説明

流体噴射ヘッド、流体噴射ヘッドの製造方法、及び流体噴射装置

【課題】小型化、高精細化を容易に実現でき、安価に製造できる流体噴射ヘッドを提供する。
【解決手段】ノズル開口15に連通する圧力発生室12が形成された流路形成基板10と、流路形成基板10の一方の面に振動板400を介して設けられた圧電素子(駆動素子)130と、圧電素子130に電力を供給する駆動IC150とを備え、前記流路形成基板10が半導体基板を基体としてなり、前記半導体基板に駆動IC150が形成されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体噴射ヘッド、流体噴射ヘッドの製造方法、及び流体噴射装置に関するものである。
【背景技術】
【0002】
インクジェットプリンタの心臓部品である流体噴射ヘッドの構成は、大きく分けて2種類ある。一つはサーマルジェット方式であり、他の一つはピエゾ方式である。ピエゾ方式では、ピエゾ素子という電圧印加によって変形する圧電素子を利用してキャビティに溜めたインクを吐出する機構を有する(例えば特許文献1,2参照)。そして、印字品質の高精細化、低コスト化、小型化を目指して開発が進められている。
【特許文献1】特開2003−205618号公報
【特許文献2】特開2003−200574号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
流体噴射ヘッドでは、通常、ヘッド上に駆動ICが実装されており、かかる駆動ICから圧電素子に電力を供給することでキャビティを変形させてインク吐出動作を行うようになっている。この駆動ICは比較的大きな面積を有しているため、圧電素子を覆うようにして封止基板を配設し、この封止基板上に駆動ICを実装した上で駆動ICと圧電素子とをワイヤボンディングにより接続している。しかし、このような特許文献1,2記載の流体噴射ヘッドにおいて採用されている構造には、以下のような問題がある。
【0004】
まず、特許文献1記載の流体噴射ヘッドでは、比較的厚みのある封止基板上に、駆動ICをフェースアップ実装しているため、封止基板と駆動ICの厚さ分の段差を乗り越えるようにワイヤボンディングする必要があり、技術的に難易度が高く、製造歩留まりを向上させるのが困難である。
【0005】
次に、特許文献2記載の流体噴射ヘッドでは、配線が形成された対向基板上に駆動ICをフリップチップ実装し、対向基板上の配線と圧電素子とをワイヤボンディングしているため、ワイヤボンディングは比較的容易になるものの、対向基板のコストが上昇する。
【0006】
また、駆動ICをヘッドに実装しているためにヘッドの小型化が容易ではなく、さらには、圧電素子の実装密度がワイヤボンディング可能な範囲に制限されるため高精細化が困難であるという問題もある。
【0007】
本発明は、上記従来技術の問題点に鑑み成されたものであって、小型化、高精細化を容易に実現でき、安価に製造できる流体噴射ヘッドとその製造方法を提供することを目的としている。
【課題を解決するための手段】
【0008】
本発明は、上記課題を解決するために、ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドであって、前記流路形成基板が半導体基板を基体としてなり、前記半導体基板に、前記駆動回路が形成されていることを特徴とする。
この構成によれば、流体噴射ヘッドの要部を成す流路形成基板の基体となる半導体基板に、直接駆動回路が形成されているので、従来の半導体チップを用いる構成のようにワイヤボンディングを用いる必要が無くなる。したがって、ワイヤボンディングのために確保する空間が不要となって流体噴射ヘッドを小型化することができる。また、ワイヤボンディングの加工精度に起因する制限が無くなるため、狭ピッチで駆動素子及びノズル開口を形成して高精細化することもできる。さらに、ワイヤボンディングの加工難易性に起因する高コスト化も防ぐことができる。
【0009】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群が形成されており、前記駆動回路が、前記圧力発生室群の側方に、前記圧力発生室群の延在方向に沿って形成されていることが好ましい。
このような構成とすることで、圧力発生室に対応して設けられる複数の駆動素子の間で駆動回路まで引き回される配線の長さが均等になるので、駆動回路による制御を簡素化することができ、これにより駆動回路を小型化して流体噴射ヘッドを小型化することができる。
【0010】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群が複数形成されており、前記駆動回路が、複数の前記圧力発生室群の間の領域に形成されていることが好ましい。
この構成によれば、複数の圧力発生室群に対応する駆動素子の駆動制御を1つの駆動回路により行うことができるので、流体噴射ヘッドの小型化に有利な構成となる。また、複数の圧力発生室群に対して均等な距離に駆動回路を配置できるため制御の簡素化にも有利である。
【0011】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群と、前記圧力発生室群の前記各圧力発生室に連通するリザーバと、が形成されており、前記駆動回路が、前記圧力発生室群と前記リザーバとの間の領域に形成されている構成としてもよい。
通常、圧力発生室とリザーバとの間には両者を連通する供給路が形成されるが、このように供給路が形成されている領域と平面的に重なる位置に駆動回路を形成してもよい。これにより、流路形成基板上の領域を有効に利用して駆動回路を形成することができ、流体噴射ヘッドの小型化に有利な構成となる。
【0012】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群と、前記圧力発生室群の前記各圧力発生室に連通するリザーバと、が形成されており、前記駆動回路が、前記リザーバの少なくとも一部と平面的に重なる領域に形成されている構成としてもよい。
このようにリザーバと平面的に重なる領域に駆動回路を形成すれば、比較的大きな平面領域を確保できるので、比較的大規模な駆動回路であっても形成可能になり、流体噴射ヘッドの多機能化が容易になる。
【0013】
本発明の流体噴射ヘッドは、ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドであって、前記流路形成基板の前記駆動素子側に、半導体基板を基体としてなる対向基板を有しており、前記半導体基板に前記駆動回路が形成されていることを特徴とする。
すなわち本発明では、このように流路形成基板とともに流体噴射ヘッドの要部を成す対向基板に駆動回路が形成されていてもよい。このような構成とした場合にも、流路形成基板に駆動回路を形成したのと同様の作用効果を得ることができる。
またこの構成では、前記対向基板が、流路形成基板とともに駆動素子を封止する構成とすることもできるので、駆動素子の保護が良好になされ、信頼性に優れた流体噴射ヘッドが得られる。
【0014】
前記対向基板の前記駆動素子側の面に前記駆動回路が形成されている構成としてもよい。
このような構成とすれば、対向基板を流路形成基板と接着する際に、駆動回路と駆動素子とを電気的に接続することができるので、導電接続の容易性が向上し、製造性に優れる流体噴射ヘッドとすることができる。
【0015】
前記対向基板の前記駆動素子と反対側の面に前記駆動回路が形成されており、前記対向基板に、前記対向基板を厚さ方向に貫通する貫通電極が形成され、前記貫通電極を介して前記駆動回路と前記駆動素子とが電気的に接続されている構成としてもよい。
駆動回路を駆動素子と反対側の面に形成している場合には、このように対向基板を貫通する貫通電極を設け、かかる貫通電極を介して駆動回路と駆動素子とを電気的に接続する構成としてもよい。この構成によれば、対向基板における駆動回路の形成面が他の構成部材や製造工程上の都合で限定されてしまう場合にも駆動回路と駆動素子との導電接続の容易性を損なうことがない。
【0016】
前記対向基板の前記駆動素子側の面に、前記対向基板を前記流路形成基板と接合したときに前記駆動素子を収容する凹部が形成されており、前記駆動回路が、前記凹部と平面的に重なる領域に形成されている構成としてもよい。
対向基板に駆動回路を形成する場合にも、他の構成要素と平面的に重なる位置に駆動回路を形成することができる。これにより、駆動回路を形成するための領域を効率よく確保できるため、流体噴射ヘッドの小型化を図れる。あるいは、駆動回路の形成領域を比較的大きく確保できるため、駆動回路の多機能化が容易になる。
【0017】
前記対向基板の前記駆動素子と反対側の面に前記駆動回路が形成されるとともに、前記対向基板を厚さ方向に貫通して前記駆動素子に達する開口部が形成されており、前記駆動回路と前記駆動素子とが、前記開口部を経由する接続配線を介して電気的に接続されている構成とすることができる。
このような構成とした場合にも、対向基板に駆動回路を形成するので、ICチップを実装する工程が不要となり、工数を削減できる。また、接着に伴う工程(プライマー工程や洗浄工程)を省略できるため、接着工程に起因する不良の発生を抑え、歩留まりを向上も期待できる。
【0018】
前記駆動回路と前記駆動素子とがワイヤボンディングされている構成とすることもできる。
従来、半導体チップの形態で駆動回路が実装されていた流体噴射ヘッドでは、駆動回路を含めたヘッド全体を小型化するために、半導体チップを流体噴射ヘッドの本体(封止基板、対向基板)に接着することが必要であった。しかし、このような半導体チップの接着を行うと、接着剤に起因する不良の発生を防止するための洗浄工程が必要になり、そうすると、洗浄工程に起因するワイヤボンディングの不良が発生しやすくなるという問題があった。
これに対して本発明では、対向基板の流路形成基板と反対側の面に駆動回路を直接形成しているので、半導体チップの接着工程とそれに伴う洗浄工程はいずれも不要になる。したがって、駆動素子の端子が接着剤や洗浄剤により汚染されることがなく、ワイヤボンディングの接続不良を低減できる。
よって本発明の構成によれば、従来よりも簡便な工程で駆動回路と駆動素子とを接続することができ、歩留まりよく製造できる流体噴射ヘッドを提供することができる。
【0019】
前記接続配線が可撓性基板上に形成されており、前記開口部の段差に沿って前記可撓性基板が配置されている構成とすることもできる。このような構成とした場合にも、従来より簡便な工程で駆動回路と駆動素子とを容易に接続することができる。
【0020】
前記接続配線が前記対向基板の表面に形成されている構成とすることもできる。
このような構成とすれば、ワイヤボンディングや可撓性基板も不要になり、極めて容易に駆動回路と駆動素子とを電気的に接続することができる。
【0021】
