説明

操舵反力制御装置

【課題】運転者の状態に応じたより適切な補助反力をステアリングに付与可能とする操舵反力制御装置を提供する。
【解決手段】操舵反力制御は、運転者の疲労状態及びステアリングホイールの把持位置などの運転者の把持姿勢に応じて、ステアリングに付加する補助トルクを補正する。補助トルクは、例えば操舵トルクや操舵フリクションである。例えば反力装置コントローラ6は、検出する運転者の把持位置がステアリングホイール7の中心に対して上側に位置していると判定しているときに、運転者が疲労状態になったと推定すると、疲労状態でないと推定した場合に比べて、補助トルクを増大補正する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、運転者の操舵操作を支援するための操舵反力制御の技術に関する。
【背景技術】
【0002】
特許文献1に記載の制御ユニットは、運転者の体格とステアリング操作に関する人の機械的インピーダンスとの関係を記述した参照テーブルを用いて、検出した運転者の体格に対応した機械的インピーダンスを推定する。そして、推定された機械的インピーダンスに基づいて、ステアリングの操舵反力を制御する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007-245904号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記従来技術は、運転者の体格に応じた適切な操舵反力となるように設定することを目的としている。しかし上記従来技術では、運転者が疲労している場合など、その運転者の状態に応じた適切な操舵反力とならないおそれがある。例えば、上記従来技術では、運転者が疲労している場合には、運転者がステアリング操作を想定以上に重く感じてしまうおそれがある。
本発明は、上記のような点に着目したもので、運転者の状態に応じたより適切な補助トルクを反力としてステアリングに付与可能にすることを目的としている。
【課題を解決するための手段】
【0005】
上記課題を解決するために、本発明の操舵反力制御は、運転者の疲労状態及びステアリングホイールの把持位置などの運転者の把持姿勢に応じて、ステアリングに付加する補助トルクを補正する。補助トルクは、例えば操舵トルクや操舵フリクションである。
【発明の効果】
【0006】
本発明によれば、運転者の疲労とステアリングホイールの把持姿勢によってステアリングへの補助トルクを補正することで、運転者が疲労していても、運転者の疲労に応じたより適切な操舵反力を付与することが可能となる。すなわち、本発明によれば、運転者の状態に応じたより適切な補助反力をステアリングに付与することが可能となる。
【図面の簡単な説明】
【0007】
【図1】本発明に基づく実施形態に係る疲労推定装置を含む車両の概念図である。
【図2】本発明に基づく実施形態に係る運転者の疲労推定装置の説明図である。
【図3】本発明に基づく実施形態に係る運転者の疲労推定装置のシステム構成図である。
【図4】運転者の姿勢の検出を説明する図である。
【図5】外乱トルクAを説明する図である。
【図6】外乱トルクBを説明する図である。
【図7】インピーダンス計測のブロック図である。
【図8】インピーダンスの周波数特性を示す図である。
【図9】筋力推定値と差分との関係を示す図である。
【図10】インピーダンスの差分値から筋力を推定する説明図である。
【図11】手の位置によるインピーダンスの変化、および、判断閾値の設定の説明図である。
【図12】手の位置によるインピーダンスの変化、および、判断閾値の変更の説明図である。
【図13】肘の位置による判断閾値の変更の説明図である。
【図14】肘が体幹から遠い位置にあるほど、また肘の関節角度に応じて感度をかえる方法の説明図である。
【図15】第1の疲労状態の検出を説明する図である。
【図16】第1の疲労状態の検出例を説明するフローチャート図である。
【図17】第1の疲労状態の検出を説明する図である。
【図18】運転者の疲労推定装置の処理例を説明するフローチャート図である。
【図19】反力装置コントローラの構成を説明する図である。
【図20】補助トルク補正部の処理例を説明するフローチャート図である。
【図21】疲労判定の動作例を示す図である。
【図22】把持位置(把持姿勢)と補正関係を説明する図である。
【図23】操舵状態に応じた操舵反力や操舵フリクションを説明する図である。
【発明を実施するための形態】
【0008】
次に、本発明の実施形態について図面を参照しつつ説明する。
図1は、本実施形態の疲労推定装置を搭載した車両の全体概要図である。
符号7は、運転者が操舵操作する操作子としてのステアリングホイール7を示す。ステアリングホイール7は、ステアリングを介してステアリングギヤ機構1に連結する。ステアリングギヤ機構1は、ラック/ピニオン機構などの変換機構によって、ステアリングの回転を車幅方向(横方向)の動きに変換する装置である。
符号2及び3は転舵輪である。転舵輪2、3は、ステアリングギヤ機構1による車幅方向への変位に応じて転舵する。その転舵輪2、3のタイヤは、例えば一般的なセダンタイプに取り付けられるタイヤが例示でき、その種類(扁平率、タイヤ径、ラジアル/スタッドレスなど)を問わない。
【0009】
符号5は操舵反力用アクチュエータである。操舵反力用アクチュエータ5は、ステアリングコラムに設置されたモータである。操舵反力用アクチュエータ5は、運転者がステアリングを回転するのに要する力を増幅してアシストしたり、タイヤ側から入ってくる不要な外乱を減少したりするのに利用可能な装置である。操舵反力用アクチュエータ5は、反力装置コントローラ6からの指令に応じた制御電流を入力することにより、目的とする補助トルクを発生する。
【0010】
符号6は反力装置コントローラ6である。反力装置コントローラ6は、目標とする操舵反力(補助トルク)と操舵角に応じた制御電流を補助トルクの指令値として出力する。反力装置コントローラ6は、上記操舵反力用アクチュエータ5を駆動するため制御装置である。反力装置コントローラ6については後述する。
符号4は反力装置モータ角センサである。反力装置モータ角センサ4は、ステアリングコラムシャフトと操舵反力用アクチュエータ5の間に設置されたモータ角センサであって、回転するステアリングの角度を検出して出力する。
【0011】
符号8はトルクセンサである。本実施形態ではステアリングリンク部内蔵型トルクセンサを例示している。トルクセンサ8は、運転者がステアリングホイール7を運転操作(操舵)することで発生するトルクを計測する。
