1のチャネル208と第2のチャネル210との間の流体連絡212を、断面積が急激に変化した形態で備える。
【0051】
図16および17において例示されるように、種々の実施形態に従って、流体または粒状材料のデバイスを通る流動を圧迫して、試薬の分布を計量し、そして/または微小流体デバイスにおける粒状材料の流動をブロックすることは、望ましくあり得る。このような環境下で、種々の実施形態に従って、流動制限因子を使用することは有用であり得る。種
々の実施形態に従って、接続チャネルよりも実質的に小さい断面積を有するチャネルは、流動制限因子を形成するために使用され得る。所望の結果および制限に依存して、例えば、より大きな断面積の接続チャネルにおいてより小さな粒子を保持するために、制限の寸法が選択され得る。図17は、使用され得る流動制限設計の代表的な外形を示す。
【0052】
種々の実施形態に従って、ゲル濾過粒子および/またはサイズ排除媒体の接続チャネル、処理チャンバ、または排出ウェルへの流動を妨げるように、1以上の流動制限因子が使用され得る。しかし、このより小さなチャネルは、サンプル流体を容易に通過させるために十分に大きいものであり得る。例えば、種々の実施形態に従って、第1のチャネルは、第1の断面積を有し、第1のチャネルの断面積の約5%〜約50%である第2の断面積を有する第2のチャネルを相互接続する排出端部を備え得る。第2のチャネルの断面積は、第1のチャネルの断面積の例えば、約6%〜約30%、例えば、第1のチャネルの断面積の約10%〜約15%であり得る。例示的な実施形態において、第1のチャネルは、約0.50mmの幅および約0.50mmの深さを有する正方形の断面積を有する。第1のチャネルと流体連絡状態にある第2のチャネルが提供され、このチャネルは、約0.18mmの幅および0.18mmの深さを有する正方形の断面積であり得る。このような流動制限因子設計において、第2のチャネルの断面積は、第1のチャネルの断面積の約13%である。このような流動制限因子設計は、約0.001mm以上、例えば、約0.01mm以上の最小寸法を有するゲル濾過粒子の通過を制限するにあたって有用であり得、2つのチャネル間の移動におけるゲル濾過粒子の積み重ねを引き起こすにあたって有用であり得る。ここでこれらのゲル濾過粒子は、図16において示されるように、第2のチャネルの断面積よりも小さい平均断面積を有する。
【0053】
このようなデバイスにおいて、ショルダーは、第1のチャネル208および第2のチャネル210の交点において提供され、このショルダーは、第1のチャネルおよび第2のチャネルを通る流体の流動の方向に対して垂直であり得る。
【0054】
種々の実施形態に従って、第2のチャネル(例えば、図12〜17における第2のチャネル210)の流動制限因子は、バルブを開くことによって形成されて、2つ以上の第1のチャネルまたはチャンバと、第2のチャネルとの間の流体連絡を形成し得る。第2のチャネルと1以上の第1のチャネルとの間の交点または移動の直径は、本明細書中に記載の流動制限因子を規定する。この流体連絡は、バルブの開口によって形成される流体連絡においてゲル濾過の積み重ねを引き起こすために有用であり得る。このようなバルブおよび上記のバルブ利用技術は、米国特許出願第10/336,274号において記載されるものを包含し得る。
【0055】
図18は、微小流体デバイス(例えば、図1および2のデバイス)を形成するための製造プロセスを例示する。第1の工程において、基材が形成され、この基材は、投入、排出、第1および第2のチャネル、ならびに濾過フリットカラムを備える。第2の工程において、濾過フリットは、濾過フリットカラム内に位置づけられる。位置づけは、この濾過フリットをカラムにプレスばめすることによって達成され得るか、または公差に依存して、濾過フリットは、カラムに単に置かれ得る。第3の工程において、デバイスの底部表面は、カバーで、例えば、感圧式接着剤テープを基材の底部表面に適用することによってシールされる。この方法の第4の工程において、濾過フリットカラムの頂部は、シールされ、投入開口および排出開口の半分がシールされる。
【0056】
図19は、微小流体デバイス(例えば、図1および2のデバイス)を製造する方法を示す。第1の工程において、流動制限粒子を含むゲルスラリーは、投入開口を通ってデバイスの第1のチャネルにおいて充填され得る。力がデバイスに付与されて、例えば、デバイスの排出開口において真空を使用することによって、または求心力をデバイスに付与する
ことによって、ゲルスラリーを充填し得る。その力は、ゲルスラリーを投入開口から第1のチャネルへと動かし得る。この投入開口は、カバーを適用することによってゲルスラリーをロードした後に完全にシールされ得るか、またはシーリングは、第1のチャネルが充填された後に行われ得る。第1のチャネルが充填された後に、ゲルスラリーは、脱水され得、カバーは、排出開口をシールするように、適用され得る。その後、このデバイスは、サンプルを処理のために受容し得る。次いで、力は、微小流体デバイスに付与されて、サンプルを投入開口から排出開口へと動かすように操作し得る。
【0057】
種々の実施形態に従って、流動制限材料、ゲル濾過材料およびサンプルは、デバイスの投入開口3を通って導入され得る。そのプロセスの間の種々の時間のいずれかにおいて、投入開口は、デバイスの第1の表面の上でカバー(例えば、光学的に透明な接着層カバー)で完全にシールされ得る。この投入開口はまた、デバイスの対向する第2の表面の上で完全にまたは部分的にシールされ得る。このことは、投入開口へとピペットで移され得る少量のサンプル(例えば、約1ナノリットル〜約10μL、例えば、約100ナノリットル〜約0.5μlのサンプルサイズ)の閉じこめを可能にする。
【0058】
上記の種々のデバイスおよび方法は、複数のサンプルを同時に高スループット処理するためのデバイスおよび方法において実施され得る。このような高スループットデバイスの例は、図20において示される。図20は、各々、種々の実施形態に従ってそれぞれのサンプルを処理するための複数の経路300を有する微小流体デバイス400の上面図である。この複数の経路300は、互いに対して平行であり得る。各経路300は、複数のそれぞれの処理チャンバ376、378、381、383、および385との遮断可能および/または開放可能な流体連絡状態にある投入開口372を有し得る。各経路300は、示されるように、それぞれの排出開口387、389において終わり得る。
【0059】
図20のデバイスにおいて、各経路300は、処理チャンバ376、378、381、383、および385に加えて、バルブ391、393、および397を備え得る。種々の実施形態において、各経路はまた、can include a流動スプリッタ395を備え得る。このスプリッタは、各経路300を2つのそれぞれの下位経路(sub−pathway)(例えば、逆方向配列決定反応経路および正方向配列決定反応経路)に分け得る。各下位経路は、それぞれ、別個の排出チャンバまたはレザバ387、389をもたらす。
【0060】
図21は、種々の実施形態に従い、複数の経路422を備える微小流体デバイスの別の実施形態の上面図である。図21に示される例示的実施形態に従って、各経路472は、それぞれ、投入ウェル424、PCRチャンバ426、PCRチャンババルブ428、PCR精製チャンバ430、PCR精製チャンババルブ432、PCR精製チャンバ付属物434、さらなる反応投入ウェル436、配列決定チャンバ438、配列決定チャンババルブ440、配列決定精製チャンバ442、および排出ウェル、チャンバ、もしくはレザバ444(全て基材420の上に形成される)を備え得る。この実施形態および他の種々の実施形態において有用であり得る例示的バルブは、Bryningらの米国仮特許出願第60/398,851号(その全体が本明細書中に参考として援用される)に記載されるバルブを含む。
【0061】
図22および23は、デバイス(例えば、図21に示されるデバイス)の投入チャンバの拡大図であり、これらは、基材260に形成された複数の涙滴形状のチャンバ250を示す。この涙滴形状のチャンバ250は、各々、実質的に円形の第1の端部252、より狭くかつ対向する第2の端部256、およびチャネル254と流体連絡状態にある開口258(これは、デバイスの次の外形(例えば、処理チャンバ)をもたらす)を有し得る。
【0062】
種々の実施形態に従って、涙滴形状のチャンバ250は、そのチャンバの深さに沿って一定の断面積を有し得る。種々の実施形態に従って、涙滴形状のチャンバの底部は、扇形であり得るかまたは平坦であり得る。
【0063】
直線構成(retilinear)デバイスに与えられる求心力は、このようなデバイスの各経路、チャネル、ウェル、またはチャンバと必ずしも並んでいる必要はないので、デッドボリューム(dead volume)ゾーンは、このようなデバイスの角に作製され得る。種々の実施形態に従って、サンプルの完全な移動を容易にし、かつサンプルの一部が保持されないようにするために、涙滴形状のチャンバ256は、サンプルを接続チャネル254へ誘導するために使用され得る。この設計は、全ての非半径方向のウェルのために使用され得、ともに、デバイスの中心の左または右に使用され得る。図22は、このようなウェルの例示的パターンを示す。
【0064】
種々の実施形態に従って、涙滴形状のチャンバは、経路を通るサンプル流動の方向に関して斜めにされ得るか、または45°回転されて、経路を通るサンプルの移動を改善し得る。傾斜の方向は、デバイスが保持されるか、取り付けられるか、貼附されるか、または固定される、デバイスまたはスピニング圧盤(spinning platen)の回転軸に対するウェルの位置に依存し得る。
【0065】
種々の実施形態に従って、液体サンプルを微小流体デバイスにおいて操作する方法が提供される。このデバイスは、涙滴形状のチャンバおよびチャンバに配置された液体サンプルを有する。このデバイスは、回転軸の周りに回転され得る。この回転軸は、このデバイスの何れの部分にも存在しない。この回転は、チャンバからチャネルへと、液体サンプルに求心力を付与し得る。液体サンプルをチャネルにおいてチャンバへ求心的に操作するための方法もまた提供される。
【0066】
図24は、種々の実施形態に従うサンプルを処理するための経路300を有する微小流体デバイスの上面図である。図25は、図24に示される経路300の拡大上面図である。経路300は、図20に示される経路300の例示である。この経路300は、投入チャンバ302、投入チャネル304、PCRチャンバ306、PCRチャンババルブ308、PCR精製カラム310、PCR精製カラムバルブ312、流動スプリッタ334、流動スプリッタバルブ314、正方向配列決定反応チャンバ315、逆方向配列決定反応チャンバ316、配列決定反応チャンババルブ318、319、正方向配列決定反応精製カラム323、逆方向配列決定精製カラム320、正方向配列決定カラムバルブ321、逆方向配列決定反応カラムバルブ322、正方向配列決定反応生成物排出チャンバ326、ならびに逆方向配列決定反応生成物排出チャンバ324を備え得る。図24に示されるデバイスは、基材368およびカバー360を備えることも示される。
【0067】
種々の実施形態に従って、平行な経路を有する微小流体デバイスのチャネル、チャンバ、バルブおよび他の構成要素は、互いから、例えば、9mm、4.5mm、3mm、2.25mm、1.125mm、または0.5625mm離れて間隔を空けられ得る、この経路300は、平行であり得、回転運動の半径上に存在しないように、回転圧盤に配置され、そして取り付けられ得る。外形的に平行な処理経路を有する微小流体デバイス、このようなデバイスを含むまたはこのようなデバイスを処理するためのシステムおよび装置に関するさらなる詳細は、同時に出願された米国特許出願第10/336,274号および同第10/336,330号(ともに、それらの全体が本明細書中に参考として援用される)に記載される。