前記開口部の内壁面が前記駆動回路から前記駆動素子に向かう傾斜面であることが好ましい。
このような構成とすることで、開口部が駆動回路の形成された面に向かって広口になるので、ワイヤボンディング、可撓性基板、成膜のいずれにより接続配線を構成した場合にも、駆動回路から駆動素子に至る接続配線の引き回しが容易になる。特に、接続配線を対向基板表面に直接形成する場合に、接続配線の断線を防止する点で有用な構成となる。
【0022】
次に本発明の流体噴射ヘッドの製造方法は、ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドの製造方法であって、前記流路形成基板の基体となる半導体基板の一面側に前記駆動回路を形成する工程と、前記半導体基板の前記駆動回路側の面に、前記駆動回路と電気的に接続される駆動素子を形成する工程と、前記駆動素子及び前記駆動回路を覆う保護膜を形成する工程と、前記保護膜と反対側の前記半導体基板の面を部分的に除去して前記圧力発生室を形成する工程と、を有することを特徴とする。
この製造方法によれば、駆動回路が形成された半導体基板に対して、駆動回路に悪影響を与えることなく圧力発生室を形成することができる。したがって本製造方法によれば、製造歩留まりを低下させることなく、本発明の流体噴射ヘッドを製造することができる。
【0023】
前記保護膜を形成した後、前記圧力発生室を形成する前に、前記半導体基板を、前記保護膜と反対側の面から薄くする工程を有していてもよい。
この製造方法によれば、駆動回路に悪影響を与えることなく半導体基板を薄板化して流路形成基板を製造できるので、薄型の流路形成基板を備えた薄型の流体噴射ヘッドを歩留まりよく製造することができる。
【0024】
本発明の流体噴射ヘッドの製造方法は、ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板に対向配置された対向基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドの製造方法であって、半導体基板の一面側に前記駆動回路を形成して前記対向基板を作製する工程と、前記流路形成基板の一方の面に前記駆動素子を形成する工程と、前記対向基板の前記駆動回路が形成された面と、前記流路形成基板の前記駆動素子側の面とを接合することで、前記駆動回路の端子と前記駆動素子とを電気的に接続する工程と、を有することを特徴とする。
この製造方法によれば、駆動回路が形成された半導体基板に対して、駆動回路に悪影響を与えることなく圧力発生室を形成することができる。したがって本製造方法によれば、対向基板に駆動回路を備える場合であっても、製造歩留まりを低下させることなく、本発明の流体噴射ヘッドを製造することができる。
【0025】
本発明の流体噴射ヘッドの製造方法は、ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板に対向配置された対向基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドの製造方法であって、半導体基板の一面側に前記駆動回路を形成し、前記駆動回路と電気的に接続されるとともに前記半導体基板を厚さ方向に貫通する貫通電極を形成して前記対向基板を作製する工程と、前記流路形成基板の一方の面に前記駆動素子を形成する工程と、前記対向基板の前記駆動回路と反対側の面と、前記流路形成基板の前記駆動素子側の面とを接合することで、前記貫通電極と前記駆動素子とを電気的に接続する工程と、を有することを特徴とする。
この製造方法によれば、対向基板の駆動素子と反対側の面に駆動回路が形成されている流体噴射ヘッドにおいて、駆動回路と駆動素子とを容易かつ確実に導電接続することができる。したがって、本発明の流体噴射ヘッドを歩留まりよく製造することができる。
【0026】
本発明の流体噴射装置は、先に記載の本発明の流体噴射ヘッドを備えたことを特徴とする。
この構成によれば、小型化あるいは多機能化された流体噴射ヘッドを備える構成となるので、小型あるいは高性能の流体噴射装置を実現することができる。
【発明を実施するための最良の形態】
【0027】
以下、本発明の流体噴射ヘッド及び流体噴射装置の実施の形態を、図1ないし図6を参照して説明する。
なお、以降の説明では図面を用いて各種の構造を例示するが、これらの図面に示される構造は特徴的な部分を分かりやすく示すために実際の構造に対して、寸法・縮尺を異ならせて示す場合がある。
【0028】
(第1の実施形態)
図1は、本発明の第1実施形態に係る流体噴射ヘッドの要部を分解して示す斜視図である。図2は、図1に対応する素子基板の平面図である。図3は、図2のA−A’線に沿う位置における流体噴射ヘッドの断面図である。
なお、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。水平面内における所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれに直交する方向(すなわち鉛直方向)をZ軸方向とする。
【0029】
本実施形態の流体噴射ヘッド110は、インク(流体)を液滴状にしてノズルから吐出するものである。
図1から図3に示すように、流体噴射ヘッド110は、液滴が吐出されるノズル開口15を備えたノズル基板16と、ノズル基板16の上面(+Z側)に接続されてインク流路を形成する流路形成基板10と、流路形成基板10の上面に接続されて圧電素子(駆動素子)130の駆動によって変位する振動板400と、振動板400の上面に接続されてリザーバ100を形成する対向基板20と、対向基板20の上面(流路形成基板10と反対側面)に接合されたコンプライアンス基板30と、を備えている。
【0030】
本実施形態の流体噴射ヘッド110では、図1及び図3に示すように、流路形成基板10の圧電素子130側の面に、半導体プロセスを用いて、駆動IC150が形成されている。また、流路形成基板10上の一辺端に沿った位置に、外部回路と駆動IC150とを電気的に接続する外部接続端子120が形成されている。流体噴射ヘッド110の動作は、外部接続端子120を介して駆動IC150に接続された図示略の制御装置によって制御される。
【0031】
流路形成基板10には、複数の平面視略櫛歯状の開口領域が区画形成されており、これらの開口領域のうち、X軸方向に延びて形成された部分が、ノズル基板16と振動板400とにより囲まれて圧力発生室12を形成している。また、上記平面視略櫛歯状の開口領域のうち、図示Y軸方向に延びて形成された部分が、対向基板20と流路形成基板10とにより囲まれてリザーバ100を形成している。
【0032】
流路形成基板10の図示下面側(−Z側)の開口領域を覆うようにノズル基板16が流路形成基板10の下面に、接着剤や熱溶着フィルムを介して接合されている。ノズル基板16には、液滴を吐出する複数のノズル開口15が設けられており、複数のノズル開口15は図示Y軸方向に配列されている。本実施形態の場合、Y軸方向に配列された一群のノズル開口15からなる2組のノズル開口群が、X軸方向に関して互いに対向するように配置されている。
【0033】
図1に示すように、流路形成基板10の内側には、その中央部からX方向に延びる複数の隔壁11が形成されている。本実施形態の場合、流路形成基板10はシリコンによって形成されており、複数の隔壁11は、流路形成基板10の母材である単結晶シリコン基板を異方性エッチングにより加工して形成されたものである。複数の隔壁11を有する流路形成基板10と、ノズル基板16と、振動板400とにより区画された複数の空間が圧力発生室12である。
【0034】
圧力発生室12とノズル開口15とは、各々対応して設けられている。すなわち、圧力発生室12は、複数のノズル開口15に対応するようにY軸方向に複数並んで設けられており、図示Y軸方向に配列された一群の圧力発生室12からなる2組の圧力発生室群がX軸方向に並んで配置されている。
【0035】
複数の圧力発生室12のX軸方向基板中央部側の端部は隔壁10Kによって閉塞されている。一方、圧力発生室12のX軸方向基板外縁部側の端部は互いに接続するように集合され、リザーバ100と接続されている。リザーバ100は、図2及び図3に示すインク導入口25と、ノズル開口15に連通する圧力発生室12との間でインクを一時的に保持するものである。リザーバ100は、対向基板20にY軸方向に延びる平面視矩形状に形成されたリザーバ部21と、流路形成基板10にY軸方向に延びる平面視矩形状に形成された連通部13とから構成されている。
【0036】
リザーバ100の連通部13は、各々の圧力発生室12と供給路14を介して接続されており、一群の圧力発生室12を構成する複数の圧力発生室12の共通のインク室を形成している。図3に示すインクの経路をみると、ヘッド外端上面に開口するインク導入口25から導入されたインクは、導入路26を経てリザーバ100に流れ込み、さらに供給路14を通じて複数の圧力発生室12のそれぞれに供給されるようになっている。
【0037】
流路形成基板10のうち、基板中央部の隔壁10Kの上面(+Z側面)には、駆動IC150が形成されている。先に記載のように、流路形成基板10は半導体基板である単結晶シリコン基板を基体としているので、通常の半導体プロセスを用いてダイオードやトランジスタ、インバータ、キャパシタ等を形成することができ、これらの半導体素子によりシフトレジスタやラッチ回路、スイッチ回路、メモリ回路等を構成することで、圧電素子130を駆動する駆動IC150を構成できる。
【0038】
流路形成基板10と対向基板20との間に配置された振動板400は、流路形成基板10側から順に弾性膜50と下電極膜60とを積層した構造を備えている。流路形成基板10側に配される弾性膜50は、例えば酸化シリコン膜からなるものであり、弾性膜50上に形成される下電極膜60は、例えば金属膜からなるものである。本実施形態において、下電極膜60は、流路形成基板10と対向基板20との間に配される複数の圧電素子130の共通電極として機能するようになっている。
【0039】
液滴吐出動作に際して振動板400を変形させる圧電素子130は、図1及び図3に示すように、下電極膜60側から順に圧電体膜70と、上電極膜80とを積層した構造を備えている。圧電体膜70の厚さは例えば1μm程度、上電極膜80の厚さは例えば0.1μm程度である。
なお、圧電素子130の概念としては、圧電体膜70及び上電極膜80に加えて、下電極膜60を含むものであってもよい。下電極膜60は圧電素子130として機能する一方、振動板400としても機能するからである。本実施形態では、弾性膜50及び下電極膜60が振動板400として機能する構成を採用しているが、弾性膜50を省略して下電極膜60が弾性膜としても機能する構成とすることもできる。
【0040】