符号9は操舵情報伝送ハーネスである。操舵情報伝送ハーネス9は、操舵反力用アクチュエータ5から、筋力計算/指示装置利用判定装置10まで、操舵力、操舵角、外乱トルク信号を伝送するためのケーブルからなる。
【0012】
符号10は筋力計算/指示装置利用判定装置である。筋力計算/指示装置利用判定装置10は、運転者の上肢身体(対象とする筋骨格部)の筋力を推定し疲労度を推定するための演算装置である。筋力計算/指示装置利用判定装置10の詳細については後述する。
符号11は運転者用カメラである。運転者用カメラ11は、運転者の姿勢を検出するための撮像デバイスである。カメラとしては、CCDカメラやCMOSカメラなどが例示出来る。
【0013】
符号12はタイヤ横力検出センサである。タイヤ横力検出センサ12は、タイヤに働く横力を計測するセンサである。
符号13は指示装置である。この指示装置13は、運転者が疲労状態あるいは今後疲労につながりそうな状態であることの信号を入力したら、例えば、運転者に休憩するように促す、もしくは、車線維持支援装置等の運転支援装置を使用するように促す。上記促しは、音声や表示などによって実施される。
【0014】
次に、上記筋力計算/指示装置利用判定装置10について図2及び図3を参照しつつ説明する。
上記筋力計算/指示装置利用判定装置10は、コンピュータから構成され、機能的には図2及び図3に示すような構成となっている。
すなわち、筋力計算/指示装置利用判定装置10は、外乱トルク信号検出部14、腕の状態計測部15、筋全体のインピーダンス計測部16、筋力推定部17、疲労度推定部18、指示装置利用の判定部19を備える。
【0015】
外乱トルク信号検出部14は、過去一定時間に発生した操舵反力、および、足回りの状態によって発生する操舵反力から、運転者のインピーダンス計測に利用できる所定の外乱トルクを検出するプログラムである。すなわち、外乱トルク信号検出部14は、トルクセンサ8から入力した過去一定時間の実測トルク信号、および、セルフアライニングトルクと路面外乱、横風外乱によってタイヤに働く力の信号(タイヤ発生トルク信号)から、つまり、タイヤ発生トルク信号と実測トルクの履歴から、運転者のインピーダンス計測に利用できる外乱トルクを検出する。
【0016】
計測に利用するタイヤ発生トルク信号、及び、実測トルクの検出条件は、例えば以下の通りとする。すなわち、1Hz〜100Hzの周波数において、実測トルクとのコヒーレンスが0.9以上で、セルフアライニングトルクの方が位相が早い場合を検出条件とする。
この検出条件を満たさない場合は、外乱トルク信号検出部14は、事前に準備した所定の外乱トルク信号を利用する。すなわち、外乱トルク信号検出部14は、反力装置コントローラ6を介して操舵反力用アクチュエータ5を駆動して、予め設定したトルク条件の外乱トルクをステアリングホイール7に伝達する。
【0017】
上記セルフアライニングトルクの推定は、タイヤ横力検出センサ12から入力した信号に基づくタイヤ横力とキャスタトレールとの積によって、転舵輪である前輪2、3に発生しているセルフアライニングトルクを推定する。そして、例えば、推定したセルフアライニングトルクを上記タイヤ発生トルク信号とする。
腕の状態計測部15は、運転者用カメラで撮像した画像から身体(主に腕)の状態を検出し、手・肘の位置、手・肘関節の角度を算出するプログラムである。例えば図4に示すように、カメラ11が撮影した画像によって、運転者の関節位置と関節角度を検出する。腕の状態計測部15は、運転者の把持位置も検出する。
【0018】
筋全体のインピーダンス計測部16は、筋全体のインピーダンスを計測するためのプログラムである。筋全体のインピーダンス計測部16は、例えば、外乱トルクを用いた腕の周波数特性を求める手法を採用する。すなわち、筋全体のインピーダンス計測部16は、外乱トルクと実測トルクと操舵角とを入力し、下記式に基づきインピーダンスを演算し、そのインピーダンスHnmsをインピーダンス特性として出力とする。
インピーダンス計算式:
Hnms=−Swf/Swx [(Nm・Nm)/(Nm・deg)]
この式は、外乱トルクTaと実測トルクTbのクロススペクトルSwfを、外乱トルクTaと操舵角のクロススペクトルSwxで除した値をインピーダンスの値とする式である。なお、インピーダンス計測方法は、他の公知の手法を採用しても良い。
【0019】
ここで、インピーダンスの算出方法は、一般に次の1)〜3)の3つに分類される。
下記1)と2)は、粘性、弾性、慣性を求めた後、2次の伝達関数に代入して、その周波数特性を求めることでインピーダンスが決まる。このため、粘性、弾性、慣性の求め方のみ記す。また、3)は、粘性、弾性、慣性を求めず、直接、周波数特性を求める手法である。
【0020】
(インピーダンス算出方法の例)
1)連立方程式による算出方法
予め設定した所定の時間間隔で計測した実測トルクから、粘性、弾性、慣性を変数とする連立方程式を解くことでインピーダンスを算出する。
2)粘性、弾性、慣性を個別に測ってインピーダンスを算出する方法
すなわち、ステアリングホイール7にステップ状の外乱トルクを加えて弾性値を求めた後に、一定速度でステアリングホイール7を回転させて粘性項を求める。慣性項は、腕の重さを参考値として求める。
3)外乱トルクをステアリングホイール7に加えながら、実測トルクと操舵角を計測することでインピーダンスを算出する方法
【0021】
この方法は、次の3−1)〜3−3)の処理によって算出する。
3−1)外乱トルクを運転者が操作する操作子に加える。
3−2)ステアリングホイール7に発生する実測トルクと操舵角の変移量を計測する。
3−1)と3−2)の周波数特性の比較から、運転者の身体のインピーダンスを計測する。
以上の3つのインピーダンス算出方法のうちでは3)が、最も精度よくインピーダンスを計測できる。これに基づき、本実施形態では、3)の算出方法によってインピーダンスを計測(算出)する。このインピーダンス算出方法は、ステアリングホイール7に伝達される外乱トルクを利用する。
【0022】
ここで、対象とする外乱トルクとしては次の外乱トルクA、外乱トルクBを採用すればよい。
A)予め設定した所定の信号:0〜5Hzの周波数帯による正弦波を位相をずらして畳み込んだ擬似M系列、スイープ波形、ホワイトノイズなど(図5参照)による外乱トルクA
B)車両の走行データから得た外乱トルクB
この外乱トルクBは、例えば、タイヤからステアリングに伝わる力、若しくは、ステアリングからタイヤに伝わる力の時系列データを記憶部に記録する。そして時系列データの波形が予め設定した所定の形状、所定のスペクトルになるとき、外乱トルクとして利用する(図6参照)。