【0068】
種々の実施形態に従って、このデバイスは、ピペットでロードされ得る。サンプルを注入する前に、このデバイスは、このデバイスにおいて所望の反応を行うために有用な適切
な反応物質、試薬、緩衝液、または他の従来から公知の構成要素を予めロードされ得る。
【0069】
種々の実施形態に従って、この微小流体デバイスは、SBSマイクロプレート形式に適合し得る、積層された、多層のポリマー材料デバイスであり得る。この微小流体デバイスは、約0.5mm〜約5mm厚、例えば、約2.0mm〜約3.0mm厚であり得る。その基本的形態において、この微小流体デバイスは、両側面が薄いカバーフィルムで積層された基材を備え得る。この基材内に、サンプル流体を所定の経路に沿って操作するために使用され得る一連のチャネル、チャンバ、および/またはウェルがある。流体サンプルは、チャネルまたはチャンバからチャネルまたはチャンバへと求心力によって移動され得る。求心力は、回転圧盤に対して取り付けられている間に、デバイスを回転軸の周りに回転させることによって生成され得る。従って、サンプル流体は、種々の反応が連続的に行われるにつれて、デバイスの一方の端部から他方の端部へ移動され得る。
【0070】
このデバイスは、デバイスの経路全体がシールされたとしても、流体が求心力下でデバイスを通って動くように回転され得る。
【0071】
種々の実施形態に従って、微小流体デバイスの使用から生じた処理されたサンプルは、水性の、注入準備が整ったサンプルであり得る。このサンプルは、例えば、キャピラリー電気泳動分析機器において使用され得る。
【0072】
種々の実施形態に従って、このデバイスは、少量(例えば、約1ナノリットル〜約10μl、例えば、約100ナノリットル〜約0.5μlの容積)の精製を可能にし得る精製カラムを備え得る。種々の実施形態は、高スループットの、平行な平面形式において少量のサンプルの精製を可能にする。
【0073】
種々の実施形態に従って、微小流体デバイスが提供され、この基材は、矩形基材を有する。
【0074】
種々の実施形態に従って、微小流体デバイスが提供され、このデバイスは、基材において少なくとも部分的に形成された第1のチャネルおよび第1のチャンバを有する経路を有する経路を備える。ここでこの基材は、複数のこのような経路を備える。各それぞれのチャンバは、深さ、およびこの深さに対して垂直に断面にされる場合に涙滴形状の断面積を有する。このそれぞれのチャンバは、各々、実質的に円形の第1の端部、およびより狭くかつ対向する第2の端部を有する。このそれぞれのチャンバの第2の端部は、それぞれのチャネルと流体連絡状態にある。種々の実施形態に従って、このように、微小流体デバイスが提供され、このデバイスは、互いに平行に配置された、複数のこのような経路を有する。
【0075】
種々の実施形態に従って、微小流体デバイスが提供され、このデバイスは、複数の平行なサンプル処理経路、および各経路に沿って少なくとも1つのバルブを備える。この少なくとも1つのバルブは、基材に形成された第1の凹部、この基材に形成された第2の凹部、およびこの第1の凹部と第2の凹部との間に挟まれた中間壁を備え得る。ここでこの中間壁部分は、第1の弾性を有する変形可能材料から形成される。このバルブはまた、第1の凹部および第2の凹部を覆い、この第1の弾性よりも大きい第2の弾性を有する弾性的に変形可能なカバー層を備え得る。言い換えると、このカバー層は、中間壁材料よりも弾性であり得るか、またはより早く跳ね返り得る。この弾性的に変形可能なカバー層は、中間壁が非変形状態にある場合には中間壁と接触し得、中間壁が変形状態にある場合には、中間壁と接触していない状態にあり得、それにより、第1の凹部と第2の凹部との間に流体連絡を形成する。このようなバルブのさらなる詳細は、米国仮特許出願第60/398,851号(2002年7月26日出願)において、および同時期に出願された米国特許
出願第10/336,274号(2003年1月3日出願)(ともに、それらの全体が本明細書中に参考として援用される)において見出され得る。
【0076】
種々の実施形態に従って、微小流体デバイスが提供され、このデバイスは、複数の平行な処理経路、および各経路に沿った少なくとも1つのバルブを備え、ここでこの少なくとも1つのバルブは、基材に形成され、第1の凹部部分および第2の凹部部分を備える、第1の凹部を備える。この第1の凹部は、対向壁表面部分によって少なくとも部分的に規定される。この対向壁表面部分は、第1の弾性を有する第1の変形可能材料を含む。この第1の凹部部分および第2の凹部部分は、第1の変形可能材料が非変形状態にある場合に互いと流体連絡状態にある。この少なくとも1つのバルブはまた、この第1の弾性よりも大きい第2の弾性を有する弾性的に変形可能なカバー層を備える。言い換えると、このカバー層は、変形可能な対向壁表面部分よりも弾性であり得るかまたはより早く跳ね返り得る。このカバー層は、少なくとも第1の凹部部分を覆う。この第1の変形可能材料を含む対向壁表面部分は、第1の凹部部分と第2の凹部部分との間に挟まれた障壁壁を形成し、かつその障壁壁が変形状態にある場合に第1の凹部部分と第2の凹部部分との間の流体連絡を妨げるように変形可能である。
【0077】
種々の実施形態に従って、この微小流体デバイスの基材は、単一層の材料、コーティングされた層の材料、多層材料、またはこれらの組み合わせを含み得る。例示的な基材は、硬質プラスチック材料(例えば、ポリカーボネート材料)の単一層の基材が挙げられ得る。微小流体デバイスまたはそれらの構成要素(例えば、基材、基底層、凹部含有層、または任意の組み合わせの構成要素)のために使用され得る材料としては、ポリカーボネート、ポリカーボネート/ABSブレンド、ABS、ポリ塩化ビニル、ポリスチレン、ポリプロピレンオキシド、アクリル(acrylic)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、PBT/PETブレンド、ナイロン、ナイロンのブレンド、ポリアルキレン材料、フルオロポリマー、シクロオレフィンポリマー、またはこれらの組み合わせが挙げられ得る。種々の実施形態に従って、この基材の材料は、環状オレフィンコポリマー(例えば、ZEON Corporation,Tokyo,Japanから市販されるZEONEXまたはTicona GmbH,Frankfurt,Germanyから市販されるTOPAZ)である。
【0078】
基材全体は、非弾性的に変形可能材料を含み得る。中間壁を備えるバルブを有する種々の実施形態に従って、少なくともこの中間壁は、非男性的に変形可能材料を含み得る。この中間壁は、非弾性である必要はないが、2つの凹部(中間壁が中間壁の変形の際に分離する)間の流体連絡の形成を可能にするに十分に非弾性かつ変形可能であり得る。種々の実施形態に従って、この基材は、例えば、ポリメラーゼ連鎖反応において使用されるような、60℃と95℃との間の温度においてサーマルサイクリングに耐え得る材料を含み得る。さらに、この基材材料は、微小流体デバイスを通って流体サンプルの操作を達成するに必要な力(例えば、デバイス内でかつこのデバイスを通ってサンプルを回転および操作するために必要な求心力)に耐え得るに十分に強くあり得る。
【0079】
この基材は、凹部含有層と接触した状態で1以上の基剤ポリマーを含み得る。この凹部含有層は、この層を貫通して形成された孔を有する層であり得、基底層は、凹部含有層と接触し得、凹部含有層において貫通孔の底部ウェルを規定し得る。この基材は、微小流体デバイスと同じ寸法を有し得、微小流体デバイスの厚みの主要部分を構成し得る。
【0080】
種々の実施形態に従って、微小流体デバイスが提供され得、このデバイスは、この基材の一部が変形されるべき領域において凹部含有基材の一部を少なくとも覆う弾性的に変形可能なカバー層を備える。例えば、このカバー層は、基材に形成された任意の数の複数のチャンバまたはチャネルを覆い得るかまたはこの基材に形成されたチャンバおよびチャネ
ルの全てを覆い得る。このカバー層は、1以上のチャンバ、投入開口、排出開口、カラム、または基材にまたは基材の上に形成された他の外形を部分的に覆い得る。このカバー層は、変形因子(deformer)がデバイスと接触し、かつ中間壁(例えば、カバー層の下に位置した中間壁)を変形する場合にそのカバー層を一時的に変形させることを可能にする弾性特性を有し得る。一旦このような変形因子が微小流体デバイスとの接触から外されると、変形可能中間壁は、カバー層が弾性的に跳ね返っている間に、2以上の凹部(中間壁の変形によって流体的に接続される)間の流体移動を可能にするに少なくとも十分な時間にわたって、変形状態のままであり得る。この中間壁の変形可能材料は、ある程度まで弾性であり得るか、または非弾性であり得る。
【0081】
この弾性的に変形可能なカバー層および/または基材は、化学的に耐性かつ不活性であり得る。この弾性的に変形可能なカバー層は、例えば、ポリメラーゼ連鎖反応において使用されるような、約60℃と約95℃との間の温度におけるサーマルサイクリングに耐え得る材料を含み得る。任意の適切な男性的に変形可能なフィルム材料(例えば、弾性材料)が、カバー層のために使用され得る。種々の実施形態に従って、PCRテープ材料は、弾性的に変形可能なカバー層として、またはこの層とともに使用され得る。ポリオレフィン材料フィルム、他のポリマーフィルム、コポリマーフィルムおよびこれらの組み合わせは、カバー層のために使用され得る。
【0082】
このカバー層は、その幅もしくは長さ全体にわたって曲がるか、または局部的に曲がるかもしくは変形する、半剛性プレートであり得る。このカバー層は、約10マイクロメートル(μm)〜約500μm厚、例えば、50μm〜約100μmであり得、接着剤層を含み得る。使用される場合、この接着剤層は、約50μm〜約100μm厚であり得る。微小流体デバイス、デバイス基材、デバイスカバー層、およびデバイス壁の他の材料、特徴、および局面は、Bryningらの米国仮特許出願第60/398,851号(その全体が本明細書中に参考として援用される)に記載される。
【0083】
図26は、微小流体デバイス処理システム399を示し、このシステムは、回転軸386に周りに回転する圧盤380、それぞれの微小流体デバイス(例えば、図20および21に示されるデバイス)を保持および固定するためのホルダ381および383、加熱要素388,制御ユニット390を備える。この処理システムはまた、ドライブユニット(示さず)、およびドライブユニットのための制御ユニット(示さず)を備える。図26は、無標矢印で回転の方向を示すが、回転の方向は、代わりに反対の方向であり得る。
【0084】
図27a〜27dは、種々の実施形態に従う微小流体デバイスにおいて使用され得る種々のチャネルプロフィールの断面図である。図27aにおいて、チャネル542は、基材540において矩形の断面積を伴って形成される。この断面積は、1より大きいアスペクト比(幅/深さ比である)を有し得る。図27bにおいて、チャネル546は、基材544において半楕円形の断面積を伴って形成される。この断面積は、1より大きいアスペクト比(すなわち、幅/深さ比)を有し得る。図27cにおいて、薄くかつ狭いチャネル550は、基材548において形成され、ここでこの断面積は、1未満のアスペクト比(すなわち、幅/深さ比)を有し得る。図27dにおいて、チャネル554は、基材552において台形の断面積を伴って形成される。これらおよび他の断面設計が、流動制限チャネルとして使用され得、種々の実施形態に従うバルブ−開口操作の間に、行われ得るかまたは形成され得る。