圧電素子130(圧電体膜70及び上電極膜80)は、複数のノズル開口15及び圧力発生室12のそれぞれに対応するように複数設けられている。すなわち図2に示すように、Y軸方向に複数並んで設けられた一群の圧力発生室12に各々対応するようにして一群の圧電素子130が形成されている。
【0041】
図2に示すように、流路形成基板10の駆動IC150は、基板中央部のY軸方向に延びる矩形状の領域に位置しており、駆動IC150のY軸方向の辺縁に沿って圧電素子130が配列されている。そして、駆動IC150の辺縁部からそれぞれの圧電素子130の上電極膜80上に延びるようにして形成されたリード電極90によって、駆動IC150と各々の圧電素子130とが電気的に接続されている。具体的には、図3に示すように、駆動IC150を覆って形成された弾性膜50に開口された貫通孔50aを介して、駆動IC150に形成された図示略のパッドとリード電極90とが電気的に接続され、圧電素子130側に延びたリード電極90は圧電素子130の側壁を経由して乗り上げた上電極膜80の上面で圧電素子130と電気的に接続されている。
【0042】
また、駆動IC150は、図2に示すように、外部接続端子120側の端部において下電極膜60と平面的に重なって配置されている。そして、これらが重なる領域の弾性膜50に開口された貫通孔50bを介して、駆動IC150に形成された図示略のパッドと下電極膜60とが電気的に接続されている。したがって、駆動IC150は、圧電素子130の共通電極である下電極膜60の電位も制御するようになっている。
なお、下電極膜60は駆動IC150ではなく外部接続端子120と電気的に接続されていてもよい。この場合、下電極膜60の電位は、外部接続端子120を介して接続される制御装置によって制御されることになる。
【0043】
図1及び図3に示すように、圧電素子130を含む振動板400上の領域を覆って、対向基板20が設けられている。対向基板20の圧電素子130側には、流路形成基板10と接合したときに圧電素子130を収容する凹部24が形成されている。凹部24は、圧電素子130の運動を阻害しない程度の空間を確保でき、その空間を密封できるように形成されている。また、凹部24の外側に、Y軸方向(圧電素子130の配列方向)に沿って延びるリザーバ部21が形成されている。
【0044】
対向基板20は、流路形成基板10とともに流体噴射ヘッド110の基体を成す部材であるから剛体とすることが好ましく、対向基板20を形成する材料として流路形成基板10と略同一の熱膨張率を有する材料を用いることがより好ましい。本実施形態の場合、流路形成基板10が単結晶シリコン基板からなるものであるから、それと同一材料の単結晶シリコン基板が好適である。単結晶シリコン基板を用いた場合、異方性エッチングにより容易に高精度の加工を施すことが可能であるため、凹部24やリザーバ部21を容易に形成できるという利点が得られる。その他、ガラス、セラミック材料等を用いて対向基板20を作製することもできる。
【0045】
対向基板20の上面(流路形成基板10と反対側面)には、封止膜31と固定板32とを積層した構造のコンプライアンス基板30が接合されている。コンプライアンス基板30において、内側(対向基板20側)に配される封止膜31は、剛性が低く可撓性を有する材料(例えば、厚さ6μm程度のポリフェニレンスルフィドフィルム)からなり、封止膜31によってリザーバ部21(リザーバ100)の上部が封止されている。他方、外側に配される固定板32は、金属等の硬質の材料(例えば、厚さ30μm程度のステンレス鋼)からなる板状部材である。
【0046】
固定板32には、リザーバ100に対応する平面領域を切り欠いてなる開口部33が形成されており、この構成によりリザーバ100の上部は、可撓性を有する封止膜31のみで封止され、内部圧力の変化によって変形可能な可撓部22となっている。可撓部22はリザーバ100内を一定圧力に保持するために設けられたものである。つまり、圧電素子130の駆動時のインクの流れや周囲の熱などによってリザーバ100内に生じる圧力変化を、可撓性の封止膜31のみよって封止された可撓部22を撓み変形させて吸収するようになっている。可撓部22以外の部分は固定板32によって十分な強度に保持されている。
【0047】
対向基板20及び固定板32の+Y側の端部には、対向基板20及び固定板32を一部矩形状に切り欠いた凹状部からなる接続端子部44が形成されている。この接続端子部44により、流路形成基板10上の外部接続端子120が露出されて外部の制御装置と接続可能になっている。
【0048】
そして、リザーバ100の外側のコンプライアンス基板30上には、リザーバ100に機能液を供給するためのインク導入口25が形成されており、対向基板20には、インク導入口25とリザーバ100の側壁とを連通する導入路26が設けられている。
【0049】
上述した構成を有する流体噴射ヘッド110により機能液の液滴を吐出するには、流体噴射ヘッド110に接続された外部コントローラ(図示略)によってインク導入口25に接続された不図示のインク供給装置を駆動してリザーバ100にインクを供給する。リザーバ100に供給されたインクは、ノズル開口15に至るまでの流体噴射ヘッド110の内部流路を満たす。
また、前記外部コントローラは、外部接続端子120を介して接続された駆動IC150に、駆動電力や指令信号を送信する。指令信号等を受信した駆動IC150は、外部コントローラからの指令に基づく駆動信号を、リード電極90を介して導電接続された各々の圧電素子130に送信する。
すると、圧力発生室12に対応するそれぞれの下電極膜60と上電極膜80との間に電圧が印加される結果、弾性膜50、下電極膜60及び圧電体膜70に変位が生じ、この変位によって対応する圧力発生室12の容積が変化して内部圧力が高まり、ノズル開口15より液滴が吐出される。
【0050】
以上の構成を備えた本実施形態の流体噴射ヘッド110は、基材として用いられている流路形成基板10に半導体プロセスを用いて形成された駆動IC150を備えており、この駆動ICに設けられた端子と圧電素子130とをリード電極90を介して接続している。したがって本実施形態では、従来の駆動ICチップを実装する構成で必須とされていたワイヤボンディングが不要であり、ワイヤボンディングの実装可能範囲を超える集積度で圧電素子130を配置しても、フォトリソグラフィ工程とエッチング工程とによってリード電極90を正確な位置に正確な寸法で形成することが可能であるため、問題なく配線を引き回すことができ、流体噴射ヘッド110の解像度を高めることができる。したがって本実施形態によれば、高精細の画像形成や機能膜のパターン形成が可能な流体噴射ヘッド110を得ることができる。
【0051】
また、狭ピッチのワイヤボンディングは困難性が高く、高コストであるが、本発明では、成膜プロセス等を用いて一括にリード電極90を形成できるため、圧電素子130を高集積化しても製造コストの上昇を抑えることができる。
【0052】
また本実施形態では、流路形成基板10と振動板400とに、駆動IC150及び圧電素子130が実装されており、さらに駆動IC150と外部コントローラとを接続する外部接続端子120も流路形成基板10に形成されているので、対向基板20には実装端子や配線が不要である。そのため、従来に比して対向基板20の構成を簡略化することができ、対向基板20の製造性や製造コストの点で有利な構成である。
【0053】
なお、対向基板20は、凹部24によって圧電素子130を外部環境と遮断しているので、圧電素子130を封止する封止部材としても機能するものである。対向基板20によって圧電素子130を封止することで、水分等の外部環境による圧電素子130の特性劣化等を防止することができる。本実施形態では、凹部24の内部を密封状態にしただけであるが、例えば、凹部24内の空間を真空にしたり、あるいは窒素又はアルゴン雰囲気等とすることにより、凹部24内を低湿度に保持する構成も採用でき、これらの構成により圧電素子130の劣化をさらに効果的に防止することができる。
【0054】
また本実施形態では、駆動IC150を流路形成基板10に直接形成しているので、駆動ICチップのようなパッケージが不要であることから、流路形成基板10上の極めて狭小な領域であっても容易に形成することができ、圧電素子130の集積度を高めて多数の圧電素子130を形成する場合にも容易に対応可能である。あるいは、従来駆動ICチップを実装するために確保されていた領域が不要になることから、流体噴射ヘッドを小型化することもできる。
【0055】
また本実施形態では、一方向に配列されて圧力発生室群を構成する圧力発生室12の配列方向に沿って、駆動IC150が設けられている。この構成により、圧力発生室12に対応して設けられる圧電素子130と駆動IC150とを接続するリード電極90をほぼ同じ長さの配線とすることができる。これにより、信号伝達特性に起因する誤差を解消するための制御が不要になり、駆動IC150による制御を簡素化することができる。したがって、駆動IC150を小型化することもでき、流体噴射ヘッド110の小型化を図ることができる。
【0056】
なお、本実施形態では隔壁10Kの振動板400側の面に駆動IC150を形成しているが、上述したように、駆動IC150は単結晶シリコン基板上に直接形成されているためパッケージが不要で、狭小な領域でも形成することが可能である。したがって例えば、図2に示した圧力発生室12を区画している隔壁11上に半導体素子を形成して駆動ICを構成してもよい。また、駆動IC150を複数の領域に分割して形成することもできる。例えば、圧電素子130を駆動するスイッチング素子を圧電素子130に隣接する隔壁11上にそれぞれ形成し、その他のラッチ回路やメモリ回路等の機能素子を外部接続端子120の近傍に集合させた構成とすることができる。
【0057】
さらに他の形態としては、図4に示すような駆動ICの配置が採用できる。図4は、本実施形態の変形例としての流体噴射ヘッドに備えられる流路形成基板10A、10Bの概略平面図である。
図4(a)に示す流路形成基板10Aは、基板長手方向に配列形成された複数の圧力発生室12と、圧力発生室12と連通する連通部13(リザーバ)と、駆動IC150Aとを備えており、駆動IC150Aが、圧力発生室12と、連通部13との間の基板上に、圧力発生室12の配列方向(Y軸方向)に沿って延在している。
【0058】
図2に示したように、圧力発生室12と連通部13との間には供給路14が形成されているが、供給路14は、図示された基板面と反対側の面に形成されており、駆動IC150Aは表面から1μm程度の深さまでしか使用しない。そのため、このように駆動IC150Aを供給路14と平面的に重なる領域に形成することもできる。このような構成とすることで、駆動IC150Aの形成領域を比較的大きく確保することができるため、駆動IC150Aを大規模化することも容易になる。したがって、本例によれば流体噴射ヘッドを多機能化することも容易になる。
