説明

灯具

【課題】 灯具において、薄型で高効率で灯具全体の輝度が均一でキラキラ光る自然なイメージの灯具とできること。
【解決手段】 灯具1は、内周のリフレクタ4aはLED3に近接しているので内周のセグメント5aはいずれも平面で、8面のセグメント5aで正八角形を形成している。これに対して、外周のリフレクタ4bのセグメント5bは、A−A断面の表面が僅かに凹曲面になっている。これによって、光の強さは光源からの距離の自乗に反比例して減衰していくが、光源LED3からの距離が近く減衰率が小さいリフレクタ4aの反射光は、平面のリフレクタ4aによって集光されずに上方へ反射され、光源LED3からの距離が遠く減衰率が大きいリフレクタ4bの反射光は、凹曲面のリフレクタ4bによって集光されて上方へ反射されるため、灯具1の全体の輝度が均一でキラキラ光る自然なイメージの灯具とできる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、少なくとも二次元方向に光を放射する光源を用いて、薄型・高効率で見栄えの自由度が高く円形以外の楕円形等の異形状にも対応することができる灯具に関するものである。
【0002】
なお、本明細書中においては、LEDチップそのものは「発光素子」と呼び、LEDチップを搭載したパッケージ樹脂またはレンズ系等の光学装置を含む全体を「発光ダイオード」または「LED」と呼ぶこととする。
【背景技術】
【0003】
従来のフレネルレンズ併用方式の灯具について、図12を参照して説明する。図12は従来のフレネルレンズ併用方式の灯具の構造を示す断面図である。
【0004】
この灯具70は、凸レンズ形のLED71、フレネルレンズ72を備えている。そして、LED71から発せられる光は、凸レンズ形の放射面によってある程度集光されてフレネルレンズ72に至り、フレネルレンズ72で配光制御されて平行光として前方へ放射される。
【0005】
しかしながら、フレネルレンズ72と光源の距離の制約により図に示されるように灯具70として厚いものとなり、また横方向にレンズ制御できない光が放射されるため光利用効率が低い。さらに、LED71から斜め45度方向に放射されてフレネルレンズ72に到達する光は、垂直に放射されて到達する光に比べて√2倍の距離を通過しなければならないため、光強度が1/2になって中心部に比較して外周部が暗くなる。
【0006】
そこで、かかる問題を解消するために、特開2001−76513号公報に記載の発明がなされている。図13に示されるように、この公報に記載の車両用灯具74においては、LED75に対向する前面レンズ77の部分に放物反射面78を設けてLED75から放射された光を横方向に反射し、この光をさらに前方に反射する第2反射面79を前面レンズ77に設けている。これによって、灯具として薄いものができる。
【特許文献1】特開2001−76513号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、この公報に記載された車両用灯具においても、横方向、即ち、二次元方向にレンズ制御できない光が放射されるため光利用効率が低いという問題は解消されておらず、さらに大口径の灯具とした場合に中心部分と周辺部分でLEDからの距離が異なるため輝度のアンバランスが生じるという問題も解決されておらず、更に部品点数が多く調整が困難であるという問題点があった。
【0008】
そこで、本発明は、薄型で高効率で見栄えの自由度が大きく、灯具全体の輝度が均一でキラキラ光る自然なイメージにできる灯具の提供を課題とするものである。
【課題を解決するための手段】
【0009】
請求項1の発明にかかる灯具は、少なくとも二次元方向へ光を放射する発光素子からなる放射光源の全周囲に配置された透明体であって、前記放射光源から二次元方向に放射されて前記透明体の中を透過してきた光を全反射によって上方へ反射するリフレクタの複数セグメントは、前記放射光源からの照射密度に応じた集光度を有する集光度の異なるセグメントであり、前記セグメントは曲率を持たせることによって輝度を制御するものであって、前記放射光源からの距離が異なる複数のセグメントを有し、前記距離が異なるセグメントは内側のセグメントと外側のセグメントが互い違いに離れて配置され、前記放射光源からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定しているものである。