【0085】
代表的な、真っ直ぐなチャネル流動制限因子断面の寸法特徴は、例えば、約0.2mm×約0.2mmであり得る。このようなチャネルの長さは、例えば、約0.1mm〜約10cm、例えば、約5mmであり得る。流動制限因子は、より大きいチャンバ(約0.50mmより大きい)とともに使用され得、チャンバに位置する粒子(例えば、P−10,
SEIEビーズ、粒子、およびSECビーズ)を保持するように働き得る。この流動制限因子は、粒子を保持するチャンバの下流に位置し得る。下流とは、流動制限因子が、チャンバよりも、回転軸から大きく離れた距離に位置するあることを意味する。求心力に供される場合、チャンバ中の材料は、流動制限因子に向かって動き得る。このチャンバで、粒子は保持され得るが、流体は、隣接するチャネルまたはチャンバへと通過し得る。
【0086】
種々の実施形態に従って、および上記のように、流動制限因子の寸法は、正方形の断面積に限定されない。他の形状が、首尾良く実行され得る。例えば、0.10mm深さおよび0.30mm幅を有する流動制限因子の矩形の断面積は、ゲル濾過媒体(例えば、BioRadから市販されるP−10ビーズ)を保持するために、基材に形成され得る。
【0087】
種々の実施形態に従って、この処理システムは、圧盤上に微小流体デバイスホルダを備え得る。この圧盤は、微小流体デバイスの平行な経路を、圧盤の回転軸に関して中心を外して配向する。種々の実施形態に従って、ホルダが提供され得、このホルダは、微小流体デバイスの平行な経路全てを、その経路が圧盤の半径に対して平行である場合に、その経路の全てが半径から外れて、かつその半径の同じ側に存在するように、並んでいる。
【0088】
種々の実施形態に従って、微小流体デバイスを備えるサンプル処理システムが提供され、このデバイスは、ホルダに配置された複数の平行な経路を有する。ここで複数の経路の各投入開口は、この複数の経路の各それぞれの排出開口よりも、回転軸に近い。種々の実施形態に従って、デバイスの複数の平行な経路の各々は、直線的な配置において、それぞれの投入開口、少なくとも1つの処理チャンバ、および排出開口を備える。
【0089】
種々の実施形態に従って、このサンプル処理システムと共に使用される微小流体デバイスは、長さ、幅、および厚みを有する矩形様として形作られ、このホルダは、微小流体デバイスをその圧盤にしっかりと保持し得る。クリップ、ファスナー、または他の保持機構が採用されて、そのデバイスがその圧盤に固定され得る。種々の実施形態に従って、サンプル処理システムが提供され、ここでこの微小流体デバイスは、対向する第1の矩形表面および第2の矩形表面を有する。ここでこれらの表面の各々は、その幅よりも大きい長さを有する。種々の実施形態に従って、サンプル処理システムが提供され、ここで微小流体デバイスは、ホルダに配置され、圧盤の半径は、微小流体デバイスの長さに対して垂直であり、このデバイスは、デバイスの長さまたは幅に対して平行に延びる平行な経路を備える。種々の実施形態に従って、サンプル処理システムが提供され、ここで微小流体デバイスは、ホルダに配置され、その圧盤の半径は、微小流体デバイスの幅に対して垂直であり、そのデバイスは、デバイスの長さまたは幅に対して平行に延びる平行な経路を備える。
【0090】
本明細書中に記載の微小流体デバイス、システム、および方法の種々の外形について有用な他の材料成分および方法の記載は、Bryningらの米国仮特許出願第60/398,851号(その全体が本明細書中に参考として援用される)に記載される。
【0091】
前述の説明および他のサンプル処理デバイスは、単独で処理され得る。種々の実施形態に従って、サンプル処理デバイス610は、担体680上に取り付けられ得る。このようなアセンブリは、図28に示されるサンプル処理デバイス610および担体680の拡大斜視図において示される。
【0092】
サンプル処理デバイスから分離している担体を提供することによって、サンプル処理デバイスの熱量(thermal mass)は、自動化装置(例えば、ロボットアームによる)による取り扱いおよび/または従来の装置による処理に適した厚みを有するサンプル処理デバイス全体を製造することに比較して、最小限にしか影響を受けない。担体の別の潜在的利点は、サンプル処理デバイスが、平坦な構成を巻くか他の方法でこのような構
成から外れる傾向を示し得ることである。サンプル処理デバイスを担体に取り付けることにより、サンプル処理デバイスは、処理のために平坦な構成にて保持され得る。種々の実施形態に従って、この担体は、サンプル処理デバイスに取り付けられた場合に、十分に剛性である担体を提供するプラスチック材料または他の剛性材料から作製され得る。このプラスチック担体は、その少なくとも1つの表面に取り付けられたゴムパッドとともに提供され得る。シリコン発泡体パッドまたはシリコン発泡体層は、担体の表面(例えば、サンプル処理デバイスと接触する表面)に使用され得る。
【0093】
担体が提供され得、その担体は、担体が取り付けられるサンプル処理デバイスと接触した領域が制限されており、サンプル処理デバイスと担体との間の熱伝達が減少され得る。このデバイスに対して単体が取り付けられている。サンプル処理デバイスから離れて面している担体の表面は、例えば、圧盤または他の構造体(熱ブロックの方へサンプル処理デバイスに力をかけて、担体と、圧盤または他の構造体との間の熱伝達を減少させるために使用される)と接触した領域が制限されて提供され得る。この担体は、サンプル処理デバイスにおける温度変化に影響するのを避けるために、比較的低い熱量を有し得る。
【0094】
種々の実施形態に従って、この担体は、その担体および/または取り付けられたサンプル処理デバイスが表面(その間でアセンブリ(例えば、熱ブロックおよび圧盤)が圧縮されている)に適合し得るように、いくらかのコンプライアンスを示し得る。担体自体は、例えば、製造公差における変動などに起因して、完全に平坦でなくてもよい。さらに、アセンブリは、担体および/またはサンプル処理デバイスにおける厚みの変動に起因して、異なる厚みを有し得る。
【0095】
種々の実施形態に従って、このサンプル処理デバイス610は、求心力を使用してロードされ得る。この担体は、ロードおよび/またはサーマルサイクリングの間に圧力をカードに付与することによって、サンプル処理デバイスの完全性を維持し得る。
【0096】
この担体680は、サンプル処理デバイス610に、担体680が多くの異なるサンプル処理デバイス610とともに再使用されることを可能にする様式で、取り付けられ得る。種々の実施形態に従って、この担体680は、単一のサンプル処理デバイス610に恒久的に取り付けられ得る。その結果、使用後に、サンプル処理デバイス610および担体680の両方が、ともに廃棄される。
【0097】
示される実施形態において、そのサンプル処理デバイス610は、サンプル処理デバイス610を担体に対して並べるための成形された支柱611を備える。成形された支柱のうちの少なくとも1つは、サンプル処理デバイス610の中心に対して近位に位置し得る。わずか1つの成形された支柱611が、サンプル処理デバイス610を担体680に取り付けるために使用され得るが、少なくとも2つの支柱611が備えられ得る。中心に位置する支柱611は、担体680の上にサンプル処理デバイス610を中心に置くにあたって補助となり得る。その一方で、第2の支柱611が、担体680に対するサンプル処理デバイス610の回転を妨げるために設けられ得る。さらに、わずか2つの支柱611が示されるが、サンプル処理デバイス610と担体680との間に3つ以上の支柱または他の取り付け部位が設けられ得ることが理解される。さらに、支柱611は、サンプル処理デバイス610にメルト接着されて、アラインメントに加えて、2つの構成要素の取り付けを達成し得る。
【0098】
支柱または他のアラインメント外形は、サンプル処理デバイス610および担体680のいずれかまたはその両方に設けられて、成形された支柱611を用いて、サンプル処理デバイス610に対する最後のアラインメントおよび取り付けの前に、サンプル処理デバイス610と担体680とをほぼ並べ得る。その支柱および/または他のアラインメント
外形は、サンプル処理デバイス610および担体680を備えるアセンブリを、例えば、サンプルプロセスチャンバ650における材料を熱的に循環させるために使用される熱処理システムに対して並べ得る。1以上のアラインメント外形はまた、プロセスチャンバ650中での選択された分析物の存在または非存在を検出するための検出システムとともに使用され得る。
【0099】
種々の実施形態に従って、支柱または他のアラインメント機構は、担体680の上に設けられて、担体680と熱ブロックとを並べ得る。この支柱は、円錐形状またはテーパー状のピンとして構成され得、これらは、熱ブロックに形成された対応する切頭形もしくは非切頭形の円錐形状またはテーパー状のウェルまたは凹部と嵌合し得る。この支柱は、十字様断面積(フィリップスねじドライバの先端)を有するように構成され得、これらは、圧縮可能および/または弾性であり得、熱ブロックに形成された円錐形状またはテーパー状のウェルまたは凹部と嵌合し得る。この担体680の支柱は、ポリプロピレンから作製され得る。熱ブロックに形成されたウェルまたは凹部は、切頭形の円錐の形状を有し得る。
【0100】
この担体680は、サンプル処理デバイス610のプロセスチャンバ650と好ましくは並べられる、開口682のような種々の外形を備え得る。開口682を提供することによって、このプロセスチャンバ650は、担体680を通って調べられ得る。開口682を提供することに対する1つの代替方法は、所望の波長の電磁放射線に対して透過性の材料で担体680を製造することである。この担体680は、サンプル処理デバイス610の表面に対して連続的であり得る。すなわち、この担体は、プロセスチャンバ650への接近のためにそこに貫通して形成される穴がない状態で提供され得る。
【0101】
このサンプル処理デバイス610および担体680は、図29に例示される。ここでローディングチャンバ630が、担体680の周辺を超えて延び得ることが認められ得る。このように、このローディング構造体630を備えるサンプル処理デバイス610の部分は、サンプル材料をプロセスチャンバ650に分配した後に、サンプル処理デバイス610の残りの部分から取り外され得る。
【0102】
図28および29に例示される担体680はまた、プロセスチャンバ650におけるサンプル材料のローディングの間および/または後に、プロセスチャンバ650のシールまたは分離において利点を提供し得る。
【0103】
図30は、担体680の底部表面の一部、すなわち、サンプル処理デバイス610に面する担体680の表面の拡大図である。担体680の底部表面は、主要導管支持レール683を含む多くの外形を備える。この支持レールは、関連づけられたサンプル処理デバイス610における主要導管640の長さに沿って延び得る.この支持レール683は、例えば、サンプル処理デバイス610の主要導管640が、上記で議論されるように、プロセスチャンバ650を分離し、そして/または導管640をシールするように変形される間に、圧縮され得る表面を提供し得る。
【0104】