【0023】
なお、外乱トルクは、ステアリングホイール7が動き出すレベルを下限値とし、運転者がオーバーライドできる限界を上限値とする。この範囲であれば、運転者のインピーダンスを計測できると推定される。
図7は、一番精度が良い上記3)の手法によるインピーダンス計測の模式図である。すなわち、図9は、運転者が操作部であるステアリングホイール7を握っている状態で、ステアリングホイール7に繋がっているアクチュエータ5で外乱トルクを加えた場合の模式図である。
この模式図中
Ta:外乱トルク
Tb:実測トルク
Tc:外乱トルクと実測トルクの差分値(=Ta−Tb)
x:操舵角
である。
【0024】
このとき、運転者のインピーダンスは、上述のように「−STaTb/STax(外乱トルクと実測トルクのクロススペクトルを、外乱トルクと操舵角のクロススペクトルで除した値)」から求めることが出来る。図8にインピーダンス計測結果の例を示す。この左下図から、腕に入っている力の状態、つまり筋骨格部の硬さの状態を推定することが出来る。例えば、ステアリングホイール7を握る力が増すと、1Hz以下の周波数帯域でインピーダンスが上がることが確認できる。
また、筋力推定部17は、筋全体のインピーダンス計測部16が求めたインピーダンスに基づき、筋力を推定するプログラムである。
筋力推定部17は、まず、予め計測したリラックス時の腕のインピーダンス(事前のインピーダンス)と、現在のインピーダンスとの差である差分値を求める。
【0025】
次に、筋力推定部17は、腕の状態計測部15の計測情報(運転者の姿勢)に基づいて、上記求めた差分値を補正する。具体的には、ステアリングホイール7に対する運転者の把持位置が当該ステアリングホイール7の下端にあるほど、また、肘の位置がアームレストに当接していたり、肘が体幹に触れているときは、力を抜いていてもインピーダンスが高くなる。これに鑑み、ステアリングホイール7に対する運転者の手の位置が当該ステアリングホイール7の下端にあるほど、また、肘の位置がアームレストに当たっていたり、肘の位置が体幹に触れる位置である場合には、上記差分値の絶対値を小さく補正する。なお、差分値の絶対値を補正する代わりに、次の腕の筋力を推定する際の感度を補正しても良い。後述の説明では、腕の筋力を推定する際の感度を補正する場合の例で説明する。
【0026】
次に、筋力推定部17は、補正後の差分値に基づき、予め設定した「インピーダンス−筋力」のマップを参照して、腕の筋力を推定する。筋力推定部17は、予め設定した制御周期で腕の筋力を推定し、その推定する度に、筋の筋力を記録部(不図示)に記録する。「インピーダンス−筋力」のマップは、図9に示すように、差分値が大きいほど、筋力が大きいと推定できる。図9に示すものは、事前のインピーダンスとして、運転者がリラックスして把持している状態でのインピーダンスを採用した場合である。このため、差分値が零の場合には、筋力推定値が零となっている(y切片が0)。事前のインピーダンスが所定の筋力が発揮されている場合には、差分値が零の場合の筋力推定値はそれに応じた値とする。
【0027】
ここで、上記予め計測したリラックス時の腕のインピーダンス(事前のインピーダンス)について説明する。
本実施形態においてリラックスとは、「直線走行、もしくは、停車状態においてステアリングホイール7を握ってはいるがステアリングホイール7操作していない状態」若しくはその状態と推定される状態を指す。なお、ステアリングホイール7に外乱を加えて握っている腕の状態(インピーダンス)を測るため、ステアリングホイール7を握っていないときは計測が出来ない。
【0028】
また、リラックス時のインピーダンスの計測方法や計測タイミングは、次の通りA〜Bに基づき実施すればよい。
A.予め実験等によって平均的運転者のリラックス時のインピーダンスを取得する。少なくとも、数十秒の車両信号を使って求めた運転者のインピーダンスでは、図8における横軸1Hz以下の波形が10〜20近辺にある場合はリラックスと判定する。そのときのインピーダンスを事前のインピーダンスとして求める。
【0029】
B.運転者が初乗車時にリラックス時インピーダンスを計測する。まず、音声で「ステアリングホイール7を触れる程度の力で把持する」ように指示する。次に、インピーダンス用の外乱トルクをステアリングホイール7に入力し、そのときの実トルクと操舵角を計測する。そして、上記外乱トルクと実トルクと操舵角の関係から運転者のインピーダンスを事前のインピーダンスとして求める。
【0030】
C.走行中の履歴から、リラックス時インピーダンスを計測する。路面外乱が全くなく、且つ、運転負荷が少ないと考えられる低速域(40km/h以上)における操舵の履歴から、「直線走行、もしくは、停車状態においてステアリングホイール7を握ってはいるがステアリングホイール7を操作していない状態」を抽出し、そのときの、車両信号から運転者のリラックス時インピーダンスを計測する。高速走行になるほど運転者は緊張して腕に力をいれることが過去の実験から分かっており、高速走行時のインピーダンスをリラックス時インピーダンスとしては用いない。
ここで、事前のインピーダンスとしては、リラックス時のインピーダンスを採用する方が差分を大きくとれるので好ましいが、事前のインピーダンスは、リラックス時のインピーダンスでなくても良い。事前のインピーダンスは、基準として特定可能なインピーダンスであれば良い。
【0031】
また、上記筋力推定部17の処理について補足説明する。
運転者がステアリングホイール7を把持した状態で(図10(a)参照)、リラックスして保舵した状態で取得した事前のインピーダンスとしっかり保舵した状態でのインピーダンスとを実験で取得すると、図10(b)に示す結果が得られた。この図10(b)から分かるように、ステアリングホイール7を握る力が増すと1Hz以下の周波数帯域(インピーダンス低周波成分)で、インピーダンスが高くなることが確認できる。
【0032】
そして、図10(c)のように、リラックスして保舵した状態での事前のインピーダンスの特性値(物理値)と、現在の保舵状態でのインピーダンスの特性値(物理値)との差分値を求めることで、基準とする事前のインピーダンスからの差分値を求めることが出来る。そして、図10(d)のような「インピーダンス−筋力」のマップを使用することで筋力を指定することが出来る。