【0010】
このように、放射光源とその周囲に設けられたリフレクタという構成によって、厚さを極めて薄く、また放射面を大きくすることができる。また、リフレクタは集光度の異なる複数のセグメントで構成されているため、光源からの距離に応じて集光度を調節することによって、即ち、放射光源からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定することによって、リフレクタ全体の輝度のバランスがとれて均一な光り方の灯具とすることができる。
【0011】
また、全面が均一に光るキラキラ感の得られる灯具とすることもでき、例えば、中心部分を暗く、周辺部分を明るく光らせることもでき、見栄えの自由度を大きくできる。更に、楕円形状等のリフレクタのセグメントと光源との距離が場所によって異なる形状の灯具においても、光源から離れたセグメントは集光度を大きくし、光源に近いセグメントは集光度を小さくすることによって、全体を均一に光らせることができる。
【0012】
このようにして、薄型で高効率で見栄えの自由度が大きく、楕円形状等の異形状にも効率を低下させることなく対応することができる灯具となる。
【0013】
ここで、少なくとも二次元方向へ光を放射する放射光源とは、二次元方向のみに光を放射する光源のみを意味するものではなく、三次元方向へ光を放射するものであっても、二次元方向へ光を放射するものであることに違いがないから、少なくとも二次元方向へ光を放射するものとして特定したものである。
【0014】
また、集光度の異なるセグメントとは、放射方向に切断した反射面を含む断面形状を変化させること、屈折率を変化させること等の対応が可能である。
そして、放射光源からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定しているから、リフレクタ全体の輝度のバランスがとれて均一な光り方の灯具とすることができる。更に、隣接するリフレクタのセグメントは中央からの距離を異なるものとし、隣接するセグメントが互い違いに配置されているから、灯具の輝点をより分散することができる。そして、各セグメントの照射密度に応じて曲率を持たせれば、灯具全体の輝度を均一にすることができる。
【0015】
請求項2の発明にかかる灯具は、請求項1の構成において、前記リフレクタのセグメントは、前記放射光源からの距離が最長なものが最短なものの2倍以上であるものである。
【0016】
これによって、放射光の明るさは距離の自乗に反比例するので、光源からの距離が最長なセグメントの集光度を上げて灯具全体の輝度を均一にすることもでき、また灯具の放射面の場所によって輝度を変化させることもできる。このように、光源からの距離の異なるセグメントの集光度を調節することによって、灯具の光り方の見栄えを様々に調節することができる。
【0017】
このようにして、薄型で高効率で見栄えの自由度が大きく、楕円形状等の異形状にも効率を低下させることなく対応することができる灯具となる。
【0018】
請求項3の発明にかかる灯具は、請求項2の構成において、前記放射光源は、発光素子の上面に対向する中心部分に平坦面が形成され、中心部に続いて反射面として発光素子の発光面の中心を焦点とし、X軸方向を対称軸とする放物線の一部をZ軸の周りに回転させた形状をした前記光学面と、放射光源の側面は、発光素子を中心とする球面の一部をなしており、前記平坦面、前記光学面及び前記側面は、前記発光素子を封止する透明光学材料によって形成されているものである。
【0019】
したがって、光を二次元方向へ反射する反射鏡としての光学面の位置及び形状を封止時に厳密に設定できるので、光学系の位置の設定が容易になる。このようにして、発光素子と二次元方向へ放射するための反射鏡との位置合わせに手間がかかることはなく、容易に高い位置精度を実現することができる。
【0020】
このようにして、薄型で高効率で見栄えの自由度が大きく、楕円形状等の異形状にも効率を低下させることなく対応することができる灯具となる。
【発明の効果】
【0021】