主要導管640の変形の間にそれらを使用することに加えて、その支持レール683はまた、例えば、導管640に圧力を付与する熱処理の間に依存され得る。さらに、支持レール683の使用はまた、これらの支持レールがサンプル処理デバイス610と担体680との間の有意に減少した接触を提供すると同時に、主要導管640をデバイス610に対してシールするために必要な支持体を提供するという点で、さらに利点を提供し得る。
【0105】
担体680とデバイス610との間の接触は、アセンブリがサンプル材料(例えば、ポリメラーゼ連鎖反応(PCR)に用いられるような)の熱処理において使用される場合に
は、減少され得るかまたは最小にされ得る。このように、この担体680は、支持レール683が、主要導管640と並べられる場合に、この主要導管640間のサンプル処理デバイス610から間隔を空けて配置される担体本体を備えるとして特徴付けられ得る。担体本体とサンプル処理デバイス610との間に形成される空隙は、空気によって、または例えば、圧縮可能および/もしくは断熱性材料によって占有され得る。種々の実施形態に従って、担体680は、プラスチックから作製され得、サンプル処理デバイス610と担体680との間の熱伝達を減少するために、サンプル処理デバイス610に面する表面に取り付けられるか、またはこの表面に隣接する圧縮可能発泡体の層を有し得る。種々の実施形態に従って、この発泡体層は、シリコーン発泡体であり得る。
【0106】
多くの選択肢的圧縮構造体684が図28にも示される。この構造体は、例示される実施形態において、サンプル処理デバイス610の上でプロセスチャンバ650と並ぶように構成されたカラーの形態である。このカラーは、開口682の各々の一方の端部を規定し、担体680を通って延びて、サンプル処理デバイス610の上のプロセスチャンバ650に対する接近を可能にし得る。この圧縮構造体684(例えば、カラー)は、2つの構成要素(サンプル処理デバイス610および担体680)が互いに対して圧縮される場合に、サンプル処理デバイス610上のプロセスチャンバ650の各々に対して近位にあるデバイスの別個の領域を圧縮するように設計される。
【0107】
圧縮の別個の領域は、例えば、デバイス610と、プロセスチャンバの各々に対して近位にある熱ブロックとの間の接触を改善するというような利点を提供し得る。その改善された接触により、プロセスチャンバへのおよび/またはプロセスチャンバからの熱エネルギーの伝達が増強され得る。さらに、熱伝達における改善は、少なくとも一部は、サンプル処理デバイス610と担体680との間の制限された接触領域に起因して、担体680自体の構造体への制限された熱伝達のみによって釣り合いがとれ得る。
【0108】
デバイス610の別個の面積を選択的に圧縮するという別の利点は、任意の接着の弱さ、接着剤の剥離、および/またはプロセスチャンバ650からの液体漏れが、圧縮の別個の領域によって減少または妨げられ得ることである。この利点は、サンプル処理デバイス上のプロセスチャンバの少なくとも一部を取り囲むカラーまたは他の形状の形態にある圧縮構造体を使用する場合、特に有利であり得る。
【0109】
例示的な実施形態におけるカラーは、プロセスチャンバ650の外周の周りに部分的にのみ延びるように設計され、プロセスチャンバ650に入る供給導管を閉塞するように設計されない。しかし、代わりに、カラーは、供給導管を閉塞するように設計され、それにより、サンプル材料の熱処理の間にプロセスチャンバ間の分離をさらに潜在的にさらに増強するように設けられ得る。
【0110】
カラー684は、必要に応じて、プロセスチャンバ650を処理し、そして/または分析する間に、プロセスチャンバ650間の電磁エネルギー(例えば、 赤外線から紫外線)の伝達に対する障壁を提供することによって、プロセスチャンバ650間の混線(cross−talk)のいくらかの減少を提供し得る。例えば、カラー684は、選択された波長の電磁放射線に対して不透過性であり得る。あるいは、カラー684は、選択された波長の電磁放射線の伝達を、拡散および/または吸収することによって、阻害し得る。例えば、このカラー684は、散乱を増強するようにテクスチャード加工された表面を備え得、そして/またはカラー684は、カラー684の本体に組み込まれるか、そして/または吸収および/または拡散を増強するコーティングにおいて提供される材料を備え得る。
【0111】
この担体680は、担体680の上部表面(すなわち、サンプル処理デバイスから離れ
て、圧縮構造体(例えば、例示的な実施形態において、カラー684の形態)に、および最終的には、サンプル処理デバイス自体に面する表面からの力の伝達を増強するための力伝達構造体を備え得る。
【0112】
図31は、力伝達構造体の例示的実施形態の一部を示す。この力伝達構造体は、アーチ685の形態で提供され、このアーチは、4つの開口682を備え、カラー684に操作可能に取り付けられる。この力伝達構造体は、開口682の間に位置し、かつカラー684に接続される継手領域(landing area)687を規定し、その結果、サンプル処理デバイスの方向で継手領域687に付与される力686は、カラー684の各々に、そこからサンプル処理デバイス(示さず)へ伝達される。示される実施形態において、継手領域は、アーチ685の頂部によって提供される。
【0113】
アーチ685は、アーチ685に取り付けられた異なるカラー684の間に一様に力を伝え得る。これは、アーチ685を(開口682によって)支持する中空カラムとして本質的に提供される。この基本的構造は、例えば、図28において認められるように、担体680の表面全体に対して繰り返される。
【0114】
継手領域を力伝達構造体上に提供する利点としては、担体680と、圧盤または担体680を使用してサンプル処理デバイスを圧縮するために使用される他の構造体との間の接触の対応する減少が挙げられる。その減少された接触は、担体680と、圧盤またはサンプル処理デバイスを圧縮するために使用される他の構造との間の減少した熱伝達を提供し得る。さらに、担体の対向する側面上のこの力伝達構造体および対応する圧縮構造体は、全て、担体680における材料の量を減少し、それによって、担体680、次に、担体680およびサンプル処理デバイスのアセンブリの熱量を減少させることに寄与し得る。
【0115】
図32は、本発明とともに使用される担体の別の選択肢的な外形を例示する。この担体680’は、プロセスチャンバ650’に向けられた電磁エネルギーを集めるかまたはプロセスチャンバ650’から発するのを補助し得る光学構成要素688’(例えば、レンズ)とともに示される。この光学構成要素688’は、担体680’との一体型として示されるが、光学構成要素688’が、担体680’に取り付けられている別個の物品として提供され得ることが理解されるべきである。
【0116】
図33は、使用され得る担体のなお別の光学的外形を例示する。この担体680”は、アラインメント構造体687”を備え、このアラインメント構造体は、ピペット611”または他のサンプル材料送達デバイスを、サンプル処理デバイス610”上の適切なローディング構造体に誘導することを補助するために使用され得る。このアラインメント構造体687”は、本明細書中に記載されるサンプル処理デバイス610”上のローディング構造体とともに取り外され得る。このアラインメント構造体687”は、入り口ポートからわずかに中心がずれている場合、ピペット611”をサンプル処理デバイス610”上のローディング構造体へ誘導するように示されるように、ほぼ円錐形であり得る。
【0117】
図28〜31に示される代わりの成形された担体として、その担体は、サンプル処理デバイスの一方の側面と接触した材料のシートの形態であり得る。図34は、サンプル処理デバイス710とともに使用され得る、1つの例示的サンプル処理デバイス710および担体780の分解図である。
【0118】
このサンプル処理デバイス710は、プロセスアレイ720のセットを備える。このプロセスアレイの各々は、示されたサンプル処理デバイス710において、サンプル処理デバイス710の表面上にアレイとして構成されているプロセスチャンバ750を備える。この担体780は、この担体に形成された複数の開口782を備える。この開口は、サン
プル処理デバイス710および担体780が一緒に圧縮されている場合、好ましくは、プロセスチャンバ750と並べられる。
【0119】
この担体780は、種々の材料から製造され得るが、この担体が圧縮性材料(例えば、圧縮性発泡体または他の物質のシート)から製造され得ることが好ましくあり得る。圧縮性に加えて、この圧縮性材料は、特にサンプル処理デバイスが供され得る温度において、低い熱伝導性、低い熱量、および/または低い圧縮セットを示し得る。適切な発泡体の1つのクラスとしては、例えば、シリコーンベースのシリコーン発泡体が挙げられ得る。
【0120】
担体780が圧縮性材料から製造される場合、プロセスアレイ720における導管の早すぎる閉塞を妨げるために、サンプル処理デバイス710に面する担体780の表面にレリーフを提供する必要はないかもしれない。しかし、この担体780が、より剛性の材料から製造される場合、プロセスアレイ720における導管のために、担体780の表面にいくらかのレリーフを提供することは望ましくあり得る。
【0121】
上記の担体680と同様に、担体780(例えば、図34に記載されるもの)は、プロセスチャンバ750の上に位置した材料がないことに起因して、プロセスチャンバ750によって占有される領域におけるサンプル処理デバイスを圧縮しないことによって、サンプル処理デバイスの選択的圧縮を提供し得る。結果として、この担体780は、いくつかのさらなる利点を提供し得る。例えば、接着を弱めること、接着剤の剥離、および/またはプロセスチャンバ750からの液体漏れは、プロセスチャンバ750を囲むサンプル処理デバイス710に付与される圧縮によって、減少または妨げられ得る。さらに、例えば、アセンブリが押しつけられ得る熱ブロックからの熱漏れは、担体780の材料が、所望の熱特性(例えば、低熱量、低い熱伝導性など)とともに提供される場合に、減少され得る。
【0122】
種々の実施形態に従って、開口782は、プロセスチャンバ750を処理し、そして/または分析する間に、プロセスチャンバ750間の電磁エネルギー(例えば、光)の伝達に対する障壁を提供することによって、プロセスチャンバ750の間の混線からの保護を提供し得る。例えば、担体780は、選択された波長の電磁放射線に対して不透明および/非透過性であり得る。あるいは、この担体は、 選択された波長の電磁放射線の伝達を、拡散および/または吸収によって阻害し得る。例えば、その開口782は、散乱を増強するためにテクスチャード加工された表面を備え得る。さらに、この担体780は、担体780の本体に組み込まれるか、そして/またはその上のコーティングにおいて提供される材料を含み得、この材料は、電磁エネルギーの選択された波長の吸収および/または拡散を増強し得る。
【0123】
種々の実施形態に従って、図28〜34に関連した上記の担体は、サンプル処理デバイスに固定して取り付けられ得るか、または担体は、サンプル処理デバイスから別個であり得る。別個にされる場合、この担体は、担体を大きく破壊することなく、サンプル処理デバイスからの取り外しを容易にする様式で、各サンプル処理デバイスに取り外し可能に取り付けられるか、またはこのデバイスに接触させ得る。結果として、この担体は、1つを超えるサンプル処理デバイスとともに使用され得る。あるいは、この担体は、サンプル処理デバイスにしっかりと固定され得る。その結果、両方の構成要素が、使用後に廃棄され得る。いくつかの例において、この担体は、サンプル処理デバイス、例えば、サーモサイクリングシステムの圧盤を処理するために使用されるシステムに取り付けられ得る。その結果、サンプル処理デバイスが熱処理にロードされると、その担体は、サンプル処理デバイスと接触して配置され得る。