ここで、上記インピーダンスの特性値(物理値)としては、例えばインピーダンス低周波成分の平均値若しくは面積、又は腕を2次モデルと仮定して求めた弾性項を採用する。すなわち、インピーダンス低周波成分と比例した値をインピーダンスの特性値(物理値)として使用すればよい。
【0033】
次に、上記ステアリングホイール7の把持位置、運転者の肘の位置による差分値の補正について説明する。
ステアリングホイール7の把持位置による、リラックスして把持した場合としっかり把持した場合とでの関係を求めたところ、図11に示す結果を得た。図11から分かるように、同じ把持力にも関わらず、運転者がステアリングホイール7の下側を把持するほど、インピーダンス特性値が大きくなる。また、ステアリングホイール7の下側を把持するほど、リラックス把持でのインピーダンス特性値としっかり把持でのインピーダンス特性値との差分が小さくなる。
【0034】
また上記の結果(図11)から、把持位置がステアリングホイール7の上側にあるときは筋力を推定し易いが、ステアリングホイール7の下側にあるときは、リラックスして把持している状態としっかりして把持している状態との筋力の差が少なく推定し難い。これに基づき、把持位置によって筋力推定を行うかどうかの判断閾値を設定しても良い。例えば、把持位置が07:25の位置よりも下側の場合には、筋力推定つまり疲労推定を行わないようにしても良い。
【0035】
また、上述のように把持位置がステアリングホイール7の上側にあるときは筋力を推定し易いが、ステアリングホイール7の下側にあるときは筋力の差が少なく推定し難い。これに基づき、把持位置によって筋力推定を行うための感度を変える。具体的には、ステアリングホイール7の下側を握るほど、図12に示すように、リラックス把持としっかり把持との差分値に対する筋力推定値の感度を高めるように補正する。
【0036】
また、ステアリングホイール7をしっかり把持している状態において、運転者がアームレストに肘を置いて、ステアリングホイール7を把持するようにすると、運転者が腕に力を入れていなくてもインピーダンスが高まる。このようにインピータンスが高い場合、筋力推定値が実際よりも大きくなりがちである。これに対し、本実施形態では、運転者がアームレストに肘を置いて、ステアリングホイール7を把持している場合には、図13に示すように、リラックス把持としっかり把持の差分値に対する筋力推定値の感度を下げる。このとき、運転者がアームレストに肘をおいている場合には、筋力推定を実施しないようにしても良い。
【0037】
また、肘の位置とインピーダンスとの関係については、図14(b)に示すようなに関係にある(上述のように肘を車体に支持させている場合は除く。)。すなわち、腕が伸びているなど体幹に対し肘が離れているほど、力を入れていてもインピーダンスが低くなる(リラックスしているときのインピーダンスに近づく)。つまり、力を入れているにも関わらず、体幹に対し肘が離れるほど、図14(b)のようにインピーダンスはリラックス把持状態でのインピーダンスに近づき差分値が小さくなる。これを鑑み、図14(c)のように、体幹に対し肘が離れるほど感度を下げる。
【0038】
疲労度推定部18は、筋力推定部17の推定した筋力の履歴に基づき、疲労度を推定するプログラムである。
疲労度の推定は、例えば図15に示す筋力持続曲線に基づき疲労度を判定し、筋力の履歴から筋力持続曲線より上に位置すると疲労状態と判定する。また、その筋力持続曲線より上の継続時間が長いほど、疲労度が大きいと判定する。
【0039】
更に詳説する。
ここで、疲労度の指標である筋力推定値に基づく運転者の疲労推定の処理方法について説明する。
一般に、筋力(瞬時値)の持続時間とは、図15に示すような関係がある。したがって、筋力が大きいと筋肉が力を出し続けられる持続時間が短い。逆に、筋力が小さいと筋肉が力を出し続けられる持続時間が長い。そして、上記図15のように、筋力が大きいほど、持続時間は指数関数的に減少する関係にある。
これに基づき、図15に基づく疲労推定の方法としては、例えば下記の方策1と方策2を例示出来る。
【0040】
(疲労推定の方策1)
筋力の瞬時値の頻度から疲労を判定する。すなわち、上記図15の関係(疲労曲線)より瞬時値の継続時間に基づき、どの程度の疲労状態か、また運転者に報知すべき疲労状態かを推定する。
上記推定には統計的知見に基づく認識処理を実施すればよい。統計的処理は、例えば、ベイズ推定、ファジー推定、サポートベクターマシン、遺伝的アルゴリズム、ニューラルネットワーク、などが例示出来る。
【0041】
(疲労推定の方策2)
筋力の瞬時値が予め設定した閾値を超えたか否かによってどの程度の疲労状態か、また運転者に報知すべき疲労状態かを推定する。閾値は1つでも良いし、何段階か複数持っていても良い。
ここで、筋肉は100%以上の力を出すとツルという現象を生じる。したがって、その極限状態を基準にして閾値を設定する。
【0042】
次に、上記方策1を採用した疲労推定の処理例を図16を参照して説明する。
まず、ステップS100にて前処理として、筋力計算、筋力と時間のヒストグラムを算出する。
次に、ステップS110にて特徴抽出処理として、ヒストグラムの面積や大きさなどを特徴量を求める。
次に、ステップS120にて後処置として、特徴量の平均、中央値、最頻値を算出、もしくは、異なる複数の特徴量をもとに特徴空間を作成する。
次に、ステップS130にて判別処理として、予め設定した数値、もしくは、特徴空間の予め設定した所定範囲にある値(閾値を超える値)か否かを判別する。この判別を満足しない場合には、ステップS100の前処理に戻って処理を繰り返す。一方、この判別を満足する場合には、運転者への疲労に対する報知が必要と判定して処理を終了する。
【0043】
また、筋力推定値をパワースペクトルで取得する場合には、図17に示すように、筋力推定値のパワースペクトルの高周波成分(例えば1Hz以上の帯域)が、予め設定した閾値以上の場合に、疲労しそうと判定し、筋力推定値のパワースペクトルの高周波成分が予め設定した閾値以上の状態が継続するほど疲労度を大きく設定する。
指示装置利用の判定部19は、疲労度推定部18が推定する疲労度に基づき、疲労しているか疲労しそうか否かを判定し、その旨の報知信号を指示装置に出力するプログラムである。指示装置利用の判定部19は、例えば上記疲労度が予め設定した疲労度閾値以上の場合に、疲労状態と判定する。
【0044】
次に、上記筋力計算/指示装置利用判定装置10の処理の一例を、図18のフローチャートを参照して説明する。
筋力計算/指示装置利用判定装置10は、予め設定した制御周期で作動する。作動すると先ずステップS1にて、外乱トルクを計測する。すなわち、悪路にタイヤがとられることによって発生する外乱トルクを記憶部に記録する。その後ステップS2に移行する。