【0059】
次に、図4(b)に示す流路形成基板10Bは、基本構成は図4(a)に示す流路形成基板10Aと共通であるが、駆動IC150Bが、連通部13と平面的に重なる領域の流路形成基板10上に形成されている。この場合、連通部13は駆動IC150Bが形成された領域では流路形成基板10Bを貫通しておらず、図示とは反対側の基板面に形成された凹部からなり、駆動IC150Bはこの凹部の底壁部を含む部分の流路形成基板10上に形成されている。
【0060】
先の実施形態では、リザーバ100を連通部13とリザーバ部21とにより構成してリザーバ部容量を確保していたが、リザーバ容量を十分に確保できるならば、連通部13は流路形成基板10Bを貫通していなくてもよい。そこで本実施形態では、対向基板20側との接続部となる連通孔13aのみが基板を貫通する構成とし、対向基板20側(+Z側)となる流路形成基板10の表面を駆動IC150Bの形成領域として利用可能にしているのである。そして、このように駆動IC150Bを連通部13と一部平面的に重なるように形成することで、流体噴射ヘッドの小型化を図ることができる。また、駆動IC150Bの形成領域を大きく確保できるので、駆動ICの大規模化が容易であり、流体噴射ヘッドの多機能化も容易である。
【0061】
[流体噴射ヘッドの製造方法]
次に、図5及び図6を参照して第1実施形態の流体噴射ヘッドの製造方法について説明する。
図5及び図6は、第1実施形態の流体噴射ヘッドの製造工程の一部を示す断面工程図である。
【0062】
流体噴射ヘッド110を製造するには、まず、図5(a)に示すように、単結晶シリコン基板(シリコンウェハ)10sを用意し、単結晶シリコン基板10sの一面側に、半導体プロセスを用いてトランジスタやダイオード、キャパシタを作製することで、圧電素子130を駆動する駆動IC150を形成する。
【0063】
次に、図5(b)に示すように、単結晶シリコン基板10sの駆動IC150が形成された側の面に、シリコン酸化物からなる弾性膜50を形成し、さらに弾性膜50上に金属材料からなる下電極膜60をパターン形成する。
【0064】
次に、下電極膜60上に、PZT(Pb(Zr,Ti)O)、等からなる圧電体膜70と、Pt、Ir、Ru、Au、Ag等の金属材料からなる上電極膜80とを形成し、これらをパターニングすることで、図5(c)に示すように、複数の圧電素子130を形成する。
【0065】
次に、図5(d)に示すように、駆動IC150上の弾性膜50に、駆動IC150の端子(図示略)に通じる貫通孔50a(及び貫通孔50b)を開口する。またこのとき、リザーバ100が形成される領域の下電極膜60の開口部内に位置する弾性膜50も除去しておく。
【0066】
次に、図5(e)に示すように、圧電素子130の上電極膜80から駆動IC150上の貫通孔50aに至るリード電極90を、AlやAgなどの金属材料を用いて形成する。これにより、駆動IC150の端子とリード電極90とが接続されて駆動IC150と圧電素子130の上電極膜80とが電気的に接続される。
【0067】
次に、図6(a)に示すように、単結晶シリコン基板10sの圧電素子130側の全面に、レジスト等の樹脂材料を用いて保護膜131を形成する。
次いで、図6(b)に示すように、単結晶シリコン基板10sの圧電素子130が形成されたのとは反対側の面からエッチング処理を施す。これにより、単結晶シリコン基板10sが初期板厚500μm程度から100〜200μm程度に薄板化される。
【0068】
次に、図6(c)に示すように、薄板化した単結晶シリコン基板10sに、KOH溶液を用いた異方性エッチング処理を施すことで、単結晶シリコン基板10sを所定形状にパターニングする。これにより、圧力発生室12や連通部13、これらを接続する供給路14が形成され、流路形成基板10となる。
なお、異方性エッチング処理とは、エッチング速度がエッチング方向により異なることを利用してなされるエッチングであり、単結晶シリコンをエッチングする場合、Si(100)面のエッチング速度がSi(111)面に比較して約40倍以上速いことを利用したエッチング方法である。各溝部の深さは、エッチング時間により容易に調整することができる。
【0069】
そして、図6(d)に示すように、保護膜131を除去した後、流路形成基板10のノズル基板16を接着し、ノズル基板16と反対側の面に、別途作製した対向基板20を接着する。その後、対向基板20の流路形成基板10と反対側の面に、コンプライアンス基板30を接着することで、本実施形態の流体噴射ヘッドを製造することができる。
【0070】
以上に説明した流体噴射ヘッド110の製造方法では、当初は標準的な厚さの単結晶シリコン基板10sを用いて、半導体プロセスによって駆動IC150を形成しており、圧電素子130等を形成した後に、単結晶シリコン基板10sを薄板化してヘッドを構成する流路形成基板10としての厚さを得ている。したがって、本実施形態によれば、半導体プロセスによる駆動IC150の形成工程や、圧電素子130の形成工程を、厚い単結晶シリコン基板に対して実施することができるので、基板の取り回しが容易であり、また高い製造歩留まりも期待できる製造方法となる。
【0071】
また、図5(c)〜図5(e)に示した工程において、駆動IC150と圧電素子130との導電接続を、圧電素子130から引き回したリード電極90により実現しているので、ワイヤボンディング工程が不要であるばかりでなく、圧電素子130が高密度に配置されている場合であっても、簡便な工程で正確に駆動IC150に接続することができるようになっている。
【0072】
また、図6(d)において流路形成基板10と接着される対向基板20には、配線や電極が不要であるため、単結晶シリコン基板のエッチング加工により容易に製造することができ、低コストに対向基板20を製造することができる。
【0073】
(第2の実施形態)
次に、本発明の流体噴射ヘッドの第2の実施形態について、図7から図9を参照して説明する。
先の第1実施形態では流路形成基板10に駆動ICが形成されていたのに対して、本実施形態の流体噴射ヘッド210では、対向基板に駆動ICが形成されている。
【0074】
図7は、本発明の第2の実施形態である流体噴射ヘッドを構成する対向基板を流路形成基板側から見た部分平面図であり、図8は、図7のB−B’線に沿う位置における流体噴射ヘッドの断面図である。
なお、以下で参照する図面において、図1から図3と共通の構成要素には同一の符号を付し、それらの詳細な説明は省略する。
【0075】
図7及び図8に示すように、本実施形態の流体噴射ヘッド210は、液滴が吐出されるノズル開口15を備えたノズル基板16と、ノズル基板16の上面(+Z側)に接続されてインク流路を形成する流路形成基板201と、流路形成基板201の上面に接続されて圧電素子(駆動素子)130の駆動によって変位する振動板400と、振動板400の上面に接続されてリザーバ100を形成する対向基板202と、対向基板202の上面(流路形成基板201と反対側面)に接合されたコンプライアンス基板30と、を備えている。
【0076】
流路形成基板201は、第1実施形態に係る流路形成基板10から駆動IC150を省略したものである。
一方、対向基板202は、その基本構成は第1実施形態に係る対向基板20と共通であるが、図7に示すように、対向基板202の長手方向(Y軸方向)に延びて形成された2つの凹部24の間に、圧電素子130を駆動する駆動IC(駆動回路)150Cが形成されている。すなわち、単結晶シリコン基板(半導体基板)を基体としてなる対向基板202の流路形成基板201側となる面に、半導体プロセスを用いて駆動IC150Cが形成されている。
【0077】
駆動IC150Cは、第1実施形態に係る駆動IC150と同様、シフトレジスタやラッチ回路、スイッチ回路、メモリ回路等を備えている。また駆動IC150Cの周縁部には、圧電素子130から延びるリード電極90と電気的に接続するパッド150aが駆動IC150Cの長辺(Y軸方向に延びる辺)に沿って複数形成されており、さらに、下電極膜60や外部接続端子120に通じる配線と電気的に接続するパッド150bが駆動IC150Cの短辺(X軸方向に延びる辺)に沿って複数形成されている。
【0078】
具体的には、図8に示すように、対向基板202の駆動IC150Cのパッド150aと、弾性膜50上に形成されたリード電極90の一端とが、平面的に重なるように配置されている。そして、これらパッド150aとリード電極90とは、対向基板202と圧電素子130が設けられた流路形成基板201とを貼り合わせる際に、基板厚さ方向(Z軸方向)で対向し、両者が直接又は導電材料を介して接続されるようになっている。パッド150aとリード電極90との導電接続に用いる導電材料としては、異方性導電フィルム(ACP)や異方性導電ペースト(ACP)等を例示することができる。
【0079】
なお、対向基板202が圧電素子130を封止する封止部材としても機能するのは先の第1実施形態と同様であり、これにより水分等の外部環境による圧電素子130の特性劣化等を防止することができる。また、凹部24内の空間を真空にしたり、あるいは窒素又はアルゴン雰囲気等とすることができるのも第1実施形態と同様である。
【0080】
以上の構成を備えた本実施形態の流体噴射ヘッド210においても、流体噴射ヘッド210の要部を構成する対向基板202に、駆動IC150Cが直接形成されているので、従来の駆動ICチップを実装する構成で必須とされていたワイヤボンディングが不要であり、ワイヤボンディングの実装可能範囲を超える集積度で圧電素子130を配置しても、リード電極90と確実に接続することができ、高解像度の流体噴射ヘッドを実現することができる。したがって本実施形態によれば、高精細の画像形成や機能膜のパターン形成が可能な流体噴射ヘッド210を得ることができる。また、ワイヤボンディングを不要としたことで、高精細化したときのコスト上昇を抑えることができる。
【0081】
また本実施形態では、駆動IC150Cを対向基板202に直接形成しているので、駆動ICチップのようなパッケージが不要であることから、対向基板202上の極めて狭小な領域であっても容易に形成することができ、圧電素子130の集積度を高めて多数の圧電素子130を形成する場合にも容易に対応可能である。あるいは、従来駆動ICチップを実装するために確保されていた領域が不要になることから、流体噴射ヘッドを小型化することができる。
【0082】
なお、本実施形態では、外部接続端子120が流路形成基板201に形成されており、パッド150bを介して駆動IC150Cと外部接続端子120とが電気的に接続されている構成としたが、外部接続端子120は対向基板202に設けてもよい。この場合に外部接続端子の形成位置は、外部接続端子への外部回路の接続が妨げられない範囲で任意の位置に設けることができ、流路形成基板201側の面であっても、その反対側の面であっても構わない。