【0124】
上記の担体の両方が、プロセスチャンバの各々の周りで、サンプル処理デバイスの第1
の側面および第2の側面を一緒に選択的に圧縮するための手段の例である。この圧縮は、各プロセスチャンバについて同時に生じ得る。多くの他の等価な構造体は、サンプル処理デバイスの第1の側面および第2の側面を、プロセスチャンバの各々の周りで一緒に選択的に圧縮する機能を達成し、これらの構造体は、当業者によって想定され得る。いくつかの構成において、選択的に圧縮する手段(例えば、弾性担体780)は、プロセスチャンバの外側からサンプル処理デバイスの実質的に全てに対して圧縮力を付与し得る。他の実施形態において、選択的に圧縮するための手段は、サンプル処理デバイスにおいてプロセスチャンバの各々の周りで局所的な領域(例えば、その関連づけられたカラーとともに担体680)にのみ圧縮力を付与し得る。
【0125】
選択的に圧縮するための手段を組み込む任意のシステムは、選択的に圧縮するための手段を、サンプル処理デバイスまたは圧盤または処理の間にサンプル処理デバイスと接触される他の構造体に取り付けるために使用され得る。図35は、ブロック図形式でサンプル処理デバイスとともに使用され得る1つの熱処理システムを記載する。このシステムは、熱ブロック708’の上に位置したサンプル処理デバイス710’を備える。熱ブロック708’の温度は、好ましくは、熱コントローラ706’によって制御される。サンプル処理デバイス710’の対向する側面には、担体780’の形態において、選択的に圧縮するための手段が、サンプル処理デバイス710’と圧盤704’との間に位置される。この圧盤704’は、所望であれば、サーマルコントローラ702’によって、熱的に制御され得る。このサーマルコントローラは、いくつかの場合において、熱ブロック708’の温度を制御するコントローラ706’と同じであり得る。このサンプル処理デバイス710’および選択的に圧縮するための手段780’は、矢印701’および702’によって示されるように、サンプル処理デバイス710’の熱処理の間、圧盤704’と熱ブロック708’との間で圧縮され得る。
【0126】
当業者は、本明細書中の広い教示が、種々の形態において実施され得ることを、前述の詳細な説明から理解し得る。従って、本明細書中に記載のデバイス、システム、および方法が特定の実施形態およびその実施例と関連して記載されてきたものの、本教示の真の範囲は、そのように限定されるべきではない。種々の変化および改変は、本教示の範囲から逸脱することなく行われ得る。
【図面の簡単な説明】
【0127】
【図1】図1は、一実施形態に従う微小流体デバイスの上面図である。ここで第1のチャネルは第1の表面に形成され、第2のチャネルは第2の表面に形成され、そして一定直径の相互連結カラムは、そこに配置されたフリット材料を有する。
【図2】図2は、図1のライン2−2に沿って切りとった、図1に示される微小流体デバイスの側面断面図である。
【図3】図3は、組込型ゲル濾過フリットを備える微小流体デバイスの別の実施形態の上面図である。
【図4】図4は、図3のライン4−4に沿って切りとった、図3に示される微小流体デバイスの側面断面図である。
【図5】図5は、組込型ゲル濾過フリットを備える一実施形態に従う微小流体デバイスの上面図である。
【図6】図6は、図5のライン6−6に沿って切りとった、図5に示される微小流体デバイスの側面断面図である。
【図7】図7は、形態安定本体、本体におけるチャンバ、およびこのチャンバに配置されたゲル濾過材料を有する組込型ゲル濾過フリットの斜視図である。
【図8】図8は、図7に示されるような、ノズルを使用することによってゲル濾過材料が充填された、形態安定本体を備える組込型ゲル濾過フリットの側面断面図である。
【図9】図9は、組込型ゲル濾過フリットを調製するにあたって使用するための、およびチャンバを有する形態安定本体の斜視図である。
【図10】図10は、図9に示され、ノズルを使用することによってゲル濾過材料が充填された、形態安定本体の側面断面図である。
【図11】図11は、複数の組込型ゲル濾過フリットを同時に充填するにあたって有用なマルチノズル機械の斜視図である。
【図12】図12は、円錐形状を有し、かつ2つのタイプの粒子サイズを含む流体連絡を備える微小流体デバイスの部分的断面の上面図である。
【図13】図13は、流動制限因子として使用され得るゲル濾過材料を備える微小流体デバイスの側面図の実施形態の部分的断面における上面図である。
【図14】図14は、微小流体デバイスの実施形態の部分的断面における上面図であり、この微小流体デバイスは、流体の流動を制限し、かつゲル濾過粒子の積み重ねを引き起こすバッフルを有する。
【図15】図15は、微小流体デバイスの実施形態の部分的断面における上面図であり、この微小流体デバイスは、流体の流動を制限し、かつゲル濾過粒子の積み重ねを引き起こすバッフルを有する。
【図16】図16は、第1のチャネルと第2のチャネルとの間の断面積における急激な変化を有する流体連絡を備える微小流体デバイの種々の実施形態の上面図である。
【図17】図17は、第1のチャネルと第2のチャネルとの間の断面積における急激な変化を有する流体連絡を備える微小流体デバイの種々の実施形態の上面図である。
【図18】図18は、対応する断面図とともに、微小流体デバイスを形成するための方法を示すフローチャートである。
【図19】図19は、精製デバイスとして使用するための微小流体デバイスを調製する方法を示すフローチャートである。
【図20】図20は、各経路に対して基材、基材に形成された複数の平行な経路、および複数のバルブを有する微小流体デバイスの実施形態の上面図である。
【図21】図21は、複数の経路を有する基材の実施形態の斜視図である。
【図22】図22は、斜面(cant)上に配置され、かつ基材に形成された複数の涙滴形状のチャンバを備える実施形態の上面図である。
【図23】図23は、テーパー状断面を有する涙滴形状の投入チャンバの実施形態の拡大斜視図である。
【図24】図24は、サンプルを処理するための経路を有する実施形態に従う微小流体デバイスの上面図である。
【図25】図25は、図24のデバイスにおいて示される経路の拡大斜視図である。
【図26】図26は、回転可能な圧盤上に保持された微小流体デバイスを備える微小流体システムの実施形態の斜視図である。この圧盤は、ドライブユニットによって回転され得、加熱要素によって加熱され得、そして制御ユニットによって制御され得る。
【図27】図27a〜27dは、基材における種々のプロフィールを有する微小流体チャネルの断面図である。
【図28】図28は、サンプル処理デバイスおよび担体を備えるアセンブリの分解斜視図である。
【図29】図29は、組み立てられた場合の、図28のアセンブリの斜視図である。
【図30】図30は、サンプル処理デバイス上のプロセスチャンバを分離するにあたって有用な1セットの主要導管支持レールおよびカラーを示す担体の一部の拡大図である。
【図31】図31は、担体の一部の部分的断面図であり、担体内で有用な力伝達構造体の例を例示する。
【図32】図32は、担体および担体における光学要素を備えるサンプル処理デバイスの部分的断面図である。
【図33】図33は、担体およびサンプル処理送達デバイスについてのアラインメント構造体を備えるサンプル処理デバイスを示す。
【図34】図34は、種々の実施形態に従う別のサンプル処理デバイスおよび担体アセンブリの分解斜視図である。
【図35】図35は、サンプル処理デバイスとともに使用され得る熱処理システムのブロック図である。

【特許請求の範囲】
【請求項1】
サンプル処理システムであって、以下:
微小流体デバイスであって、以下:
第1の表面、該第1の表面に対向する第2の表面、および厚みを備える基材;
該基材に形成された複数の平行な経路であって、該経路の各々は、投入開口、排出開口、および該投入開口と該排出開口との間にあって、該投入開口と排出開口とが流体連絡状態にある少なくとも1つの処理チャンバ
を備える微小流体デバイス;
該微小流体デバイスを保持し得、かつ回転軸を有し得るホルダを備える圧盤であって、該ホルダは、該回転軸から間隔を空けて、かつ該回転軸に関して中心を外して配置されている、圧盤;
該回転軸の周りに該圧盤を回転させるドライブユニット;ならびに
該ドライブユニットを制御する制御ユニット、
を備える、サンプル処理システム。
【請求項2】
請求項に記載のシステムであって、前記微小流体デバイスは、前記ホルダに配置され、前記複数の経路の各投入開口は、該複数の経路の各それぞれの排出開口よりも前記回転軸に近い、システム。
【請求項3】
請求項に記載のサンプル処理システムであって、前記複数の平行な経路の各々は、直線的な配置において、それぞれの投入開口、処理チャンバ、および排出開口を備える、サンプル処理システム。
【請求項4】
請求項に記載のサンプル処理システムであって、以下:
前記ホルダに配置されたデバイスの前記少なくとも1つの処理チャンバを加熱する、加熱要素;および
該加熱要素を制御する、加熱制御ユニット、
をさらに備える、サンプル処理システム。
【請求項5】
請求項に記載のサンプル処理システムであって、前記微小流体デバイスは、以下:
前記複数の経路の各々における少なくとも1つのバルブであって、各バルブは、前記少なくとも1つの処理チャンバと、前記投入開口および前記排出開口のうちの少なくとも一方との間の流体連絡を遮断または提供するためのものである、バルブ、
をさらに備える、サンプル処理システム。
【請求項6】
請求項に記載のサンプル処理システムであって、前記圧盤は、複数のホルダを備え、各ホルダは、前記微小流体デバイスを保持し得る、サンプル処理システム。
【請求項7】
請求項に記載のサンプル処理システムであって、前記微小流体デバイスは、長さ、幅、および厚みを有する矩形様として形作られ、該ホルダは、該複数の経路のいずれも、前記回転軸に対して半径方向に並べられて位置していないように、該微小流体デバイスを保持し得る、サンプル処理システム。
【請求項8】
請求項に記載のサンプル処理システムであって、前記微小流体デバイスは、対向する第1の矩形表面および第2の矩形表面を有し、該表面の各々は、その幅よりも大きい長さ
を有する、サンプル処理システム。
【請求項9】
請求項に記載のサンプル処理システムであって、前記微小流体デバイスは、前記ホルダに配置され、前記圧盤の半径は、該微小流体デバイスの長さに対して垂直である、サンプル処理システム。
【請求項10】
請求項に記載のサンプル処理システムであって、前記微小流体デバイスは、前記ホルダに配置され、前記圧盤の半径は、前記微小流体デバイスの幅に対して垂直である、サンプル処理システム。
【請求項11】
請求項に記載のサンプル処理システムであって、以下:
前記圧盤に対して、前記少なくとも1つの処理チャンバを加熱し得る位置に配置された加熱要素;および
該加熱要を制御する、加熱制御ユニット
をさらに備える、サンプル処理システム。
【請求項12】
サンプル処理の方法であって、該方法は、以下の工程:
請求項に記載のサンプル処理システムを提供する工程;
前記複数の経路の投入開口のうちの少なくとも1つにサンプルを導入する工程;
前記ホルダ中に該微小流体デバイスを配置する工程;ならびに
該圧盤を回転させて、該サンプルを動かす工程、
を包含する、方法。
【請求項13】
組込型ゲル濾過フリットであって、以下:
形態安定フィルタフリット材料を含む本体;
該本体に形成されたチャンバ;および