請求項1の発明にかかる灯具は、少なくとも二次元方向へ光を放射する発光素子からなる放射光源と、透明体からなり、前記放射光源の全周囲に配置され、前記放射光源から二次元方向に放射されて前記透明体の中を透過してきた光を全反射によって上方へ反射する複数セグメントからなるリフレクタとを備え、前記リフレクタの複数セグメントは、前記放射光源からの照射密度に応じた集光度を有する集光度の異なるセグメントであり、前記セグメントは曲率を持たせることによって輝度を制御するものであって、前記放射光源からの距離が異なる複数のセグメントを有し、前記距離が異なるセグメントは内側のセグメントと外側のセグメントが互い違いに離れて配置され、前記放射光源からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定しているものである。
【0022】
このように、放射光源とその周囲に設けられたリフレクタという構成によって、厚さを極めて薄く、また放射面を大きくすることができる。また、リフレクタは集光度の異なる複数のセグメントで構成されているため、光源からの距離に応じて集光度を調節することによって、即ち、放射光源からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定することによって、リフレクタ全体の輝度のバランスがとれて均一な光り方の灯具とすることができる。
【0023】
また、全面が均一に光るキラキラ感の得られる灯具とすることもでき、例えば、中心部分を暗く、周辺部分を明るく光らせることもでき、見栄えの自由度を大きくできる。更に、楕円形状等のリフレクタのセグメントと光源との距離が場所によって異なる形状の灯具においても、光源から離れたセグメントは集光度を大きくし、光源に近いセグメントは集光度を小さくすることによって、全体を均一に光らせることができる。
【0024】
そして、薄型で高効率で見栄えの自由度が大きく、楕円形状等の異形状にも効率を低下させることなく対応することができる灯具となる。
ここで、少なくとも二次元方向へ光を放射する放射光源とは、二次元方向のみに光を放射する光源のみを意味するものではなく、三次元方向へ光を放射するものであっても、二次元方向へ光を放射するものであることに違いがないから、少なくとも二次元方向へ光を放射するものとして特定したものである。
【0025】
また、集光度の異なるセグメントとは、放射方向に切断した反射面を含む断面形状を変化させること、屈折率を変化させること等の対応が可能である。そして、放射光源からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定しているから、リフレクタ全体の輝度のバランスがとれて均一な光り方の灯具とすることができる。更に、隣接するリフレクタのセグメントは中央からの距離を異なるものとし、隣接するセグメントが互い違いに配置されているから、灯具の輝点をより分散することができる。そして、各セグメントの照射密度に応じて曲率を持たせれば、灯具全体の輝度を均一にすることができる。
【0026】
請求項2の発明にかかる灯具は、請求項1の構成において、前記リフレクタのセグメントは、前記放射光源からの距離が最長なものが最短なものの2倍以上であるものである。
【0027】
これによって、放射光の明るさは距離の自乗に反比例するので、光源からの距離が最長なセグメントの集光度を上げて灯具全体の輝度を均一にすることもでき、また灯具の放射面の場所によって輝度を変化させることもできる。このように、光源からの距離の異なるセグメントの集光度を調節することによって、灯具の光り方の見栄えを様々に調節することができる。
このようにして、薄型で高効率で見栄えの自由度が大きく、楕円形状等の異形状にも効率を低下させることなく対応することができる灯具となる。
【0028】
請求項3の発明にかかる灯具は、請求項2の構成において、前記放射光源は、発光素子の上面に対向する中心部分に平坦面が形成され、中心部に続いて反射面として発光素子の発光面の中心を焦点とし、X軸方向を対称軸とする放物線の一部をZ軸の周りに回転させた形状をした前記光学面と、放射光源の側面は、発光素子を中心とする球面の一部をなしており、前記平坦面、前記光学面及び前記側面は、前記発光素子を封止する透明光学材料によって形成されているものである。
【0029】