【0083】
また、本実施形態の流体噴射ヘッドにおける対向基板202の製造方法は、先の第1実施形態における流路形成基板10の製造工程と同様に、駆動ICを形成する工程と、凹部やリザーバ部を形成するための加工を施す工程と、半導体基板を薄板化する工程と、により実施できる。
具体的には、半導体基板の一面側に駆動IC150Cを形成した後、駆動ICの両側に凹部24及びリザーバ部21を異方性エッチング処理により形成した後、駆動IC150Cとは反対側の面から半導体基板を薄板化することで対向基板202を製造することができる。
【0084】
また、本実施形態の流体噴射ヘッドについても、その構成に種々の変更を加えることができる。
図9(a)及び図9(b)は、第2実施形態に係る流体噴射ヘッドの第1及び第2の変形例をそれぞれ示す部分断面図である。なお、図9に示す各図では、弾性膜50と接着されている流路形成基板201及びノズル基板16は図示を省略している。
【0085】
まず、図9(a)に示す第1の変形例に係る流体噴射ヘッド210Aは、対向基板202Aとして、弾性膜50とは反対側の面(図示上面)に、駆動IC150Dが形成されたものを備えている。駆動IC150Dの具体的構成は、先の駆動IC150(150A〜C)と同様である。
【0086】
第1の変形例に係る対向基板202Aでは、圧電素子130とは反対側の面に駆動IC150Dが形成されているため、駆動IC150Dと圧電素子130との導電接続構造を形成するための貫通電極160と、電極配線161とが形成されている。貫通電極160は、例えばめっき法により形成されたCu電極であり、シリコン基板に貫通電極を形成する公知の方法を用いて形成することができる。電極配線161は、AlやAgなどからなり、駆動IC150Dの図示略の端子と、貫通電極160の一端とを電気的に接続する。そして、対向基板202Aを貫通して弾性膜50側に露出する貫通電極160の他端は、対向基板202Aを流路形成基板201と接着する際に、貫通電極160と平面的に重なる位置に設けられているリード電極90と直接又は他の導電材料を介して電気的に接続されるようになっている。
【0087】
このように、本実施形態では、駆動IC150Dを圧電素子130とは反対側の面に備えた対向基板202Aを用いることもでき、かかる対向基板202Aを備えた流体噴射ヘッド210Aにおいても、先の実施形態の流体噴射ヘッド210と同様の作用効果を得ることができる。
【0088】
また、本例の流体噴射ヘッド210Aは、第2実施形態に係る流体噴射ヘッド210とは逆に、凹部24と反対側の面に駆動IC150Dが形成されているため、凹部24やリザーバ部21を形成する工程で駆動IC150D側の面に加工を施す必要がない。そのため、エッチング液等が駆動IC150Dに悪影響を与えるのを避けることができ、製造性の点で有利な構成となっている。
【0089】
次に、図9(b)に示す第2の変形例である流体噴射ヘッド210Bは、第1の変形例である流体噴射ヘッド210Aとほぼ同様の構成を備えているが、2つの駆動IC150Eが設けられている構成である。それぞれの駆動IC150Eは、電極配線161を介して貫通電極160と電気的に接続されており、貫通電極160はリード電極90と電気的に接続されている。このような構造により、圧電素子130と駆動IC150Eとが電気的に接続されている。
【0090】
そして、本例の場合、駆動IC150Eが凹部24と一部平面的に重なる領域に形成されている。半導体プロセスを用いて形成される駆動IC150Eは、単結晶シリコン基板の表層から1μm程度の深さまでしか使用しないため、このように凹部24が形成されている領域であっても、問題なく配置することができる。したがって、図9(a)、(b)を比較すれば明らかなように、対向基板202Bでは基板中央部における貫通電極160,160間の距離を狭くすることができ、流体噴射ヘッドを小型化できるようになっている。
【0091】
(第3の実施形態)
次に、図10及び図11を参照して本発明の第3の実施形態について説明する。
図10は、本実施形態の流体噴射ヘッドの分解斜視図である。図11(a)は、本実施形態の流体噴射ヘッドの部分断面図である。図11(b)は、本実施形態の流体噴射ヘッドの部分平面図である。なお、図11(a)は(b)のC−C’線に沿う位置に対応し、図11(b)は(a)のD−D’矢視に対応する図である。また図10及び図11において、先の実施形態と共通の構成要素には同一の符号を付し、それらの詳細な説明は省略する。
【0092】
本実施形態の流体噴射ヘッド310は、複数のノズル開口15が配列形成されたノズル基板16と、流路形成基板301と、対向基板302とを互いの対向面で接着した構成を備えている。ノズル基板16には、ノズル開口15が2列に並んで配列されている。各列のノズル開口15の配列方向が本実施形態ではX軸方向に一致し、ノズル開口15の列がX軸方向と直交するY軸方向に関して並んでいる。
【0093】
流路形成基板301は、ノズル基板16側の面に形成された複数の溝部を有している。具体的には、ノズル開口15に対応してX軸方向に配列された複数の圧力発生室312と、圧力発生室312の外側に圧力発生室312の配列方向(X軸方向)に沿って延在するリザーバ321と、圧力発生室312とリザーバ321とを接続する供給路314とからなる溝部が、ノズル開口15の各列に対応してX軸対称に2つ形成されている。
流路形成基板301は導電性を付与された単結晶シリコン基板を基体としてなるものであり、圧力発生室12、リザーバ321、及び供給路314は、前記単結晶シリコン基板に対して異方性エッチング処理を施すことで形成されたものとなっている。
【0094】
対向基板302は、単結晶シリコン基板を基体としてなり、その流路形成基板301側となる面には、流路形成基板301の圧力発生室312にそれぞれ対応して設けられた複数の電極336と、複数の電極336と配線334を介して電気的に接続された駆動IC150Fと、を備えている。また対向基板302の図示手前側(−X側)の辺端部には、外部接続端子327が設けられており、外部接続端子327と駆動IC150Fとは配線337を介して電気的に接続されている。また駆動IC150Fから延びる配線338の端部には、流路形成基板301と電気的に接続される電極端子339が形成されている。
【0095】
駆動IC150Fは、図11(a)に示すように、対向基板302の流路形成基板301側の表層部に形成されており、先の実施形態の駆動IC150(150A〜F)と同様に、半導体プロセスを用いて形成されたスイッチ回路やラッチ回路、メモリ回路等を備えている。駆動IC150Fは、配線334を介して電極336に電気信号を供給し、流体噴射ヘッド310のノズル開口15から液滴を吐出させるための電気信号の供給動作を行うものである。
【0096】
流路形成基板301の圧力発生室312側の面にノズル基板16が接着されており、流路形成基板301の圧力発生室312、リザーバ321、及び供給路314は、それぞれノズル基板16との間に空間を形成している。圧力発生室312は、ノズル基板16に形成されたノズル開口15と連通している。また、流路形成基板301の図示下面側には、溝部326が形成されており、流路形成基板301と対向基板302とを接合したときに溝部326と対向基板302との間に形成される空間に、対向基板302上に形成された電極336が収容されている。溝部326は、その内側に収容する電極336の厚さより大きい深さに形成されており、溝部326の底壁部と電極336とは、所定の間隔をもって離間されている。
【0097】
流路形成基板301の両面には、圧力発生室312と溝部326とが形成されているので、それらに挟まれる底壁部は薄層化されており、この薄層化された部位が流体噴射ヘッド310の動作時に撓曲する振動板335となっている。振動板335と電極336とは、所定間隔に離間されて配置されており、溝部326は、流体噴射ヘッド310の動作時に撓曲する振動板335の動作空間となる。このような構成のもと、振動板335と電極336とが、圧力発生室312内に圧力変化を生じさせる駆動素子332を形成している。
【0098】
図11(b)に示す平面構造をみると、電極336は図示左右方向(Y軸方向)に延在する短冊状の導電膜であり、流路形成基板301に形成された圧力発生室312と平面的に重なって配置されている。またノズル基板16のノズル開口15も、圧力発生室312の平面領域内に配置されている。
【0099】
このように本実施形態の流体噴射ヘッド310では、1つの圧力発生室312に対して1つのノズル開口15と、1つの駆動素子332(振動板335及び電極336)とが設けられており、これらの構成要素が、流体噴射ヘッド310の動作時に駆動IC150Fから入力される電気信号に基づき流体噴射動作を行う流体噴射部331を構成している。
【0100】
より詳細には、外部回路から入力された命令情報に基づいて、駆動IC150Fが選択した電極336に対して吐出する液滴の大きさに応じた電圧(駆動パルス)を印加する。すると、流路形成基板301は駆動IC150Fと電気的に接続されて一定の電圧に保持されているから、電極336と振動板335との間に電位差を生じ、この電位差に起因する静電気力によって可撓性の振動板335が電極336に引き寄せられる。これにより、圧力発生室312の容積が拡大され、リザーバ321から圧力発生室312へインクが流入する。その後、インクが十分供給されたタイミングで駆動IC150Fからの電圧印加を止めると、振動板335が静電気力から解放されて復元し、圧力発生室312に対して圧力が付与される。この圧力によってノズル開口15から液滴が吐出される。その後、圧力発生室312及び供給路314内のインクの振動が収束すると流体噴射部331が吐出動作前の状態に戻るので、次の液滴の吐出を行えるようになる。
【0101】
以上の構成を具備した本実施形態の流体噴射ヘッド310は、先の実施形態と同様に、単結晶シリコン基板を基体とする対向基板302に、駆動IC150Fが直接形成されている。これにより、薄膜プロセスを用いて配線334等を形成することで容易に駆動IC150Fとの導電接続構造を形成できるので、電極336を高密度に配置しても容易に配線接続を行うことができる。また、駆動IC150Fにはパッケージが不要であることから、駆動IC150Fの占有面積を小さくすることができ、流体噴射ヘッド310の小型化を図ることができる。
【0102】
さらに本実施形態の場合、駆動IC150Fを内蔵しているので、外部接続端子327に引き出される配線が制御信号や電源のための配線に限定され、外部接続端子327の個数も少なくなるため、フレキシブル基板等の接続が容易になり、流体噴射ヘッド310と上位装置との接続構造についても簡素化できるという利点がある。