【0045】
ステップS2では、ステップS1で記録した外乱トルクをFFT処理し、外乱トルクのパワースペクトルを求める。そして、求めた外乱トルクのパワースペクトルと、予め計測した良路走行時のパワースペクトルと比較する。若しくは、求めた外乱トルクのパワースペクトルについて、インピーダンス計算可能判断ラインを超えているかを計算する。その後ステップS3に移行する。
【0046】
ステップS3では、ステップS2の処理によって、インピーダンスが計算可能であると判定した場合には、記憶部にある外乱トルクの時系列データから、予め設定した所定の時間間隔だけデータを切り取り、同時刻の実トルクと操舵角から運転者のインピーダンスを計測する。インピーダンスが計算可能であるか否かは、上述した外乱トルク条件を満足しているか否かで判定すれば良い。
ここで、予め設定した時間の間、インピーダンスが計算可能でないと判定した場合には、予め設定した外乱トルクをステアリングに入力して、実トルクと操舵角から運転者のインピーダンスを計測する。
【0047】
その後ステップS4に移行する。
ステップS4では、ステップS3で計測したインピーダンスと、事前に設定した事前のインピーダンスとの差分値を算出する。本実施形態の事前のインピーダンスは、リラックス状態(運転者が腕に力を入れずにステアリングホイール7を握っている除隊)のインピーダンスを予め計測して取得したものである。上記差分値は、腕の筋力に比例した値となる。その後ステップS5に移行する。ここで、上記差分値は、上述のようにインピーダンスの低周波成分の特性値についての差分値とする。
【0048】
ステップS5では、上記差分値が予め設定した閾値よりも小さい場合には、処理を終了して復帰し、次の制御周期でステップS1を作動する。上記差分値が予め設定した閾値以上の場合にはステップS6に移行する。
ここで差分値が小さい場合には、分解能が低いので、筋力を推定できないおそれがある。また、差分値が小さい場合には、リラックス状態(運転者の腕に力が入っていない状態)に近いと推定される。そして、上記差分値が予め設定した閾値以上の場合に、腕に力が入っているとみなしてステップS6に移行する。
【0049】
ステップS6では、上記求めた低周波成分の差分値から筋力推定値を求める。その後、ステップS7に移行する。
ステップS7では、1又は2以上のカメラ11が撮影した撮像データに基づき、ステアリングホイール7に対する運転者の把持位置と、運転者の体幹に対する肘の位置や肘の伸び具合を検出する。その後ステップS8に移行する。
【0050】
ステップS8では、ステップS7の検出に基づき、ステアリングホイール7に対する把持位置が下側に位置するか否かを判定する。下側に位置する場合にはステップS9に移行する。下側に位置しない場合にはステップS10に移行する。
ステップS9では、ステアリングホイール7の下側を把持していると判定するほど、上記差分値に対する筋力推定値の感度を高める。その後ステップS10に移行する。
【0051】
ステップS10では、肘がアームレストなどの車体の一部に当接しているか否かを判定する。肘がアームレストなどの車体の一部に当接していると判定した場合にはステップS11に移行する。そうでない場合にはステップS12に移行する。
ステップS11に移行する場合には、アームレストに肘を置いているなど、ステアリングホイール7を把持している状態であっても運転者が腕に力をいれていなくても、計測したインピーダンスが高まっている状態である。このためステップS11では、上記差分値に対する筋力推定値の感度を下げる。その後ステップS12に移行する。
【0052】
ステップS12では、肘の角度が予め設定した所定角度以上になっているか否かを判定する。肘の角度が予め設定した所定角度以上の場合にはステップS13に移行する。肘の角度が予め設定した所定角度未満の場合にはステップS14に移行する。
ステップS13では、脇が開き肘関節を伸ばしている方が腕に力が入れ難くインピーダンスが低い。座り方によって腕が伸びているときは感度を下げる。その後ステップS14に移行する。
【0053】
ステップS14では、最大筋力のデータを読み込む。その後ステップS15に移行する。最大筋力とは、求めた筋力の瞬時値(ピーク値)を指す。
ステップS15では、最大筋力に占める筋力推定値を計算する。その後ステップS16に移行する。
ステップS16では、最大筋力に占める筋力推定値と筋力持続曲線とのずれ量を計算する。ここで、各筋力推定値が筋力持続曲線の右上にある場合を正の値、左下にある場合を負の値とする。ステップS17に移行する。
【0054】
ステップS17では、ステップS16で計算したずれ量が予め設定した所定値以上の場合にはステップS18に移行する。そうでない場合にはステップS19に移行する。
ステップS18では、ずれ量が所定以上の場合であるので、疲労状態と推定する。その後ステップS19に移行する。ずれ量が疲労度に相当する。
ステップS19では、疲労状態の累積値が予め設定した所定値を越えていると判定した場合にはステップS20に移行する。そうでない場合には、処理を終了して復帰し、次の制御周期でステップS1を作動する。
【0055】
ステップS20では、指示装置の設定がスイッチON状態か否かを判定する。ONの場合はステップS21に移行する。そうでない場合には、処理を終了して復帰し、次の制御周期でステップS1を作動する。
ステップS21では、指示装置をONにし、疲労状態であることを運転者に告知する。その後、処理を終了して復帰し、次の制御周期でステップS1を作動する。
【0056】
次に、反力装置コントローラ6について説明する。
反力装置コントローラ6は、アクチュエータ駆動電流(制御電流)を算出し、そのアクチュエータ駆動電流を指令値として操舵反力用アクチュエータ5へ供給する。
反力装置コントローラ6は、外乱トルク発生部6A、操舵反力制御部本体6B、フリクション補償部6C、把持姿勢検出部6D、補助トルク補正部6E、電流制御部6Fを備える。
【0057】
ここで、符号21は、運転者が操作する運転者要求スイッチである。運転者要求スイッチ21は、運転者が疲労時のステアリング支援を要求する場合に、運転者がONに操作するスイッチである。この運転者要求スイッチ21がONの場合が運転者による補正開始指示要求となる。また、運転者要求スイッチ21がOFFの場合が運転者による補正終了指示要求となる。