したがって、光を二次元方向へ反射する反射鏡としての光学面の位置及び形状を封止時に厳密に設定できるので、光学系の位置の設定が容易になる。このようにして、発光素子と二次元方向へ放射するための反射鏡との位置合わせに手間がかかることはなく、容易に高い位置精度を実現することができる。
このようにして、薄型で高効率で見栄えの自由度が大きく、楕円形状等の異形状にも効率を低下させることなく対応することができる灯具となる。
【発明を実施するための最良の形態】
【0030】
以下、本発明の実施の形態について、図面に基づいて説明する。
なお、図中、本発明の実施の形態及び実施の形態を説明する説明事例において、同一記号及び同一符号は、同一または相当する機能部分であるから、ここでは重複する説明を省略する。
【0031】
説明事例1
まず、本発明の灯具の実施の形態について、図1乃至図5を参照して説明する。
図1(a)は本発明の実施の形態を説明する説明事例1にかかる灯具の全体構成を示す平面図、(b)は断面図である。図2は本発明の実施の形態を説明する説明事例1にかかる灯具の放射光源としてのLEDを示す断面図である。図3(a)は本発明の実施の形態を説明する説明事例1にかかる灯具のセグメントのA−A断面を示す断面図、(b)はB−B断面を示す断面図である。図4(a)は本発明の実施の形態を説明する説明事例1の変形例にかかる灯具のセグメントのA−A断面を示す断面図、(b)はB−B断面を示す断面図である。図5(a)は本発明の実施の形態を説明する説明事例1の別の変形例にかかる灯具のセグメントのA−A断面を示す断面図、(b)はB−B断面を示す断面図である。
【0032】
図1に示されるように、本実施の形態を説明する説明事例1にかかる灯具1は、中心に発光素子2を内蔵した放射光源としてのLED3が載置され、その周囲に設置された合成樹脂にアルミ蒸着してなるリフレクタ本体4の表面のうち斜線部分が、複数のセグメント5a,5bからなるリフレクタ4a,4bとなっている。図1(b)の断面図に示されるように、リフレクタ4a,4bのセグメント5a,5bは略45度の斜面となっており、LED3の発光素子2の発光面に対向した二次元方向へ反射する光学面9bから二次元方向へ反射されてきた光を上方向(Z軸方向)へ反射する。
【0033】
なお、ここで二次元方向とは、LED3に対する、その周辺に設置されたセグメント5a,5bで構成されたリフレクタ4a,4bの形成する面への方向を意味する。厳密にLED3からZ軸に対して垂直な平面方向ではなく、LED3からの光が、LED3の周囲に設置されたリフレクタ面へ効率良く照射されるものであれば良い。
【0034】
内周のリフレクタ4aはLED3に近接しているので内周のリフレクタ4aのセグメント5aはいずれも平面で、8面のセグメント5aで正八角形を形成している。これに対して、外周のリフレクタ4bのセグメント5bは、図3に示されるようにA−A断面の表面が僅かに凹曲面になっている。
【0035】
次に、LED3の構成について、図2を参照して説明する。ここで、図2に示されるように、発光素子2の中心軸をZ軸とし発光素子2上面をその原点とし、この原点においてX軸とY軸とが直角に交わるように定めてある。
【0036】
図2に示されるように、X−Y平面上に設けられた1対のリード6a,6bのうちリード6aの先端に発光素子2をマウントしている。発光素子2の上面の電極とリード6bの先端とは、ワイヤ7でボンディングされて電気的接続がなされている。これらのリード6a,6bの先端、発光素子2、ワイヤ7が樹脂封止用金型にセットされて、透明エポキシ樹脂8によって図に示すような断面形状に樹脂封止されている。ここで、LED3の上面9の中心部分には微小な平坦面が形成されている。この中心点9aに続いて反射面9bとして発光素子6の発光面の中心を焦点とし、X軸方向を対称軸とする放物線の一部を原点からZ軸に対して60度以上の範囲内においてZ軸の周りに回転させた傘のような形状をしている。また、LED3の側面10は、発光素子2を中心とする球面の一部をなしている。
【0037】
即ち、説明事例1にかかる放射光源としてのLED3においては、発光素子2の発光面に対向した二次元方向へ反射する光学面9bを有するものである。
かかる構成を有する灯具1の光り方について、図1乃至図3を参照して説明する。
【0038】