【0103】
また本実施形態においても、駆動IC150Fは、X軸方向に配列された一群の圧力発生室312からなる圧力発生室群の延在方向(X軸方向)に沿って配置されている。そして、この構成により、駆動IC150Fと電極336とを接続する配線334の長さがほぼ均等になっている。そのため、配線334の信号伝達特性に起因する誤差を解消するための制御を行う必要が無く、したがって駆動IC150Fにおける回路を簡素化し、駆動IC150Fを小型化できるものとなっている。
【0104】
なお、本実施形態においても、駆動IC150Fの形成位置を変更できるのはもちろんである。例えば、供給路314やリザーバ321と平面的に重なる領域に駆動IC150Fを形成することができる。
【0105】
(第4の実施形態)
次に、本発明の第4の実施形態について、図12から図14を参照して説明する。
図12は本実施形態の流体噴射ヘッドの平面図であり、図13は比較のために示す駆動ICチップを備えた流体噴射ヘッドを対向基板側から見た平面図である。図14(a)は図12のE−E’線に沿う位置における流体噴射ヘッドを対向基板側から見た断面図であり、図14(b)は図13のF−F’線に沿う位置における流体噴射ヘッドの断面図である。
なお、図12から図14において、先の実施形態と共通の構成要素には同一の符号を付し、それらの詳細な説明は省略する。
【0106】
図12及び図14(a)に示すように、本実施形態の流体噴射ヘッド210Cは、液滴が吐出されるノズル開口15を備えたノズル基板16と、ノズル基板16の上面(+Z側)に接続されてインク流路を形成する流路形成基板201と、流路形成基板201の上面に接続されて圧電素子(駆動素子)130の駆動によって変位する振動板400(弾性膜50及び下電極膜60)と、振動板400の上面に接続されてリザーバ100を形成する対向基板202Cと、対向基板202Cの上面(流路形成基板201と反対側面)に接合されたコンプライアンス基板30と、を備えている。
【0107】
対向基板202Cは、単結晶シリコン基板(半導体基板)を基体としてなり、その流路形成基板201と反対側の面には半導体プロセスを用いて駆動IC150Gが形成されている。駆動IC150Gは、対向基板202Cの長手方向(Y軸方向)に沿う矩形状の領域に形成されている。2つの駆動IC150Gに挟まれた領域に、対向基板202を貫通して弾性膜50(振動板400)に達する開口部20aが複数形成されている。本実施形態の場合、駆動IC150Gの長手方向に沿って配列された2つの開口部20aが、2つの駆動IC150Gのそれぞれに対応して形成されている。これら4つの開口部20aの底部には駆動IC150Gと接続される複数のリード電極90がそれぞれ露出している。そして、これらの開口部20aを介したワイヤボンディングにより、対向基板202上の駆動IC150と、リード電極90とが電気的に接続されている。
【0108】
図12に示すように、対向基板202Cの駆動IC150Gが形成された面には、駆動IC150Gを外部機器と接続するための外部接続端子120が形成されている。複数の外部接続端子120は、対向基板202Cの長手方向の端部(短辺端)に配列されている。各々の外部接続端子120は、配線120aを介して、対応する駆動IC150Gとそれぞれ電気的に接続されている。
【0109】
このように本実施形態の流体噴射ヘッド210Cは、第2実施形態の第2変形例に係る流体噴射ヘッド210Bの貫通電極160に代えて、ボンディングワイヤ251を用いて駆動IC150Gと圧電素子130(リード電極90)とを電気的に接続した構成である。
【0110】
一方、図13及び図14(b)に示す流体噴射ヘッド510は、駆動ICチップ550を備えた従来構成の流体噴射ヘッドである。流体噴射ヘッド510は、液滴が吐出されるノズル開口15を備えたノズル基板16と、ノズル基板16の上面(+Z側)に接続されてインク流路を形成する流路形成基板10と、流路形成基板10の上面に接続されて圧電素子(駆動素子)130の駆動によって変位する振動板400(弾性膜50及び下電極膜60)と、振動板400の上面に接続されてリザーバ100を形成する対向基板502と、対向基板502の上面(流路形成基板10と反対側面)に接合されたコンプライアンス基板30と、を備えている。
【0111】
対向基板502には駆動ICは形成されておらず、別途半導体チップとして用意された4つの駆動ICチップ550が、対向基板502の図示上面(流路形成基板10と反対側面)にフェースアップ方向に接着されている。そして、対向基板502を貫通して弾性膜50に達する開口部520を介して引き回されたボンディングワイヤ551によって駆動ICチップ550と開口部520a内のリード電極90とが電気的に接続されている。また、対向基板502の長手方向に隣接する2つの駆動ICチップ550同士もボンディングワイヤ552を介して電気的に接続されている。さらに、対向基板502の短辺端に形成された複数の外部接続端子120と駆動ICチップ550とはボンディングワイヤ553を介して電気的に接続されている。
【0112】
以上の構成を備えた本実施形態の流体噴射ヘッド210Cの作用効果ついて、図13に示す従来構成の流体噴射ヘッド510と比較しつつ以下に説明する。
【0113】
本実施形態の場合、駆動IC150Gとリード電極90との接続に、従来と同様のワイヤボンディングを用いているが、駆動IC150Gが対向基板202Cに直接形成されていることで、従来よりも優れた効果を得られるものとなっている。
まず、本実施形態では、図13及び図14(b)に示すような駆動ICチップ550と対向基板502との接着が不要になる。駆動ICチップ550の接着は、対向基板502に開口部520aを形成した後に行われるため、開口部520a内に露出しているリード電極90や対向基板502上の外部接続端子120にプライマー層の組成物や接着剤が付着し、これらを除去するための洗浄工程が必要になる。しかし洗浄を行うと、リード電極90や外部接続端子120が洗浄剤に曝されるため、洗浄剤がリード電極90や外部接続端子120に残ってしまう可能性がある。そして、これらのプライマー組成物や接着剤、洗浄剤の残渣があると、ワイヤボンディング時に接続不良を生じて歩留まりが低下するおそれがある。
【0114】
一方、駆動ICチップ550をフェースアップ実装ではなくフリップチップ実装すれば、駆動ICチップ550に対するワイヤボンディングは不要であるが、フリップチップ実装の工程が増えるために製造コストの点で不利になる。またいずれの実装方法でも実装に伴うプライマー工程や洗浄工程が必要であり、ワイヤボンディングされる端子上に残渣があれば、ワイヤボンディング工程の歩留まりを低下させる要因になる。
【0115】
これに対して、本実施形態の流体噴射ヘッド210Cでは、上述した接着工程が不要であることから接着工程に伴うプライマー工程や洗浄工程も不要になり、接続不良を生じることなくワイヤボンディングを確実に行うことができ、歩留まりよく製造することができる。
さらに本実施形態では、対向基板202Cの表面とリード電極90との間でワイヤボンディングすればよいため、流体噴射ヘッド510に比してボンディングワイヤを引き回す高さが低くなり、ワイヤボンディングを容易に行えるようになる。
【0116】
また、図12と図13とを比較すれば明らかなように、本実施形態の流体噴射ヘッド210Cでは、駆動IC150Gが対向基板202上に直接形成されているため、対向基板202上に形成された配線120aと駆動IC150Gとの接続にワイヤボンディングを用いる必要がない。また、駆動ICチップ550間を接続するボンディングワイヤ552も不要である。したがって、本実施形態では、ワイヤボンディングを用いるにしても、ボンディングワイヤの本数を従来に比して減らすことができ、安価に製造できる流体噴射ヘッドを実現できる。
【0117】
また図13に示す流体噴射ヘッド510では、ヘッド本体を構成する対向基板502上に駆動ICチップ550を実装しているので、駆動ICチップを外部に設ける場合に比して流体噴射ヘッド全体を小型化でき、外部機器と接続するための配線の本数を減らせるため取り扱いが容易になるという利点がある。これに対して本実施形態では、このような流体噴射ヘッド510と同様の利点が得られるのに加え、駆動IC150Gを駆動ICチップ550に比較して小さく薄くすることができるので、流体噴射ヘッドのさらなる小型化、薄型化を実現することができる。
【0118】
次に、図15を参照して第4の実施形態の変形例について説明する。図15(a)は第1変形例に係る流体噴射ヘッド210Dの部分断面図である。図15(b)は第2変形例に係る流体噴射ヘッド210Eの部分断面図である。図15(c)は第3変形例に係る流体噴射ヘッド210Fの部分断面図である。
なお、図15において、弾性膜50と接着されている流路形成基板201及びノズル基板16は図示を省略している。
【0119】
まず、図15(a)に示す第1変形例に係る流体噴射ヘッド210Dは、図12及び図14(a)に示した流体噴射ヘッド210Cにおいて、対向基板202Cに形成された開口部20aの断面形状を変更したものである。すなわち、流体噴射ヘッド210Dでは、ボンディングワイヤ251が引き回される領域として、開口端側が広口の形状を有する開口部20bが形成されている。このような形状の開口部20bを備えた構成とすることで、リード電極90へのキャピラリのアクセスが容易になるとともに、ボンディングワイヤ251と開口部20bの開口端との干渉も生じにくくなるので、ボンディングの容易性が向上し、製造性に優れた流体噴射ヘッドとなる。
【0120】
次に、図15(b)に示す第2変形例に係る流体噴射ヘッド210Eは、図15(a)に示した流体噴射ヘッド210Dのボンディングワイヤ251に代えて、フレキシブル回路基板255を用いて駆動IC150Gとリード電極90(圧電素子130)とを接続している。フレキシブル回路基板255は、例えば、ポリイミドやポリエチレン等の樹脂材料からなる可撓性基板256と、可撓性基板256の一面又は両面に形成された接続配線257とを備えた構成である。
【0121】
このようにフレキシブル回路基板255を用いる場合には、圧着や異方性導電ペースト等の接着剤を用いた接着によりリード電極90と駆動IC150Gとを接続することができる。この接着に先立ってプライマー工程を行ってもよい。本例の場合には、接着によってフレキシブル回路基板255が駆動IC150Gの端子及びリード電極90と接続されるので、チップ実装とワイヤボンディングとを行う場合のような問題は生じない。したがって本例の流体噴射ヘッド210Eも歩留まりよく低コストに製造できるものとなる。
【0122】