該チャンバに配置されたゲル濾過材料、
を含む、組込型ゲル濾過フリット。
【請求項14】
請求項13に記載の組込型ゲル濾過フリットであって、前記ゲルチャンバと流体連絡状態にある前記本体中に開口をさらに備える、組込型ゲル濾過フリット。
【請求項15】
請求項13に記載の組込型ゲル濾過フリットであって、前記ゲル濾過材料は、イオン交換材料を含む、ゲル濾過フリット。
【請求項16】
請求項13に記載の組込型ゲル濾過フリットであって、前記形態安定フィルタフリット材料は、親水性ポリエチレン材料を含む、組込型ゲル濾過フリット。
【請求項17】
請求項13に記載の組込型ゲル濾過フリットであって、前記本体は、矩形様形状を有する、組込型ゲル濾過フリット。
【請求項18】
請求項13に記載の組込型ゲル濾過フリットであって、長さ寸法、幅寸法、および深さ寸法を有し、ここで該寸法の各々は、50mm未満である、組込型ゲル濾過フリット。
【請求項19】
請求項13に記載の組込型ゲル濾過フリットであって、前記チャンバは、矩形様形状または円筒形状を有する、組込型ゲル濾過フリット。
【請求項20】
請求項13に記載の組込型ゲル濾過フリットであって、前記本体は、矩形様形状または円筒形状を有する、組込型ゲル濾過フリット。
【請求項21】
請求項20に記載の組込型ゲル濾過フリットであって、前記本体は、前記チャンバと流体連絡状態にある開口を備える、組込型ゲル濾過フリット。
【請求項22】
微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する基材;
該基材に形成され、投入開口および排出開口を有する、チャネル;ならびに
該チャネルに配置された、請求項13に記載の組込型ゲル濾過フリット、
を備える、微小流体デバイス。
【請求項23】
微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する、基材;
該基材に形成され、投入開口および排出開口を有するチャネル;ならびに
該チャネルに配置された請求項14に記載の組込型ゲル濾過フリット、
を備え、
ここで該チャネルの該投入開口は、該組込型ゲル濾過フリットの該開口と流体連絡状態にある、
微小流体デバイス。
【請求項24】
微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する、基材;
投入開口、排出開口および該第1の表面に対して垂直に延び、かつ該第2の表面に向かう方向の第1の深さを有する第1の表面における、チャネル;ならびに
該チャネルに相補的な形状を有する、請求項14に記載の組込型ゲル濾過フリット、
を備え、
ここで該組込型ゲル濾過フリットの該開口は、該チャネルの該投入開口に面し、該チャネルの該投入開口と流ライブラリー連絡状態にある、
微小流体デバイス。
【請求項25】
微小流体デバイスであって、以下:
第1の表面、該第1の表面と対向する第2の表面、および厚みを有する、基材;
該基材に形成され、第1の方向に延びる第1のチャネルであって、該第1のチャネルは、少なくとも第1の最小寸法および第1の深さによって規定される第1の断面積を有し、該第1の深さは、該第1の表面に対して垂直な方向にかつ該第2の表面に向かって延びる、第1のチャネル;
該基材に形成され、第2の方向に延びる第2のチャネルであって、該第2のチャネルは、少なくとも第2の最小寸法および第2の深さによって規定される第2の断面積を有し、該第2の深さは、該第1の表面に対して垂直な方向にかつ該第2の表面に向かって延びる、第2のチャネル;
該第1のチャネルと該第2のチャネルとの間に、該基材に形成され、少なくとも第3の最小寸法によって規定される第3の断面積を有する、流体連絡であって、ここで該第3の断面積は、該第1の断面積よりも小さい、流体連絡;ならびに
該第1のチャネルに配置され、流動制限粒子を含む、粒状流動制限材料であって、ここで該流動制限粒子の少なくとも10重量%は、該第3の最小寸法より小さい粒径を有する流動制限粒子を含む、粒状流動制限材料、
を備える、微小流体デバイス。
【請求項26】
請求項25に記載の微小流体デバイスであって、前記第1の方向および前記第2の方向は、前記流体連絡において互いに並んでいる、微小流体デバイス。
【請求項27】
請求項25に記載の微小流体デバイスであって、前記第1のチャネルおよび前記第2のチャネルのうちの少なくとも一方は、丸形の断面を備える、微小流体デバイス。
【請求項28】
請求項25に記載の微小流体デバイスであって、前記流動制限粒子の少なくとも50重量%は、前記第3の最小寸法より小さい粒径を有する流動制限粒子を含む、微小流体デバイス。
【請求項29】
請求項25に記載の微小流体デバイスであって、前記流動制限粒子の少なくとも95重量%は、前記第3の最小寸法より小さい粒径を有する流動制限粒子を含む、微小流体デバイス。
【請求項30】
請求項25に記載の微小流体デバイスであって、前記流動制限粒子は、前記第2の最小寸法より小さい粒径を有する、微小流体デバイス。
【請求項31】
請求項25に記載の微小流体デバイスであって、前記流動制限材料は、前記第1のチャネルに配置されたゲル濾過材料を含み、該ゲル濾過材料は、該第3の断面積より小さい平均直径断面積を有する、微小流体デバイス。
【請求項32】
請求項25に記載の微小流体デバイスであって、前記流動制限粒子の前記平均直径断面積は、前記第3の断面積の約0.1〜約0.2倍である、微小流体デバイス。
【請求項33】
請求項25に記載の微小流体デバイスであって、前記流体連絡において流動制限粒子の積み重ねを含む、微小流体デバイス。
【請求項34】
請求項25に記載の微小流体デバイスであって、前記流動制限材料は、以下:
前記流体連絡において一緒に充填された、第1の平均直径の粒子を有する第1の流動制限材料、および
前記第1のチャネルにおいて一緒に充填され、該一緒に充填された第1の流動制限材料と隣接する第2の平均直径の粒子を有する第2の流動制限材料
を含み、
ここで該第1の流動制限材料粒子の平均直径は、該第2の流動制限材料粒子の平均直径より大きく、該第2の一緒に充填された流動制限材料は、該一緒に充填された第1の流動制限材料よりも、該第2のチャネルから離れて間隔が空けられている、
微小流体デバイス。
【請求項35】
請求項25に記載の微小流体デバイスであって、前記第1および第2のチャネルのうちの少なくとも一方に配置された第2の材料をさらに含み、そして核酸配列とハイブリダイズする粒子を含む、微小流体デバイス。
【請求項36】
請求項25に記載の微小流体デバイスであって、前記流体連絡は、前記第1のチャネルから前記第2のチャネルまでのテーパー状伝達領域を含む、微小流体デバイス。
【請求項37】
請求項36に記載の微小流体デバイスであって、前記テーパー状伝達領域は、円錐形状を有する、微小流体デバイス。
【請求項38】
請求項25に記載の微小流体デバイスであって、前記基材の前記第1の表面と接触し、前記第1のチャネル、前記第2のチャネル、および前記流体連絡のうちの少なくとも1つを覆う、第1のカバーをさらに備える、微小流体デバイス。
【請求項39】
微小流体デバイスであって、以下:
基材;
該基材に形成された第1のチャネル;および
該基材に形成された第1のチャンバであって、該第1のチャンバは、深さ、および該深さに対して垂直な断面にされる場合に涙滴形状の断面積を有し、該第1のチャンバは、実質的に円形の第1の端部およびより狭くかつ対向する第2の端部を有し、ここで該第1のチャンバの該第2の端部は、該第1のチャネルと流体連絡状態にある、第1のチャンバ、を備える、微小流体デバイス。
【請求項40】
請求項39に記載の微小流体デバイスであって、前記涙滴形状のチャンバは、該チャンバの前記深さに沿って一定の断面積を有する、微小流体デバイス。
【請求項41】
請求項39に記載の微小流体デバイスであって、前記基材に形成された第2のチャンバをさらに備え、該第2のチャンバは、深さ、および第2の深さに対して垂直に断面にされる
場合に涙滴形状の断面積を有し、該第2のチャンバは、実質的に円形の第1の端部およびより狭くかつ対向する第2の端部を有し、ここで該第2のチャンバの該第2の端部は、該第1のチャネルと流体連絡状態にある、微小流体デバイス。
【請求項42】
液体を操作する方法であって、該方法は、以下の工程:
請求項39に記載の微小流体デバイスを提供する工程;
第1のチャンバに前記液体をロードする工程;および
該デバイスを回転軸の周りに回転させて、該第1のチャンバから第1のチャネルへと該液体に求心力を付与する工程、
を包含する、方法。
【請求項43】
液体を操作する方法であって、該方法は、以下の工程:
請求項39に記載のデバイスを提供する工程;
液体を前記第1のチャネルにロードする工程;
該デバイスを回転軸の周りに回転させて、該第1のチャネルから第1のチャンバへと該液体に求心力を付与する工程、
を包含する、方法。
【請求項44】
微小流体デバイスであって、以下:
第1の表面、該第1の表面に対向する第2の表面、および厚みを有する基材;
該基材に形成された複数の平行な経路であって、該経路の各々は、
投入開口、
排出開口、
該投入開口と該排出開口との間に位置した少なくとも1つの処理チャンバであって、該投入開口、該少なくとも1つの処理チャンバ、および該排出開口は、直線的に配置されている、複数の平行な経路;
該投入開口と該少なくとも1つの処理チャンバとの間の第1の流体連絡、および
該少なくとも1つの処理チャンバと該排出開口との間の第2の流体連絡;
を備える、複数の平行な経路、
を備え、
ここで該複数の経路の各々は、開放されて、流体連絡を形成することができる少なくとも1つのバルブを備える、
微小流体デバイス。
【請求項45】
請求項44に記載の微小流体デバイスであって、前記第1および第2の流体連絡のうちの少なくとも一方は、前記第1の表面に形成されたチャネルを備え;そして
該第1および第2の流体連絡のうちの他方は、前記第2の表面に形成されるチャネルを備える、微小流体デバイス。
【請求項46】
請求項44に記載の微小流体デバイスであって、前記少なくとも1つのバルブは、第1の弾性を有する第1の変形可能材料を含み、第2の変形可能材料は、該第1の弾性とは異なる第2の弾性を有する、微小流体デバイス。
【請求項47】
請求項46に記載の微小流体デバイスであって、前記基材の前記第1の表面と接触している第1のカバーをさらに備え、ここで該第1のカバーは、前記第2の変形可能材料である、微小流体デバイス。
【請求項48】
請求項44に記載の微小流体デバイスであって、前記少なくとも1つの処理チャンバに配置されたサイズ排除濾過材料をさらに含む、微小流体デバイス。
【請求項49】
請求項44に記載の微小流体デバイスであって、少なくとも1つの処理チャンバ中に配置された核酸配列のポリメラーゼ連鎖反応を可能にするための成分をさらに含む、微小流体デバイス。
【請求項50】
請求項44に記載の微小流体デバイスであって、前記少なくとも1つの処理チャンバは、前記基材の前記第1の表面においてチャネルとして形作られている、微小流体デバイス。
【請求項51】
請求項44に記載の微小流体デバイスであって、前記基材は矩形である、微小流体デバイス。
【請求項52】
請求項44に記載の微小流体デバイスであって、前記第1のチャネルおよび前記第1のチャンバは、前記基材において少なくとも部分的に形成された第1の経路の一部であり、前記基材は、複数の経路を備え、それぞれの経路は、それぞれのチャネルおよびそれぞれのチャンバを有し、かつ該それぞれのチャンバは、各々、それぞれの深さ、および該深さに対して垂直に断面にされた場合に涙滴形状の断面積を有し、該それぞれのチャンバは、各々、実質的に円形の第1の端部およびより狭くかつ対向する第2の端部を有し、該それぞれのチャンバの該第1の端部は、該それぞれのチャネルと流体連絡状態にある、微小流体デバイス。