LED3のリード6a,6bに電圧をかけて発光素子2を光らせると、発光素子2から発せられた光のうち、大半の光に相当するZ軸に対して60度以上の範囲内の光が反射面としての上面9bに至り、これらの光は上面9bへの入射角が臨界角より大きいため全て全反射されて側面10に向かう。ここで、上面9bは発光素子2を焦点としX軸を対称軸とする放物線の一部をZ軸の周りに回転させた形状をしているため、上面9bで反射された光は全てX−Y平面に平行に進み、側面10は発光素子2を中心とする球面の一部をなしているため、光はほぼそのまま平行に進んでZ軸周り360度の方向に面状に放射される。さらに、発光素子2から側面10に直接向かった光は、側面10は発光素子2を中心とする球面の一部をなしているため、屈折することなくそのままの向きで放射される。なお、Z軸方向に放射された僅かな光は、中心部分に形成された微小な平坦面から、外部放射される。
【0039】
LED3の周囲には略45度の傾斜を有するリフレクタ4aがあるが、上面9bで反射されてX−Y平面に略平行に進んできた光を始めとして、側面10から直接放射された光もX−Y平面に平行に近いため、リフレクタ4aで反射された光はそれぞれがほぼ垂直に近く上方へ進み、少なくともZ軸から20度の範囲内で外部放射される。なお、上記で「平行」と表現している光も、発光素子2の大きさがあるために完全な平行にはならないが、いずれの光もほぼ平行になり、少なくともZ軸から20度の範囲内には確実に入るものとなる。
【0040】
一方、リフレクタ4aの外周のリフレクタ4bによってもLED3から二次元方向に放射された光が反射されるが、上述したようにリフレクタ4bの長手方向は凹曲面になっているため、光が集光されて輝度が高められて上方へ反射される。これによって、光の強さは光源からの距離の自乗に反比例して減衰していくが、光源LED3からの距離が近く減衰率が小さいリフレクタ4aの反射光は、平面のリフレクタ4aによって集光されずに上方へ反射される。これに対して、光源LED3からの距離が遠く減衰率が大きいリフレクタ4bの反射光は、凹曲面のリフレクタ4bによって集光されて上方へ反射される。なお、LED3の中心部分に形成された微小な平坦面から、Z軸方向へ外部放射される光は、LED3の周囲に設置されたリフレクタ4へは至らず、直接外部放射される。
【0041】
発光素子はLEDであり電気エネルギーを直接光エネルギーに変換するため高温にならない。また、発光素子サイズが微小のため光学制御効率を高めることができる。さらに、LED自体に発光素子からの光を二次元方向へ放射するための反射鏡を有し、かつ、この反射鏡が発光素子を透明エポキシ樹脂により封止するとともにモールド形成されているので、従来例のように部品点数が多くなることはなく、発光素子と二次元方向へ放射するための反射鏡との位置合わせに手間がかかることはなく、容易に高い位置精度を実現できる。
【0042】
この結果、上方向(Z軸方向の遠方)より視認した場合、LED3からの直接光及び、集光調整された各リフレクタセグメントからの放射光により、灯具1の全体の輝度が均一でキラキラ光る自然なイメージの灯具とできる。さらに、灯具1は消灯している際にも外部光が反射して全体が均一にキラキラ光る非常に見栄えの良い灯具となる。
【0043】
次に、本実施の形態を説明する説明事例1にかかる灯具1の変形例について、図1,図4,図5を参照して説明する。図4の変形例は、リフレクタ4bのフラグメント5bのA−A方向には表面が曲率がなく、B−B方向には凹曲率を有しているものである。また、図5の変形例は、両方向に凹曲率を有しているもので、いずれも外側のリフレクタ4bに灯具としてより集光度が必要な場合である。
【0044】
さらに、他の変形例として、内側のセグメント5aは凸面、外側のセグメント5bは平面として内側の反射光を拡散させて全体の輝度を均一とするものとしても良い。この場合、本説明事例1にかかる灯具1よりも広い配光が必要な場合、あるいは光源に対するリフレクタセグメントの立体角が小さい場合に適する。さらに、リフレクタを3つ以上の環状として各セグメントへの光源からの照射密度に応じて曲率を変化させ、集光反射面あるいは拡散反射面とするもの、内側のリフレクタに対して外側のリフレクタのセグメント分割数が大きいもの等、種々の変形例が考えられる。例えば、LED3に近接したリフレクタ4aに対し、外側のリフレクタ4bの輝度の方が高いものとしても良い。