なお、反力装置コントローラ6が、下記の補正開始条件を満足すると判定すると上記運転者要求スイッチ21をONに切り替え、また、下記の補正解除条件を満足すると判定すると、上記運転者要求スイッチ21をOFFに設定する処置を実施しても良い。
【0058】
「補正開始条件」
(1)推定する疲労度が予め設定した値よりも大きくなったとき
例えば、反力装置コントローラ6が、上記筋力計算/指示装置利用判定装置10から入力した疲労度が、予め設定した閾値用の疲労度より大きい場合に、推定する疲労度が予め設定した値よりも大きくなったと判定する。閾値用の疲労度は、例えば疲労状態と推定される疲労度に近い値である。
【0059】
または、反力装置コントローラ6が、上記筋力計算/指示装置利用判定装置10から入力した疲労度をその疲労度を推定したときの道路環境と一緒に疲労蓄積部(不図示)に記憶する。そして、反力装置コントローラ6が、上記筋力計算/指示装置利用判定装置10から入力した疲労度が、過去の疲労度よりも大きい場合に推定する疲労度が予め設定した値よりも大きくなったと判定する。上記疲労蓄積部に蓄積されている疲労度が予め設定した値に対応する。そして、上記過去の疲労度は、現在走行中の走行道路の走行環境と同じ(過去に同じ道路を走行したときの情報)若しくは近似する走行環境の道路走行時に、上記疲労蓄積部に蓄積した疲労度である。なお、道路環境については、路車間通信によって取得すればよい。
【0060】
(2)車両のふらつき状態が予め設定した閾値よりも大きくなったとき
例えば、単位時間当たりの操舵変化転舵変化、車両ロール変化などのいずれか一つが予め設定した閾値よりも大きくなったことを検知すると、車両のふらつき状態が予め設定した閾値よりも大きくなったとき判定する。
【0061】
「補正解除条件」
(1)疲労度推定手段の推定に基づき疲労が回復したと判定してから予め設定した時間(例えば5秒)を経過した後を検知したとき
反力装置コントローラ6が、上記筋力計算/指示装置利用判定装置10から入力した疲労度に基づき、疲労度が小さくなって予め設定した回復用閾値以下になったときに疲労が回復したと判定する。予め設定した時間の経過を要件としているのは、疲労回復に判定のハンチングを回避するためである。
【0062】
また、外乱トルク発生部6Aは、上記筋力計算/指示装置利用判定装置10から外乱トルク発生指令を入力すると、発生する外乱トルクに応じた駆動電流を指令値として操舵反力用アクチュエータ5へ供給する。
操舵反力制御部本体6Bは、反力装置モータ角センサ4及びトルクセンサ8の検出値を入力して、予め設定した操舵反力マップ(不図示)に基づき目標とする目標操舵反力を求める。
フリクション補償部6Cは、トルクセンサ8が検出する操舵トルクや操舵角に基づき操舵フリクションを求める。
【0063】
このとき、操舵反力制御部本体6B及びフリクション補償部6Cは、例えば、図23に示すように、ステアリングホイール7が動いているとき、ステアリングホイール7の回転速度が増加している場合には、操舵反力/フリクションを下げる。また、ステアリングホイール7の回転速度が減少している場合にはフリクションを増やす。このとき、操舵角速度が大きいほどフリクションを大きくする。また、ステアリングホイール7の回転が完全に停止すると操舵反力/フリクションは回転前の状態に戻す。
【0064】
把持姿勢検出部6Dは、カメラ11が撮像した撮像画像に基づき運転者によるステアリングホイール7の把持姿勢を検出する。本実施形態の把持姿勢検出部6Dは、把持姿勢としてステアリングホイール7の把持位置を検出する。把持位置を運転者の体幹に対する離れ具合で補正しても良い。把持姿勢検出部6Dは、上記筋力計算/指示装置利用判定装置10の腕の状態計測部15が構成しても良い。この場合には、反力装置コントローラ6は、上記筋力計算/指示装置利用判定装置10から把持姿勢の情報、特に把持位置に情報を入力する。
補助トルク補正部6Eは、上記筋力計算/指示装置利用判定装置10が推定した疲労度、把持姿勢検出部6Dが検出したステアリングホイール7の把持位置に基づき、上記操舵反力制御部本体6Bが求めた目標操舵反力、及びフリクション補償部6Cが求めた操舵フリクションを補正する。
【0065】
補助トルク補正部6Eは、把持位置がステアリングホイール7の中心に対して上側に位置していると判定しているときに、運転者が疲労状態になったと推定すると、疲労状態でないと推定した場合に比べて、入力した目標操舵反力及び操舵フリクション(補助トルク)を増大補正する。また、補助トルク補正部6Eは、ステアリングホイール7が停止しているときに、運転者が疲労状態になったと推定すると、把持位置がステアリングホイール7の中心に対し下側を把持している状態から上側を把持する状態に変化したと判定すると、上記入力した目標操舵反力及び操舵フリクションを減少補正する。なお、補助トルク補正部6Eは、入力した目標操舵反力及び操舵フリクションの一方だけを補正するように設定しておいても良い。また、補助トルク補正部6Eは、運転者要求スイッチ21がONの場合に補正処理を開始し、また、運転者要求スイッチ21がOFFに切り替わったことを検出すると開始した補正処理を終了する。
【0066】
電流制御部6Fは、補正後の目標操舵反力に応じた駆動電流に、補正後の操舵フリクションに応じた駆動電流を加算して操舵アクチュエータ駆動電流を算出する。そして、算出した操舵アクチュエータ駆動電流を、補助トルクに応じた指令値として操舵反力用アクチュエータ5に印加する。
【0067】
次に、上記補助トルク補正部6Eの処理例を、図20を参照して説明する。
先ずステップS200にて、運転者要求スイッチ21がONか否かを判定する。運転者要求スイッチ21がON状態の場合にはステップS210に移行する。運転者要求スイッチ21がOFFの場合には、処理を終了する。
ステップS210では、把持姿勢検出部6Dの検出結果に基づき、運転者による把持位置がステアリングホイール7の中心に対して上側に位置しているか否かを判定する。上側に位置している場合には、ステップS220に移行する。上側に位置していない場合にはステップS260に移行する。
【0068】
ステップS220では、目標操舵反力及び操舵フリクションを増大補正してステップS230に移行する。増大補正は、例えば1より大きなゲインを補正前の目標操舵反力や操舵フリクションに乗算することで行う。上記ゲインは把持位置が上にあるほど大きくなるように設定してあっても良い。
ステップS230では、運転者の把持位置が上側から下側に変化したか判定する。条件を満足する場合にはステップS240に移行する。一方条件を満足しない場合にはステップS300に移行する。
【0069】