【請求項53】
請求項52に記載の微小流体デバイスであって、前記複数の経路のうちの経路は、互いに平行している、微小流体デバイス。
【請求項54】
微小流体デバイスであって、以下:
第1の表面、該第1の表面に対向する第2の表面、および厚みを有する基材;ならびに
該基材に形成された複数の平行な経路であって、該経路の各々は、投入開口、排出開口、該投入開口と該排出開口との間の少なくとも1つの処理チャンバ、ならびに該少なくとも1つの処理チャンバと、該投入開口および該排出開口のうちの少なくとも一方との間に流体連絡を遮断または提供するための少なくとも1つのバルブ、
を備える、微小流体デバイス。
【請求項55】
請求項54に記載の微小流体デバイスであって、前記少なくとも1つのバルブは、以下:
前記基材に形成された第1の凹部;
該基材に形成された第2の凹部;
該第1の凹部と該第2の凹部との間に挟まれた中間壁であって、ここで該中間壁部分は、第1の弾性を有する変形可能材料から形成される中間壁;
該第1の凹部を覆い、かつ該第1の弾性よりも大きい第2の弾性を有する弾性的に変形可能なカバー層であって、ここで該弾性的に変形可能なカバーされた層は、該中間壁が非変形状態にある場合は該中間壁と接触し、弾性的に変形可能なカバー層は、該中間壁が変形状態にある場合には該中間壁と接触せず、それによって、該第1の凹部と第2の凹部との間に流体連絡を形成する、弾性的に変形可能なカバー層、
を備える、微小流体デバイス。
【請求項56】
請求項54に記載の微小流体デバイスであって、各バルブは、以下:
前記基材に形成された第1の凹部であって、該第1の凹部は、第1の凹部部分および第2の凹部部分を備え、該第1の凹部は、対向壁表面部分によって少なくとも部分的に規定され、該対向壁表面部分のうちの少なくとも1つは、第1の弾性を有する第1の変形可能材料および弾性的に変形可能なカバーされた層を含み、ここで該第1の凹部部分および該第2の凹部部分は、該第1の変形可能材料が、非変形状態にある場合には互いと流体連絡状態にあり;該弾性的に変形可能なカバーされた層は、該第1の弾性よりも大きい第2の弾性を有し、かつ少なくとも該第1の凹部部分を覆い、ここで該第1の変形可能材料を含
む該対向壁表面部分は、該障壁壁が変形状態にある場合に、該第1の凹部部分と該第2の凹部部分との間に挟まれた障壁壁を形成して、該第1の凹部部分と該第2の凹部部分との間の流体連絡を妨げるように変形可能である、第1の凹部、
を備える、
微小流体デバイス。
【請求項57】
微小流体デバイスを製作する方法であって、該方法は、以下の工程:
基材、該基材に形成された投入開口、該基材に形成され、該投入開口と流体連絡状態にある、第1のチャネル、該基材に形成された、第2のチャネル、および該第1のチャネルと該第2のチャネルとの間の流体連絡を備える微小流体デバイス、を提供する工程;
該投入開口を通って該第1のチャネルへゲル濾過材料を導入する工程;ならびに
該ゲル濾過材料を該流体連絡において充填し、該ゲル濾過材料の実質的な部分を、該流体連絡を通って該第2のチャネルへ動かさないように妨げるデバイスに求心力を付与する工程、
を包含する、方法。
【請求項58】
微小流体デバイスであって、以下:
基材;
該基材に形成された第1の凹部;
該基材に形成された第2の凹部;
該第1の凹部と該第2の凹部との間に挟まれた中間壁であって、ここで該中間壁部分は、第1の弾性を有する変形可能材料から形成される、中間壁;
第1の凹部を覆い、該第1の弾性の弾性よりも大きい第2の弾性を有する弾性的に変形可能なカバーされた層であって、ここで該弾性的に変形可能なカバーされた層は、該中間壁が非変形状態にある場合には該中間壁と接触し、該弾性的に変形可能なカバーされた層は、該中間壁が変形状態にある場合には該中間壁と接触せず、それにより該第1の凹部と該第2の凹部との間に流体連絡を形成する、弾性的に変形可能なカバーされた層;ならびに
該第1の凹部に配置された粒状流動制限材料、
を備える、微小流体デバイス。
【請求項59】
請求項58に記載の微小流体デバイス、変形ブレード、および位置づけユニットを備えるシステムであって、該位置づけユニットは、該変形ブレードを該微小流体デバイスと接触
させて、該ブレードが該中間壁を変形させ、前記第1の凹部と前記第2の凹部との間に流動制限チャネルを形成し得、該第1の凹部は、少なくとも第1の最小寸法によって規定される第1の断面積を有し、該流動制限チャネルは、少なくとも第2の最小寸法によって規定される第2の断面積を有し、ここで該第1の凹部および該流動制限チャネルは、流体連絡において互いと交差し、該流体連絡は、少なくとも第3の最小寸法によって規定される第3の断面積を有し、ここで該第3の断面積は、該第1の断面積よりも小さく、該粒状流動制限材料は、流動制限粒子を含み、該流動制限粒子の少なくとも10重量%は、該第3の最小寸法よりも小さい粒径を有する粒子を含む、システム。
【請求項60】
サンプル処理デバイスを備えるサンプル処理アセンブリであって、該サンプル処理デバイスは、以下:第2の側面に取り付けられた第1の側面を備える本体;該第1の側面と第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体を備える複数のプロセスアレイと、長さを備える主要導管と、該主要導管に沿って分配された複数のプロセスチャンバと、該ローディング構造体と該複数のプロセスチャンバとの間に位置した変形可能シールとを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイ;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面した第1の表面と、該サンプル処理デバイスから離れて面した第2の表面とを備える、担体;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールの1つの主要導管支持レールと並べられる、主要導管支持レール;ならびに該担体の該第1の表面および第2の表面を介して形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバの1つのプロセスチャンバと並べられる、サンプル処理アセンブリ。
【請求項61】
請求項60に記載のアセンブリであって、前記担体は、該担体の前記第1の表面の近位にある複数の圧縮構造体をさらに備え、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にある、アセンブリ。
【請求項62】
請求項60に記載のアセンブリであって、前記担体は、該担体の前記第1の表面の近位にある複数の圧縮構造体であって、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にある圧縮構造体;および複数の力伝達構造体であって、該複数の力伝達構造体の各々の力伝達構造体は、該担体の該第2の表面の近位にある別個の継手領域を備え、該複数の力伝達構造体の各々の力伝達構造体は、該複数の圧縮構造体の複数に操作可能に接続され、ここで各力伝達構造体の該継手表面に付与される力は、該力伝達構造体に操作可能に接続された該複数の圧縮構造体に伝達される、力伝達構造体、をさらに備える、アセンブリ。
【請求項63】
請求項60に記載のアセンブリであって、前記担体は、該担体の前記第1の表面に対して近位にある複数のカラーをさらに備え、該複数のカラーの各カラーは、前記複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられ、かつ近位にある、アセンブリ。
【請求項64】
請求項60に記載のアセンブリであって、前記担体の前記第1の表面に対して近位にある複数のカラーをさらに備え、ここで該複数の開口の各開口は、該複数のカラーのうちの1つのカラーと並べられ、さらに該複数のカラーの各カラーは、前記複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、アセンブリ。
【請求項65】
サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各
プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該複数のプロセスアレイの各プロセスアレイにおいて該ローディング構造体と該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、担体と;該担体の該第1の表面の近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、主要導管支持レールと;該担体の該第1の表面および第2の表面を通って形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備えるサンプル処理デバイス、
を備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通って分配する工程;
該複数のプロセスアレイの各プロセスアレイにおいて該変形可能シールを閉じる工程であって、該閉じる工程は、該主要導管支持レールのうちの1つで該主要導管を支持すると同時に、該サンプル処理デバイスの該第1の側面および該第2の側面を、該主要導管に沿って一緒に圧縮する工程を包含する、工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させた状態で位置づける工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
【請求項66】
請求項65に記載の方法であって、前記複数のプロセスアレイの各プロセスアレイにおいて前記変形可能シールを閉じる工程は、該複数のプロセスアレイの各プロセスアレイにおいて該変形可能シールを同時に閉じる工程を包含する、方法。
【請求項67】
請求項65に記載の方法であって、前記複数のプロセスアレイの各プロセスアレイに対して、前記変形可能シールを閉じる工程は、前記本体の前記第2の側面の変形可能部分を変形させる工程を包含する、方法。
【請求項68】
サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;前記第1の側面と第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管に沿って分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、担体と;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備えるサンプル処理デバイスとを備える、サンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;
該サンプル処理デバイスの該第1の側面および第2の側面を、該複数のプロセスチャンバの近位の各プロセスチャンバとともに選択的に圧縮する工程であって、該選択的圧縮は、該担体と該熱ブロックとの間で起こる工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
【請求項69】
請求項68に記載の方法であって、前記担体は、圧縮性材料を含み、さらに前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
【請求項70】