【0045】
このようにして、薄型で高効率で見栄えの自由度が大きく、全体の輝度が均一でキラキラ光る自然なイメージの灯具となる。
【0046】
実施の形態1
次に、本発明の灯具の実施の形態1について、図6を参照して説明する。図6は本発明の実施の形態1にかかる灯具の全体構成を示す平面図である。
【0047】
図6に示されるように、本実施の形態1の灯具11においては、隣接するリフレクタのセグメントの中央からの距離を異なるものとしてある。即ち、実施の形態1と同様の放射光源としてのLED3を取り囲んで、一番近い位置にセグメント15a、その次に互い違いにセグメント15b、さらに互い違いにセグメント15c、そしてセグメント15dと一段ずつLED3から離れていく。このようにリフレクタのセグメント15a,15b,15c,15dを配置することによって、灯具11の輝点をより分散することができる。そして、各セグメント15a,15b,15c,15dをLED3からの照射密度に応じて曲率を持たせることによって、灯具11全体の輝度を均一にすることができる。
【0048】
なお、隣接するセグメントはこのように完全に互い違いにする必要があるわけではなく、ある程度(例えば、セグメントの幅の半分程度)のずらし量であっても良い。これでも灯具11の輝点をある程度分散することができる。
【0049】
説明事例2
次に、本発明の灯具の実施の形態を説明する説明事例1について、図7を参照して説明する。図7は本発明の実施の形態を説明する説明事例2にかかる灯具の全体構成を示す平面図である。
【0050】
図7に示されるように、本実施の形態を説明する説明事例2にかかる灯具21においては、2段に配列したリフレクタセグメント22によって略楕円形の放射面を形成している。中心には実施の形態1と同様の放射光源としてのLED3を載置し、その周囲には二重にセグメント22を配列して、楕円形状を形成している。そして、各セグメント22をLED3からの照射密度に応じて曲率を持たせることによって、灯具21全体の輝度を均一にすることができる。
【0051】
このようにして、薄型で高効率で見栄えの自由度が大きく、楕円形状等の異形状にも効率を低下させることなく対応することができる灯具となる。
【0052】
実施の形態2
次に、本発明の灯具の実施の形態2について、図8を参照して説明する。図8は本発明の実施の形態2にかかる灯具の全体構成を示す平面図である。
【0053】
図8に示されるように、本実施の形態2の灯具31においては、セグメント32によって楕円形状を形成しているが、放射光源としてのLED3の位置が中央から大きくずれている。これによって、各セグメントの位置も形状も様々となるが、やはりLED3からの照射密度に応じて曲率を持たせることによって、灯具31全体の輝度を均一にすることができる。なお、光源から二次元方向へ均一な放射がなされていれば、各セグメントへの照射密度は各セグメントの光源からの距離の2乗に反比例する。前述の実施の形態でも同様であるが、本実施の形態2では、光源に近接したセグメントと離れたセグメントの距離の比が大きく照射密度の差が大きく生じる。しかし、光源に近接したセグメントを凸面とし、距離が離れるにしたがって曲率を順次小さくし最も離れたセグメントでは平面とすることによって、輝度の均一化を図ることができる。
【0054】
上記各実施の形態においては、セグメントに曲率をもたせることによって灯具全体の輝度を均一にする場合について説明してきたが、必ずしも均一にする場合のみでなく、灯具の輝度を場所によって変えることもできる。要するに、セグメントに曲率をもたせることによって灯具の輝度を制御できるという事実が重要である。
【0055】
実施の形態3
次に、本発明の灯具の実施の形態3について、図9を参照して説明する。図9は本発明の実施の形態3にかかる灯具の全体構成を示す縦断面図である。
【0056】
図9に示されるように、本実施の形態3の灯具41においては、中心のLED43を円盤型の透明体44で囲んでいる。LED43は上記各実施の形態におけるLED3と異なり、垂直方向に設けられた1対のリード46a,46bのうちリード46aの上面に発光素子42をマウントして、発光素子42ともう一方のリード46bとをワイヤで電気的接続をとり、LED3と同様の形状に樹脂封止したものである。上記各実施の形態においても、LED3の代わりにこのLED43を用いることができる。