ステップS240では、目標操舵反力及び操舵フリクションを基準値(補正前の初期値)に戻してステップS300に移行する。すなわち、補正を実施しない。
ステップS260では、把持姿勢検出部6Dの検出結果に基づき、運転者による把持位置がステアリングホイール7の中心に対して下側に位置しているか否かを判定する。下側に位置している場合には、ステップS270に移行する。下側に位置していない場合にはそのまま復帰する。
【0070】
ステップS270では、目標操舵反力及び操舵フリクションを目標操舵反力及び操舵フリクションを基準値(補正前の初期値)に戻してステップS280に移行する。
ステップS280では、運転者の把持位置が下側から上側に変化したか判定する。条件を満足する場合にはステップS290に移行する。一方条件を満足しない場合にはステップS300に移行する。
【0071】
ステップS290では、目標操舵反力及び操舵フリクションを減少補正してステップS300に移行する。例えば1より小さなゲインを補正前の目標操舵反力や操舵フリクションに乗算することで行う。
ステップS300では、疲労状態が回復していると判定し且つ予め設定した時間が経過したと判定すると、運転者要求スイッチ21をOFFに切り替え、目標操舵反力及び操舵フリクションを基準値(補正前の値)に戻す。その後処理を終了する。なお、運転者要求スイッチ21が運転者の操作でONとなった場合には、運転者がOFFとするまではOFFに切り替えないか、切り替えたことを運転者に報知する処理を実施する。
【0072】
(動作その他について)
次に、本実施形態に係る動作例を、図21及び図22を参照して説明する。
上記筋力計算/指示装置利用判定装置10は、走行中に外乱トルクを検出し、その外乱トルクデータを記憶部に記録する。併行して、実測トルク及び操舵角についても検出して記憶部に記憶する。
【0073】
そして、上記筋力計算/指示装置利用判定装置10は、記憶部に記録した外乱トルクデータをFFT処理して得たパワースペクトルが、インピーダンス計測可能判断ラインを予め設定した継続時間越えている場合には、その所定の区間の外乱トルクデータを切り出す。
なお、予め設定した時間に、パワースペクトルが、インピーダンス計測可能判断ラインを予め設定した継続時間を越えている状況が発生しない場合には、操舵反力用アクチュエータ5を駆動して、予め設定した外乱トルクをステアリングに入力する。
【0074】
そして、上記筋力計算/指示装置利用判定装置10は、同時刻における、上記切り出した所定の区間の外乱トルクと実トルクと操舵角から、インピーダンスを計算する。続いて、事前に設定したリラックス状態のインピーダンスである事前のインピーダンスの低周波成分に対する、上記計算したインピーダンスの低周波成分の差である差分値を求め。その差分値から筋力を推定する。
このとき、上記筋力計算/指示装置利用判定装置10は、運転者がステアリングホイール7の下側を把持していると判定した場合には、差分値から筋力推定値を求める際の感度を高める。また、運転者の体幹から肘が離れている場合には、感度を下げる。
なお、上記推定した筋力は記憶部に記憶する。
【0075】
そして、上記筋力計算/指示装置利用判定装置10は、推定した筋力に基づき、腕に力が入っている時間をカウントし、筋力推定値が筋力持続曲線の右上にあるとき、疲労すると判定する。
そして、疲労判定値を累積し所定値をこえると指示装置をONにして、例えば運転者に対し休憩を促す音を鳴らす。
また、反力装置コントローラ6は、予め設定したマップに基づき、補助トルクとしての操舵反力及び操舵フリクションを算出する。
【0076】
このとき、反力装置コントローラ6は、上記筋力計算/指示装置利用判定装置10が推定した運転者の疲労状態及び運転者の把持位置に基づき、上記操舵反力及び操舵フリクションのうちの少なくとも一方を補正する。
例えば、補助トルク補正部6Eは、図22(a)に示すように、ステアリングホイール7の回転操作が実施されていない状態で、把持位置がステアリングホイール7の中心よりも上側を把持している場合に、疲労状態となった場合には、操舵反力又は操舵フリクションを増大補正する。
【0077】
また、補助トルク補正部6Eは、図22(b)に示すように、ステアリングホイール7の回転操作が実施されていない状態で、疲労状態と推定しているときに、把持位置がステアリングホイール7の中心よりも下側を把持している場合には、操舵反力又は操舵フリクションを補正しないで基準値(補正前の値)のままとする。
補助トルク補正部6Eは、図22(c)に示すように、ステアリングホイール7の回転操作が実施されていない状態で、疲労状態と推定しているときに、把持位置がステアリングホイール7の中心よりも上側から下側に把持が変更した場合には、操舵反力又は操舵フリクションを減少補正する。
補助トルク補正部6Eは、図22(d)に示すように、ステアリングホイール7の回転操作が実施されていない状態で、把持位置がステアリングホイール7の中心よりも下側から上側に把持が変更した場合には、操舵反力又は操舵フリクションを減少補正する。
【0078】
また、反力装置コントローラ6は、図23に示すように、ステアリングホイール7が回転操作されている場合には、ステアリングホイール7の回転速度が増大している場合には、操舵反力及びフリクションを減少し、ステアリングホイール7の回転速度が減少している場合には、操舵反力及びフリクションを増大する。また、このとき、回転速度が減少している場合に、操舵角速度が大きいほど、フリクションを大きく設定する。
ここで、運転者の疲労度の推定は、他の推定方法で疲労度を推定しても良い。
ここで、上記筋力計算/指示装置利用判定装置10は疲労度推定手段を構成する。把持姿勢検出部6Dは、把持姿勢検出手段を構成する。反力装置コントローラ6は反力制御手段を構成する。補助トルク補正部6Eは補助トルク補正手段を構成する。
【0079】
(本実施形態の効果)
以下、本実施形態の効果について説明する。
(1)筋力計算/指示装置利用判定装置10は、運転者の疲労度を推定する。把持姿勢検出部6Dは、運転者によるステアリングホイール7の把持姿勢を検出する。反力装置コントローラ6は、ステアリングホイール7に入力する補助トルクを制御する。このとき、補助トルク補正部6Eは、運転者の疲労状態及び把持姿勢に応じて、上記補助トルクである操舵反力及び操舵フリクションの少なくとも一方(以下、単に補助トルクとも呼ぶ)を補正する。
【0080】