請求項68に記載の方法であって、前記担体は、前記担体の前記第1の表面の近位にある複数の圧縮構造体をさらに備え、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にあり、さらに前記選択的に圧縮する工程は、該圧縮構造体を使用して、該プロセスチャンバの各々に対して近位にある別個の領域を圧縮する工程を包含する、方法。
【請求項71】
サンプル処理デバイスを備えるサンプル処理アセンブリであって、該サンプル処理アセンブリは、以下:第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管に沿って分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、複数のプロセスアレイと;該担体の該第1の表面および該第2の表面を通して形成される複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、開口と;該担体の該第1の表面の近位にある複数の圧縮構造体であって、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバの近位にある、複数の圧縮構造体を備える、サンプル処理アセンブリ。
【請求項72】
請求項71に記載のアセンブリであって、前記圧縮構造体の各々は、前記プロセスチャンバの1つと並べられたカラーを備える、アセンブリ。
【請求項73】
サンプル処理デバイスを備えるサンプル処理アセンブリであって、該サンプル処理デバイスは、第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管に沿って分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディング構造体と、該複数のプロセスアレイの各プロセスアレイにおける複数のプロセスチャンバとの間に位置する変形可能シールと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通って形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャン
バのうちの1つのプロセスチャンバと並べられている、複数の開口と;該担体の該第1の表面に対して近位にある複数の圧縮構造体であって、該複数の圧縮構造体の各圧縮構造体は、該複数のプロセスチャンバのうちの1つのプロセスチャンバに対して近位にある、複数の圧縮構造体とを備える、サンプル処理アセンブリ。
【請求項74】
請求項73に記載のアセンブリであって、前記圧縮構造体の各々は、前記プロセスチャンバのうちの1つと並べられたカラーを備える、アセンブリ。
【請求項75】
サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディング構造体と、該複数のプロセスアレイの各プロセスアレイにおける該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体であって、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面を備える、担体と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備えるサンプル処理デバイスを備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該複数のプロセスアレイの各プロセスアレイにおける変形可能シールを閉じる工程であって、該閉じる工程は、該サンプル処理デバイスの該第1の側面および該第2の側面を該主要導管の該長さの少なくとも一部に沿って一緒に圧縮する間に、該主要導管を該主要導管支持レールのうちの少なくとも1つで支持する工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;
該サンプル処理デバイスの該第1の側面および第2の側面を、該複数のプロセスチャンバの近位の各プロセスチャンバとともに選択的に圧縮する工程であって、該選択的圧縮は、該担体と該熱ブロックとの間で起こる工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
【請求項76】
請求項75に記載の方法であって、前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
【請求項77】
請求項75に記載の方法であって、前記担体は、圧縮性材料を含み、さらに前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
【請求項78】
請求項75に記載の方法であって、前記選択的に圧縮する工程は、前記プロセスチャンバの各々の近位にある別個の領域を圧縮する工程を包含する、方法。
【請求項79】
請求項75に記載の方法であって、前記担体は、前記担体の前記第1の表面に対して近位
にある複数のカラーをさらに備え、該複数のカラーの各カラーは、前記複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられており;さらに前記選択的に圧縮する工程は、該プロセスチャンバの各々に対して近位にある別個の領域を、該複数のカラーのうちの1つのカラーで圧縮する工程を包含する、方法。
【請求項80】
サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディング構造体と、該複数のプロセスアレイの各プロセスアレイにおける該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備える、サンプル処理デバイスを備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該複数のプロセスアレイの各プロセスアレイにおける変形可能シールを閉じる工程であって、該閉じる工程は、該サンプル処理デバイスの該第1の側面および該第2の側面を該主要導管の該長さの少なくとも一部に沿って一緒に圧縮する間に、該主要導管を該主要導管支持レールのうちの1つで支持する工程;
該複数のプロセスアレイの各プロセスアレイの該ローディング構造体を、該サンプル処理デバイスから分離する工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
【請求項81】
サンプル材料を処理する方法であって、該方法は、以下の工程:
第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディングチャンバ、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディングチャンバおよび該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該ローディングチャンバと、該複数のプロセスアレイの各プロセスアレイにおける該複数のプロセスチャンバとの間に位置した変形可能シールと;該サンプル処理デバイスに取り付けられた担体とを備え、該担体は、該サンプル処理デバイスに面する第1の表面および該サンプル処理デバイスから離れて面する第2の表面と;該担体の該第1の表面に対して近位にある複数の主要導管支持レールであって、ここで該複数のプロセスアレイの各主要導管は、該複数の主要導管支持レールのうちの1つの主要導管支持レールと並べられている、複数の主要導管支持レールと;該担体の該第1の表面および該第2の表面を通じて形成された複数の開口であって、ここで該複数の開口の各開口は、該複数のプロセスチャンバのうちの1つのプロセスチャンバと並べられている、複数の開口とを備える、サン
プル処理デバイスを備えるサンプル処理アセンブリを提供する工程;
サンプル材料を、該複数のプロセスアレイの各プロセスアレイにおける該プロセスチャンバのうちの少なくともいくつかに、該プロセスアレイの各々における該主要導管を通して分配する工程;
該複数のプロセスアレイの各プロセスアレイにおける変形可能シールを閉じる工程であって、該閉じる工程は、該サンプル処理デバイスの該第1の側面および該第2の側面を該主要導管の該長さの少なくとも一部に沿って一緒に圧縮する間に、該主要導管を該主要導管支持レールのうちの1つで支持する工程;
該複数のプロセスアレイの各プロセスアレイの該ローディングチャンバを、該サンプル処理デバイスから分離する工程;
該サンプル処理デバイスの該第1の側面および該第2の側面を、該複数のプロセスチャンバの近位の各プロセスチャンバと一緒に選択的に圧縮する工程であって、該選択的圧縮は、該担体と該熱ブロックとの間で起こる工程;
該サンプル処理デバイスの該第2の側面を、熱ブロックと接触させて位置させる工程;ならびに
該熱ブロックの温度を、該サンプル処理デバイスが該熱ブロックと接触している間に制御する工程、
を包含する、方法。
【請求項82】
請求項81に記載の方法であって、前記選択的に圧縮する工程は、前記サンプル処理デバイスの実質的に全てを前記プロセスチャンバの外側から圧縮する工程を包含する、方法。
【請求項83】
請求項81に記載の方法であって、前記選択的に圧縮する工程は、前記プロセスチャンバの各々に対して近位にある別個の領域を圧縮する工程を包含する、方法。
【請求項84】
サンプル処理システムであって、以下:第2の側面に取り付けられた第1の側面を備える本体と;該第1の側面と該第2の側面との間に形成された複数のプロセスアレイであって、ここで該複数のプロセスアレイの各プロセスアレイは、ローディング構造体、長さを備える主要導管、および該主要導管にそって分配された複数のプロセスチャンバを備え、ここで該主要導管は、該ローディング構造体および該複数のプロセスチャンバと流体連絡状態にある、複数のプロセスアレイと;該サンプル処理デバイスが位置される熱ブロックと;該サンプル処理デバイスの該第1の側面および第2の側面を、該サンプル処理デバイスの該第2の側面を熱ブロックと接触させて位置させた後に、該複数のプロセスチャンバの各プロセスチャンバに対して近位にある別個の領域においてともに同時にかつ選択的に圧縮するための手段と、を備えるサンプル処理デバイスを備えるサンプル処理システム。
【請求項85】
請求項84に記載のシステムであって、前記複数のプロセスアレイの各プロセスアレイは、前記ローディング構造体と前記複数のプロセスチャンバとの間に位置した変形可能シールを備える、システム。

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図1】
image rotate

【図2】
image rotate

【図14】
image rotate

【図15】
image rotate

【図20】
image rotate

【図21】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate


【公開番号】特開2009−685(P2009−685A)
【公開日】平成21年1月8日(2009.1.8)
【国際特許分類】
【出願番号】特願2008−231079(P2008−231079)
【出願日】平成20年9月9日(2008.9.9)
【分割の表示】特願2005−505605(P2005−505605)の分割
【原出願日】平成15年7月18日(2003.7.18)
【出願人】(500069057)アプレラ コーポレイション (120)
【住所又は居所原語表記】850 Lincoln Centre Drive Foster City CALIFORNIA 94404 U.S.A.
【Fターム(参考)】