【0057】
透明体44の下面には、3段階にわたってリフレクタ45が設けられている。これらのリフレクタ45は、LED43から二次元方向に放射されて透明体44の中を透過してきた光を全反射によって上方へ反射する。そして、各段ごとに8つのセグメントに分かれており、放射光源43からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定することによって、リフレクタ全体の輝度のバランスがとれて均一な光り方の灯具とすることができる。
【0058】
説明事例3
次に、本発明の実施の形態を説明する説明事例3にかかる灯具について、図10を参照して説明する。図10(a)は本発明の実施の形態を説明する説明事例3にかかる灯具に用いられる放射光源の全体構成を示す平面図、(b)は放射光源を構成するレンズ型LEDの構成を示す平面図、(c)は側面図、(d)は正面図である。
【0059】
図10(a)に示されるように、本説明事例3にかかる灯具においては、放射光源として一体型LED3,43の代わりに、レンズ型LED63を8個用いて放射面を二次元方向に向けて八角形に並べた放射光源62を使用している。図10(b),(c),(d)に示されるように、このレンズ型LED63は、封止樹脂レンズ64がβ方向に広く、それと垂直なγ方向に狭くなっている。そして、放射光源62はα−β平面が二次元方向に並ぶように8個のレンズ型LED63を配列している。
【0060】
レンズ型LED63からはβ方向にはやや拡がった放射光がα方向には略平行な放射光が放射されるので、放射光源62は二次元方向に360度隙間なく光を放射する。この放射光源62の周囲に配置される各リフレクタセグメントまでの距離の差が大きい場合は、上記各実施の形態と同様の効果を得ることができる。
【0061】
説明事例4
次に、本発明の灯具の説明事例4について、図11を参照して説明する。図11(a)は本発明の実施の形態を説明する説明事例4にかかる灯具に用いられる放射光源の全体構成を示す平面図、(b)は放射光源を構成する反射型LEDの構成を示す平面図、(c)は縦断面図である。
【0062】
図11(a)に示されるように、本説明事例4の灯具においては、放射光源として一体型LED3,43の代わりに、反射型LED53を8個用いて放射面を二次元方向に向けて八角形に並べた放射光源52を使用している。図11(b),(c)に示されるように、この反射型LED53は1対のリード54a,54bのうちリード54aの先端裏側に発光素子42をマウントし、発光素子の上面端子とリード54bとをワイヤで電気的接続をとり、発光素子42の発光面と対向する位置に回転放物面形状の反射鏡55を設置して、全体を透明エポキシ樹脂56で封止したものである。これによって、発光素子42から放射された光は回転放物面形状の反射鏡55で略垂直軸方向に平行に反射されて、放射面57から外部放射される。したがって、反射型構造とすると、発光素子が発する光をより効率良く二次元方向へ放射できる。
【0063】
ここで、発光素子42の光が反射鏡55で正確に垂直軸方向に平行に反射されると、放射光源52の隣り合う反射型LED53の間に光が放射されない部分が生じることになるが、実際には発光素子42の大きさ等の理由で斜め方向に外部放射される光も生じるため、放射光源52は二次元方向に360度隙間なく光を放射する。
【0064】
この放射光源52の周囲に配置される各リフレクタセグメントまでの距離の差が大きい場合は、上記各実施の形態と同様の効果を得ることができる。
なお、前述の実施形態のように薄型・小型とはならないが、このような光源でも構わない。
【0065】
上記各実施の形態においては、発光素子として赤色発光素子を用いた場合を想定しているが、何色の発光素子を用いても構わない。また、LEDにおいて発光素子等を封止する光透過性材料として透明エポキシ樹脂を用いているが、透明シリコン樹脂を始めとするその他の材料を用いても良い。
灯具のその他の部分の構成、形状、数量、材質、大きさ、接続関係等についても、上記各実施の形態に限定されるものではない。
【図面の簡単な説明】