なお、本例においても、対向基板202Cには開口端側が広口の開口部20bが形成されており、このような形状の開口部20bを備えていることで、フレキシブル回路基板255の屈曲角度を比較的小さくしてもリード電極90と接続配線257とを接続することができる。したがって、フレキシブル回路基板255の実装が容易になるとともに接続不良の発生を効果的に抑えることができる。ただし、本例の流体噴射ヘッド210Eにおいて、断面略矩形状の開口部20aが形成されていてもよいのはもちろんである。
また、本例では、開口部20bの両側にそれぞれフレキシブル回路基板255を配置した場合について説明したが、1枚のフレキシブル回路基板を用いてリード電極90と駆動IC150Gとの接続構造を形成してもよいのはもちろんである。
【0123】
次に、図15(c)に示す第3変形例に係る流体噴射ヘッド210Fは、図15(a)に示した流体噴射ヘッド210Dのボンディングワイヤ251に代えて、対向基板202Cの表面に形成された配線パターンからなる接続配線259を備えている。接続配線259は、例えばCuなどの金属配線パターンであり、例えばスパッタ法やCVD法を用いた成膜工程と、フォトリソグラフィ法とエッチング法によるパターニング工程とによって形成することができる。さらに、上記方法によってシード層をパターン形成し、このシード層上にめっき層を形成して接続配線259としてもよい。めっき法により接続配線259を形成することで、接続配線259の膜厚を増加させて配線抵抗を減少させることができるとともに、開口部20bの内壁面とリード電極90との境界部において断線が生じるのを効果的に防止することができる。また、接続配線259の形成に液滴吐出法(インクジェット法)を用いることもでき、液滴吐出法を用いれば接続配線259のパターンを直接描画することができるため製造工程の簡略化、及び製造コストの低減を図ることができる。
【0124】
本例において、対向基板202Cには開口端側が広口の開口部20bが形成されており、このような形状の開口部20bを備えていることで、接続配線259が傾斜面上に形成されることとなるので、段差による接続配線259の断線を防止することができ、リード電極90と接続配線257とを確実に接続することができる。
【0125】
(流体噴射装置及び駆動IC150の具体例)
次に、先の実施形態の流体噴射ヘッド110を備えた流体噴射装置の一例であるインクジェットプリンタについて説明する。また、先の実施形態の駆動IC150の具体例として、流体噴射ヘッドの駆動ICを含むインクジェットプリンタの制御装置についても説明する。なお、本実施形態で説明する駆動ICの具体的構成は、他の実施形態の駆動IC150A〜150Gにも適用することができる。
【0126】
図16は、流体噴射ヘッド110を備えた流体噴射装置の一実施形態であるインクジェットプリンタ600を示す図であり、図17は、図16に示した流体噴射ヘッド110と制御装置660との構成を示すブロック図である。
【0127】
図16に示すように、インクジェットプリンタ600は、装置本体620と、記録用紙Pを設置するトレイ621と、記録用紙Pを排出する排出口622とを有し、装置本体620の上部面に操作パネル670を有している。操作パネル670は、例えば液晶ディスプレイ、有機ELディスプレイ、LEDランプ等で構成されたもので、エラーメッセージ等を表示する表示部(図示せず)と、各種スイッチ等で構成される操作部(図示せず)とを備えたものである。装置本体620の内部には、主に、往復動するヘッドユニット630を備えた印刷装置640と、記録用紙Pを1枚ずつ印刷装置640に送り込む給紙装置650と、印刷装置640および給紙装置650を制御する制御装置660とが設けられている。
【0128】
制御装置660の制御により、給紙装置650は、記録用紙Pを一枚ずつ間欠送りするようになっている。間欠送りされる記録用紙Pは、ヘッドユニット630の下部近傍を通過する。このとき、ヘッドユニット630が記録用紙Pの送り方向とほぼ直交する方向に往復移動し、記録用紙Pへの印刷を行うようになっている。すなわち、ヘッドユニット630の往復動と、記録用紙Pの間欠送りとが、印刷における主走査および副走査となり、インクジェット方式の印刷が行なわれるようになっている。
【0129】
印刷装置640は、ヘッドユニット630と、ヘッドユニット630の駆動源となるキャリッジモータ641と、キャリッジモータ641の回転を受けて、ヘッドユニット630を往復動させる往復動機構642とを備えたものである。ヘッドユニット630は、その下部に、多数のノズル開口15を備える先の流体噴射ヘッド110と、この流体噴射ヘッド110にインクを供給するインクカートリッジ631と、流体噴射ヘッド110およびインクカートリッジ631を搭載したキャリッジ632とを有したものである。インクカートリッジ631として、イエロー、シアン、マゼンタ、ブラック(黒)の4色のインクを充填したものを用いることにより、フルカラー印刷が可能となる。この場合、ヘッドユニット630には、各色にそれぞれ対応した流体噴射ヘッド110が設けられることになる。
【0130】
往復動機構642は、その両端がフレーム(図示せず)に支持されたキャリッジガイド軸643と、キャリッジガイド軸643と平行に延在するタイミングベルト644とを有したものである。キャリッジ632は、キャリッジガイド軸643に往復動自在に支持されるとともに、タイミングベルト644の一部に固定されたものである。キャリッジモータ641の作動により、プーリを介してタイミングベルト644を正逆走行させると、キャリッジガイド軸643に案内されて、ヘッドユニット630が往復動する。そして、この往復動の際に、流体噴射ヘッド110から適宜インクが吐出され、記録用紙Pへの印刷が行われるようになっている。
【0131】
給紙装置650は、その駆動源となる給紙モータ651と、給紙モータ651の作動により回転する給紙ローラ652とを有したものである。給紙ローラ652は、記録用紙Pの送り経路(記録用紙P)を挟んで上下に対向する従動ローラ652aと、駆動ローラ652bとで構成されたものであり、駆動ローラ652bは、給紙モータ651に連結されたものである。このような構成によって給紙ローラ652は、トレイ621に設置した多数枚の記録用紙Pを、印刷装置640に向かって1枚ずつ送り込めるようになっている。なお、トレイ621に代えて、記録用紙Pを収容する給紙カセットを着脱自在に装着し得るような構成としてもよい。
【0132】
制御装置660は、例えばパーソナルコンピュータやディジタルカメラ等のホストコンピュータから入力された印刷データに基づいて、印刷装置640や給紙装置650等を制御することにより印刷を行うものである。
図17に示すように、制御装置660は、コンピュータ等の上位装置から吐出条件等を受信するインターフェイス661と、DRAM(Dynamic RAM)及びSRAM(Static RAM)からなり、各種データの記録を行うRAM662と、各種データ処理を行うためのルーチン等を記録したROM663と、CPU等からなる制御部664と、発振回路665と、流体噴射ヘッド110に供給する駆動波形としての駆動信号COMを発生させる駆動信号生成部666と、インターフェイス667とを備えている。インタ−フェイス667は、ドットパターンデータに展開された記録データとしての吐出データを流体噴射ヘッド110に転送するとともに、キャリッジモータ641及び給紙モータ651を駆動するための駆動信号を往復動機構642及び給紙装置650のそれぞれに出力する。
【0133】
以上の構成の制御装置660において、コンピュータ等の上位装置から送られた吐出条件等はインターフェイス661を介してRAM662の一部として設けられた受信バッファに保持される。受信バッファに保持されたデータは、コマンド解析が行われてからRAM662の一部として設けられた中間バッファへ送られる。中間バッファ内では制御部664によって中間コードに変換された中間形式としてのデータが保持され、液滴の吐出位置等の情報を付加する処理が制御部664によって実行される。次に、制御部664は、中間バッファ内のデータを解析してデコード化した後、ドットパターンデータを出力バッファに展開し、記録させる。
【0134】
流体噴射ヘッド110の1スキャン分に相当するドットパターンデータが得られると、このドットパターンデータは、インターフェイス667を介して流体噴射ヘッド110にシリアル転送される。出力バッファから1スキャン分に相当するドットパターンデータが出力されると、中間バッファの内容が消去されて、次の中間コード変換が行われる。
【0135】
また、流体噴射ヘッド110に設けられた圧電素子130を駆動するための駆動信号COMが駆動信号生成部666で生成され、インターフェイス667を介して流体噴射ヘッド110に転送される。さらに、ドットパターンデータに展開された吐出データSIが、発振回路665からのクロック信号CLKに同期してインターフェイス667を介して流体噴射ヘッド110に設けられた駆動IC150にシリアル出力される。以上の吐出データSI、駆動信号COM、及びクロック信号CLK以外に、後述するラッチ信号LAT及びメモリ制御信号CMがインターフェイス667から流体噴射ヘッド110に設けられた駆動IC150に出力される。
【0136】
駆動IC150は、シフトレジスタ156、ラッチ回路151、レベルシフタ152、スイッチ回路153、メモリ制御回路154、及びメモリ155を含んで構成されている。シフトレジスタ156は、制御装置660から転送されてきた吐出データSIをシリアル/パラレル変換するものである。ラッチ回路151は、制御装置660からラッチ信号LATが出力された時に、シフトレジスタ156によってパラレル変換された吐出データSIをラッチする。レベルシフタ152は、ラッチ回路151から出力される吐出データSIをスイッチ回路153を駆動することができる電圧、例えば数十ボルト程度の所定の電圧まで昇圧する。
【0137】
スイッチ回路153は、レベルシフタ152から出力される吐出データSIに応じて、駆動信号COMを圧電素子130に供給するか否かを制御する。つまり、スイッチ回路153内に設けられる各スイッチ素子に加わる吐出データSIの電圧レベルが「1」である期間中は、対応する圧電素子130に駆動信号COMを印加し、吐出データSIの電圧レベルが「0」である期間中は、対応する圧電素子130への駆動信号COMの印加を遮断する。
【0138】
メモリ制御回路154は、制御装置660から駆動IC150へ転送されてきてシフトレジスタ156から出力される吐出データSIを記憶部としてのメモリ155に記憶させる。吐出データSIをメモリ155に記憶させるか否かは、メモリ制御信号CMによって制御される。なお、吐出データSIをメモリ155に記憶させる場合には、インターフェイス667からラッチ回路151へのラッチ信号LATの出力は行われない。
また、メモリ制御回路154はメモリ制御信号CMに基づいてメモリ155に記憶された吐出データSIを読み出して出力する。