運転者の疲労とステアリングホイール7の把持姿勢とによってステアリングホイール7への補助トルクを補正することで、運転者が疲労していても、運転者の疲労に応じたより適切な操舵反力を付与することが可能となる。すなわち、本発明によれば、運転者の状態に応じたより適切な補助反力をステアリングに付与可能とすることが可能となる。
例えば、運転者が疲労している場合、違和感が小さい状態でステアリング操作を実施することが可能となる。
【0081】
(2)上記把持姿勢検出部6Dは、把持姿勢としてステアリングホイール7の把持位置を検出する。上記補助トルク補正部6Eは、上記検出する把持位置がステアリングホイール7の中心に対して上側に位置していると判定しているときに、運転者が疲労状態になったと推定すると、疲労状態でないと推定した場合に比べて、上記補助トルクを増大補正する。
【0082】
すなわち、運転者がステアリングホイール7の上側を把持している状態で疲労状態になると、操舵反力や操舵フリクションを増大する補正を行う。なお、運転者がステアリングホイール7の下側を把持している状態では、疲労状態になっても補正を実施しない。
通常、ステアリングホイール7の上側を握っているとき、腕の自重により操舵がふらつき易くなる傾向がある。特に、疲労状態の場合に顕著となる。これに鑑み、操舵反力や操舵フリクションを増大することで、運転者が疲労状態であっても操舵のふらつきを小さく抑えることが可能となる。この結果、操縦安定性が向上する。
【0083】
(3)補助トルク補正部6Eは、ステアリングホイール7が停止しているときに、運転者が疲労状態になったと推定しているときに、把持位置がステアリングホイール7の中心に対し下側を把持している状態から上側を把持する状態に変化したと判定すると、上記補助トルクを減少補正する。
把持位置を上側に変更したときは、運転者がステアリングホイール7を切りに行こうとしていると推定される。そして、このとき操舵反力/フリクションを下げることによって、疲労していても、少ない力でステアリングホイール7を動かすことができる。この結果、操縦性が向上する。
なお、把持位置を下側にかえるときは、運転者がステアリングホイール7を切りに行く可能性が少ない。このため、操舵反力/フリクションを変更する必要がないので、何もしないことにより無駄な制御で煩わしさを与えないことが出来る。
【0084】
(4)ここで、ステアリングホイール7が回動操作されている状態において、ステアリングホイール7の動き始め(回転速度が増大中)において操舵反力/フリクションを下げ、ステアリングの動きが遅くなると(回転速度が減少中では)、フリクションを増やす。更に、操舵角速度が大きいほどフリクションを増やす。また、ステアリングホイール7の回転が完全に停止すると操舵反力/フリクションは回転前の状態に戻す。
これによって、ステアリングホイール7を少ない力で制御できるようになる。
【0085】
(5)上記補助トルク補正部6Eによる補正は、推定する疲労度が予め設定した値よりも大きくなったとき、車両のふらつき状態が予め設定した閾値よりも大きくなったとき、運転者による補正開始指示の要求があったとき、のいずれかを検知すると開始する。
これによって、自動もしくは手動操作で疲労に応じた反力制御の補正を開始することができる。ここで、疲労状態と推定する前に開始することで、疲労時に迅速に対応することが可能となる。
なお、疲労状態と推定しない状態では、疲労に応じた反力制御の補正実施しない。
【0086】
(6)上記補助トルク補正部6Eによる補正は、疲労が回復したと判定してから予め設定した時間を経過した後、若しくは運転者による補正解除指示の要求があったとき、のいずれかを検知すると終了する。
これによって、自動もしくは手動操作で疲労に応じた反力制御の補正を終了することができる。
【符号の説明】
【0087】
4 反力装置モータ角センサ
5 操舵反力用アクチュエータ
6 反力装置コントローラ
6A 外乱トルク発生部
6B 操舵反力制御部本体
6C フリクション補償部
6D 把持姿勢検出部
6E 補助トルク補正部
6F 電流制御部
7 ステアリングホイール
10 筋力計算/指示装置利用判定装置
21 運転者要求スイッチ

【特許請求の範囲】
【請求項1】
運転者の疲労度を推定する疲労度推定手段と、
運転者によるステアリングホイールの把持姿勢を検出する把持姿勢検出手段と、
ステアリングホイールに入力する補助トルクを制御する反力制御手段と、を備え、
上記反力制御手段は、疲労度推定手段の推定に基づく運転者の疲労状態及び把持姿勢検出手段が検出する把持姿勢に応じて、上記補助トルクを補正する補助トルク補正手段を備えることを特徴とする操舵反力制御装置。
【請求項2】
上記把持姿勢検出手段は、把持姿勢としてステアリングホイールの把持位置を検出し、
上記補助トルク補正手段は、上記把持姿勢検出手段が検出する把持位置がステアリングホイールの中心に対して上側に位置していると判定しているときに、運転者が疲労状態になったと推定すると、疲労状態でないと推定した場合に比べて、上記補助トルクを増大補正することを特徴とすることを特徴とする請求項1に記載した操舵反力制御装置。
【請求項3】
上記補助トルク補正手段は、ステアリングホイールが停止しているときに、運転者が疲労状態になったと推定し、且つ把持位置がステアリングホイールの中心に対し下側を把持している状態から上側を把持する状態に変化したと判定すると、上記補助トルクを減少補正することを特徴とする請求項2に記載した操舵反力制御装置。
【請求項4】
上記補助トルク補正手段による補正は、疲労度推定手段が推定する疲労度が予め設定した値よりも大きくなったとき、車両のふらつき状態が予め設定した閾値よりも大きくなったとき、運転者による補正開始指示の要求があったとき、のいずれかを検知すると開始することを特徴とする請求項1〜請求項3のいずれか1項に記載した操舵反力制御装置。
【請求項5】
上記補助トルク補正手段による補正は、疲労度推定手段の推定に基づき疲労が回復したと判定してから予め設定した時間を経過した後、若しくは運転者による補正解除指示の要求があったとき、のいずれかを検知すると終了することを特徴とする請求項1〜請求項4のいずれか1項に記載した操舵反力制御装置。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2012−144070(P2012−144070A)
【公開日】平成24年8月2日(2012.8.2)
【国際特許分類】
【出願番号】特願2011−1884(P2011−1884)
【出願日】平成23年1月7日(2011.1.7)
【出願人】(000003997)日産自動車株式会社 (16,386)
【Fターム(参考)】