【0066】
【図1】図1(a)は本発明の実施の形態を説明する説明事例1にかかる灯具の全体構成を示す平面図、(b)は断面図である。
【図2】図2は本発明の実施の形態を説明する説明事例1にかかる灯具の放射光源としてのLEDを示す断面図である。
【図3】図3(a)は本発明の実施の形態を説明する説明事例1にかかる灯具のセグメントのA−A断面を示す断面図、(b)はB−B断面を示す断面図である。
【図4】図4(a)は本発明の実施の形態を説明する説明事例1の変形例にかかる灯具のセグメントのA−A断面を示す断面図、(b)はB−B断面を示す断面図である。
【図5】図5(a)は本発明の実施の形態を説明する説明事例1の別の変形例にかかる灯具のセグメントのA−A断面を示す断面図、(b)はB−B断面を示す断面図である。
【図6】図6は本発明の実施の形態1にかかる灯具の全体構成を示す平面図である。
【図7】図7は本発明の実施の形態を説明する説明事例2にかかる灯具の全体構成を示す平面図である。
【図8】図8は本発明の実施の形態2にかかる灯具の全体構成を示す平面図である。
【図9】図9は本発明の実施の形態3にかかる灯具の全体構成を示す縦断面図である。
【図10】図10(a)は本発明の実施の形態を説明する説明事例3にかかる灯具に用いられる放射光源の全体構成を示す平面図、(b)は放射光源を構成するレンズ型LEDの構成を示す平面図、(c)は側面図、(d)は正面図である。
【図11】図11(a)は本発明の実施の形態を説明する説明事例4にかかる灯具に用いられる放射光源の全体構成を示す平面図、(b)は放射光源を構成する反射型LEDの構成を示す平面図、(c)は縦断面図である。
【図12】図12は従来のフレネルレンズ併用方式の灯具の構造を示す断面図である。
【図13】図13は従来の灯具の構造を示す断面図である。
【符号の説明】
【0067】
1,11,21,31,41 灯具
2,42 発光素子
3,43,52,62 放射光源
4a,4b,45 リフレクタ
5a,5b,15a,15b,15c,15d,22,32 セグメント
9b 光学面

【特許請求の範囲】
【請求項1】
少なくとも二次元方向へ光を放射する発光素子からなる放射光源と、
全体が円形状または楕円形状の透明体からなり、前記放射光源の全周囲に配置され、前記放射光源から二次元方向に放射されて前記透明体の中を透過してきた光を全反射によって上方へ反射する複数セグメントからなるリフレクタとを備え、
前記リフレクタの複数セグメントは、前記放射光源からの照射密度に応じた集光度を有する集光度の異なるセグメントであり、前記セグメントは曲率を持たせることによって輝度を制御するものであって、前記放射光源からの距離が異なる複数のセグメントを有し、前記距離が異なるセグメントは内側のセグメントと外側のセグメントが互い違いに離れて配置され、前記放射光源からの照射密度が高い近い部分のセグメントは集光度を低めに、照射密度が低い遠い部分のセグメントは集光度を高めに設定されていることを特徴とする灯具。
【請求項2】
前記リフレクタのセグメントは、前記放射光源からの距離が最長なものが最短なものの2倍以上であることを特徴とする請求項1に記載の灯具。
【請求項3】
前記放射光源は、発光素子の上面に対向する中心部分に平坦面が形成され、中心部に続いて反射面として発光素子の発光面の中心を焦点とし、X軸方向を対称軸とする放物線の一部をZ軸の周りに回転させた形状をした前記光学面と、放射光源の側面は、発光素子を中心とする球面の一部をなしており、前記平坦面、前記光学面及び前記側面は、前記発光素子を封止する透明光学材料によって形成されていることを特徴とする請求項2に記載の灯具。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2008−166291(P2008−166291A)
【公開日】平成20年7月17日(2008.7.17)
【国際特許分類】
【出願番号】特願2008−24902(P2008−24902)
【出願日】平成20年2月5日(2008.2.5)
【分割の表示】特願2002−249953(P2002−249953)の分割
【原出願日】平成14年8月29日(2002.8.29)
【出願人】(000241463)豊田合成株式会社 (3,467)
【Fターム(参考)】