【0139】
ここで、駆動IC150にメモリ155を設けて吐出データSIを記憶させるのは、液滴吐出時における制御装置660から駆動IC150へのデータ転送量を低減するとともに、データ転送速度を低下させるためである。つまり、液滴吐出時に吐出データSIの転送時間が液滴吐出に要する時間よりも長くなると、ノズル開口15から液滴が吐出されず流体噴射ヘッドが停止している時間が生じて稼働率が低下する。これを防止するために、データ転送速度を速くするとノイズ等によりデータ化けが生じたり、輻射ノイズが増大するといった不具合も生ずる。これらの不具合を防止するため、本実施形態においては液滴吐出前に吐出データSIをあらかじめ流体噴射ヘッド110の駆動IC150に転送してメモリ155に記憶させておき、液滴吐出時にはメモリ155から吐出データSIを読み出して圧電素子130の動作を制御している。
【0140】
以上に、駆動IC150の具体的構成を説明したが、本発明に係る流体噴射ヘッドに内蔵される駆動IC150は、図17に示した構成に限定されるものではない。例えば、駆動IC150に、上位装置である制御装置660に含まれる駆動信号生成部666の機能を備えた構成としてもよい。
また駆動IC150に代えて、図17に示した複数の回路のうち一部のみを備えた駆動回路を設けてもよい。例えば、圧電素子130に電圧を印加するスイッチ回路のみを備えた駆動回路として構成してもよく、スイッチ回路とレベルシフタを備えたものとして構成してもよい。あるいはまた、図17に示す構成からメモリ155とメモリ制御回路154とを省略した構成としてもよい。
【0141】
なお、図16及び図17では、流体噴射装置の一例として、インクジェットプリンタを示したが、本発明はこれに限らず、流体噴射ヘッドを組み込むことによって実現されるプリンタユニットに適用することも可能である。このようなプリンタユニットは、例えば、テレビ等の表示デバイスやホワイトボード等の入力デバイスに装着され、該表示デバイス又は入力デバイスによって表示若しくは入力された画像を印刷するために使用される。
【図面の簡単な説明】
【0142】
【図1】第1実施形態に係る流体噴射ヘッドの分解斜視図。
【図2】第1実施形態に係る流体噴射ヘッドの部分平面図。
【図3】図2のA−A’断面図。
【図4】第1実施形態の変形例を示す平面図。
【図5】第1実施形態に係る流体噴射ヘッドの製造工程を示す図。
【図6】第1実施形態に係る流体噴射ヘッドの製造工程を示す図。
【図7】第2実施形態に係る流体噴射ヘッドの部分平面図。
【図8】図7のB−B’断面図。
【図9】第2実施形態の変形例を示す部分断面図。
【図10】第3実施形態に係る流体噴射ヘッドの分解斜視図。
【図11】第3実施形態に係る流体噴射ヘッドの部分断面図及び部分平面図。
【図12】第4実施形態に係る流体噴射ヘッドの平面図。
【図13】従来構成の流体噴射ヘッドの平面図。
【図14】図12及び図13に対応する断面図。
【図15】第4実施形態の第1から第3変形例を示す部分断面図。
【図16】流体噴射装置の一例を示す斜視図。
【図17】流体噴射装置及び流体噴射ヘッドの制御部を示す構成図。
【符号の説明】
【0143】
10,10A,10B,201,301 流路形成基板、10K,11 隔壁、10s シリコン基板、12 圧力発生室、15 ノズル開口、16 ノズル基板、20a,20b 開口部、20,202,202A,202B,202C,302 対向基板、24 凹部、60 下電極膜、70 圧電体膜、80 上電極膜、90 リード電極、100 リザーバ、110,210,210A,210B,210C,210D,210E,210F,310 流体噴射ヘッド、120,327 外部接続端子、130 圧電素子、131 保護膜、150,150A,150B,150C,150D,150E,150F,150G 駆動IC(駆動回路)、160 貫通電極、251 ボンディングワイヤ(接続配線)、255 フレキシブル回路基板、256 可撓性基板、257,259 接続配線、312 圧力発生室、321 リザーバ、335,400 振動板、600 インクジェットプリンタ、660 制御装置

【特許請求の範囲】
【請求項1】
ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドであって、
前記流路形成基板が半導体基板を基体としてなり、
前記半導体基板に、前記駆動回路が形成されていることを特徴とする流体噴射ヘッド。
【請求項2】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群が形成されており、
前記駆動回路が、前記圧力発生室群の側方に、前記圧力発生室群の延在方向に沿って形成されていることを特徴とする請求項1に記載の流体噴射ヘッド。
【請求項3】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群が複数形成されており、
前記駆動回路が、複数の前記圧力発生室群の間の領域に形成されていることを特徴とする請求項1に記載の流体噴射ヘッド。
【請求項4】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群と、前記圧力発生室群の前記各圧力発生室に連通するリザーバと、が形成されており、
前記駆動回路が、前記圧力発生室群と前記リザーバとの間の領域に形成されていることを特徴とする請求項1に記載の流体噴射ヘッド。
【請求項5】
前記流路形成基板に、複数の前記圧力発生室を配列してなる圧力発生室群と、前記圧力発生室群の前記各圧力発生室に連通するリザーバと、が形成されており、
前記駆動回路が、前記リザーバの少なくとも一部と平面的に重なる領域に形成されていることを特徴とする請求項1に記載の流体噴射ヘッド。
【請求項6】
ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドであって、
前記流路形成基板の前記駆動素子側に、半導体基板を基体としてなる対向基板を有しており、
前記半導体基板に前記駆動回路が形成されていることを特徴とする流体噴射ヘッド。
【請求項7】
前記対向基板の前記駆動素子側の面に前記駆動回路が形成されていることを特徴とする請求項6に記載の流体噴射ヘッド。
【請求項8】
前記対向基板の前記駆動素子と反対側の面に前記駆動回路が形成されており、
前記対向基板に、前記対向基板を厚さ方向に貫通する貫通電極が形成され、前記貫通電極を介して前記駆動回路と前記駆動素子とが電気的に接続されていることを特徴とする請求項6に記載の流体噴射ヘッド。
【請求項9】
前記対向基板の前記駆動素子側の面に、前記対向基板を前記流路形成基板と接合したときに前記駆動素子を収容する凹部が形成されており、
前記駆動回路が、前記凹部と平面的に重なる領域に形成されていることを特徴とする請求項8に記載の流体噴射ヘッド。
【請求項10】
前記対向基板の前記駆動素子と反対側の面に前記駆動回路が形成されるとともに、前記対向基板を厚さ方向に貫通して前記駆動素子に達する開口部が形成されており、
前記駆動回路と前記駆動素子とが、前記開口部を経由する接続配線を介して電気的に接続されていることを特徴とする請求項6に記載の流体噴射ヘッド。
【請求項11】
前記駆動回路と前記駆動素子とがワイヤボンディングされていることを特徴とする請求項10に記載の流体噴射ヘッド。
【請求項12】
前記接続配線が可撓性基板上に形成されており、前記開口部の段差に沿って前記可撓性基板が配置されていることを特徴とする請求項10に記載の流体噴射ヘッド。
【請求項13】
前記接続配線が前記対向基板の表面に形成されていることを特徴とする請求項10に記載の流体噴射ヘッド。
【請求項14】
前記開口部の内壁面が前記駆動回路から前記駆動素子に向かう傾斜面であることを特徴とする請求項10から13のいずれか1項に記載の流体噴射ヘッド。
【請求項15】
ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドの製造方法であって、
前記流路形成基板の基体となる半導体基板の一面側に前記駆動回路を形成する工程と、
前記半導体基板の前記駆動回路側の面に、前記駆動回路と電気的に接続される駆動素子を形成する工程と、
前記駆動素子及び前記駆動回路を覆う保護膜を形成する工程と、
前記保護膜と反対側の前記半導体基板の面を部分的に除去して前記圧力発生室を形成する工程と、
を有することを特徴とする流体噴射ヘッドの製造方法。
【請求項16】
前記保護膜を形成した後、前記圧力発生室を形成する前に、
前記半導体基板を、前記保護膜と反対側の面から薄くする工程を有することを特徴とする請求項15に記載の流体噴射ヘッドの製造方法。
【請求項17】
ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板に対向配置された対向基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドの製造方法であって、
半導体基板の一面側に前記駆動回路を形成して前記対向基板を作製する工程と、
前記流路形成基板の一方の面に前記駆動素子を形成する工程と、
前記対向基板の前記駆動回路が形成された面と、前記流路形成基板の前記駆動素子側の面とを接合することで、前記駆動回路の端子と前記駆動素子とを電気的に接続する工程と、
を有することを特徴とする流体噴射ヘッドの製造方法。
【請求項18】
ノズル開口に連通する圧力発生室が形成された流路形成基板と、前記流路形成基板に対向配置された対向基板と、前記流路形成基板の一方の面に振動板を介して設けられた駆動素子と、前記駆動素子に電力を供給する駆動回路とを備えた流体噴射ヘッドの製造方法であって、
半導体基板の一面側に前記駆動回路を形成し、前記駆動回路と電気的に接続されるとともに前記半導体基板を厚さ方向に貫通する貫通電極を形成して前記対向基板を作製する工程と、
前記流路形成基板の一方の面に前記駆動素子を形成する工程と、
前記対向基板の前記駆動回路と反対側の面と、前記流路形成基板の前記駆動素子側の面とを接合することで、前記貫通電極と前記駆動素子とを電気的に接続する工程と、
を有することを特徴とする流体噴射ヘッドの製造方法。
【請求項19】
請求項1から14のいずれか1項に記載の流体噴射ヘッドを備えたことを特徴とする流体噴射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2008−302685(P2008−302685A)
【公開日】平成20年12月18日(2008.12.18)
【国際特許分類】
【出願番号】特願2007−188068(P2007−188068)
【出願日】平成19年7月19日(2007.7.19)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】