説明

炭素ブロック水ろ過器

【課題】改良された性能と流量と堅さと製品歩留まりを提供する混合炭素により作られた活性炭素ブロックフィルタを提供する。
【解決手段】活性炭素ブロックフィルタ10は、固結された混合炭素から成る。混合炭素は、約60μmから約80ミクロンの平均粒子径と、140メッシュより大きな粒子及び500メッシュより小さい粒子がそれぞれ10%未満の重量比率で存在する粒度分布とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はフィルタ、特に水処理装置用の炭素ブロック水フィルタに関するものである。
【背景技術】
【0002】
水道水を処理する家庭用水処理装置の利用は、アメリカ合衆国と外国において劇的に増大し続けているが、これは一つには、未処理の水道水の飲用に関連した保健問題への社会意識の高まりによるものである。最も費用効果が高い在来の家庭用水処理装置には、水流からの微粒子物質の除去と有機汚染物質の吸収のために炭素ブロックフィルタが一般的には使用されている。在来の炭素ブロックフィルタには高密度に詰められた大量の活性炭粒子があり、そしてこの活性炭粒子は互いに固結されて、未処理の水がろ過されるために通過するブロックを形成する。未処理の水がこの密集した煉瓦状のものを通り抜けるとき、機械的なろ過作用と吸着作用の組み合わせにより、水流に含まれる微粒子物質と有機汚染物質が高い割合で除去される。
【0003】
炭素ブロックフィルタの製造は複雑な場合があり、また一般的には様々な競合する利益の微妙なバランスが必要とされる。より細かい炭素粒子がろ過作用を改善することが知られている。このことは、より小さくされた粒子は広い表面積を提供し、かつより小さな粒子物質を捕捉できるさらに高密度なブロックを作り出すという事実に大部分起因している。あいにく、より小さくされた粒子のサイズはいくつかの問題を引き起こす。一つには、そのフィルタを通過すると水の流量が大きく影響を受けることである。高密度なブロックは、より小さい粒子物質を捕捉するだけでなく水の流れを大きく制限することがあり、重要なことであるが与えられた時間で処理することができる水の量を減らす。二つめは、小さい炭素粒子の割合を高めると従来の製造技術を使って炭素ブロックを製造することが難しいことがある。特に、粒子の細かさが高いレベルになると、強固な炭素ブロックを作るのに必要な結合剤の性能を損なう。これが、炭素ブロックのクラックや破砕およびその他の欠陥の原因になり、そしてその結果低い製品歩留まりを招く。これらの問題のバランスから、在来の炭素ブロックフィルタ製造業者は、一般的に比較的大きな炭素粒子を彼らの炭素ブロックの製造に使用している。他の方法は、ブロックに含まれる結合剤の割合を増やすことである。これら二つの方法の実行は、通常製品歩留まりを高めるが、一方ろ過効果を低減させる。一般的に、炭素ブロックフィルタは、標準の80x325メッシュの炭素から製造される。しかしながら、標準の80x325メッシュの炭素の正確な粒度分布は、製造業者によって又ロットによって変化し、それは通常+140メッシュの炭素粒子(すなわち、140メッシュより大きい粒子)を高い割合で、また−325メッシュの炭素粒子(すなわち、325メッシュより小さい粒子)を低い割合で含んでいる。典型的な80x325メッシュの炭素は、通例98ミクロンまたはそれ以上の範囲に平均粒子径をもっている。この結果として、典型的な80x325メッシュの炭素から作られるフィルタは、通常比較的高い製品歩留まりと流量を持つが、非常に優れた濾過性能は持っていない。
【0004】
フィルタ性能を高めるために製品歩留まりと流量を犠牲にして、他の公知の炭素ブロック製造業者は、ブロックの製造に使われる炭素粒子の平均粒子径を小さくしている。この混合炭素を作るために、典型的な80x325メッシュの形成のために普通に挽かれた炭素は、325メッシュよりも小さい炭素粒子のレベルを増加させる特別な粒子製造方法に委ねられる。粒子製造工程は本質的にいくつかのバリエーションに帰着するが、この改変された混合炭素は一般的には、約75ミクロンの平均粒子径と、140メッシュより大きい炭素粒子の割合が約25%以上で且つ500メッシュより小さい炭素粒子の割合が25%以上であるような粒度分布を持っている。この結果生じた炭素ブロックは改良された性能を有するが、細かさの度合いが高い炭素粒子は、少ない流量を持ち、また製造品の不良率が20〜30%という結果となる。さらに、細かさの度合いが高い炭素粒子は、比較的軟らかい炭素ブロックを作るので、そのために損傷を受けやすくなる。
【発明の開示】
【0005】
改良された性能と流量と堅さと製品歩留まりを提供する特有の混合炭素から炭素ブロックフィルタが製造される本発明により、前述の問題は克服される。約60〜80μmの好ましい平均粒子径と、+140メッシュの粒子が約10%未満で且つ−500メッシュの粒子も約10%未満であるような好ましい粒度分布を持っている混合炭素である。その混合炭素は、一体となった炭素ブロックを形作るために在来の結合剤により固結される。その炭素ブロックは、多様な在来技術に従って広い範囲の炭素ブロックフィルタに組み入れられることが可能である。
【0006】
より望ましい実施形態では、約65〜75μmの平均粒子径と、+140メッシュの粒子が約10%未満で且つ−500メッシュの粒子も約10%未満であるような粒度分布を持っている混合炭素から炭素ブロックフィルタが製造される。
【0007】
最も望ましい実施形態では、約70μmの平均粒子径と、+140メッシュの粒子が約7%未満で且つ−500メッシュの粒子が約7.5%未満であるような粒度分布を持っている混合炭素から炭素ブロックフィルタが製造される。
【0008】
本発明は、縮小された平均粒子径を持ち、それゆえに経時的な濾過性能が高められた炭素ブロックフィルタを提供する。その混合炭素は改善された製品歩留まりも提供する。さらに、本発明は損傷を受け難いより堅固な炭素ブロックを提供する。その上さらに、本発明は、同様の平均粒子径をもった従来の炭素ブロックフィルタより著しく改善された流量を持っている。
【0009】
本発明のこれらと他の目的、利点、特徴は、好ましい実施形態の詳細な記述と図面の参照により、容易に理解され又高く評価されるであろう。
【発明を実施するための最良の形態】
【0010】
本発明の好ましい実施形態に従った炭素ブロックフィルタは、図1に示されまた全体が10で示される。炭素ブロックフィルタ10は、炭素スリーブ(または、炭素ブロック)12と、炭素スリーブ12に同軸的に配置された不織布プラスチック芯14と、上蓋16と底蓋18を通常持っている。布22とスクリム20は、炭素スリーブ12の周囲に巻きつけられプラスチック網ラップ24により保持されている。炭素スリーブ12は、固結された活性炭でできた中空芯の円筒ブロックである。混合活性炭の粒子は、様々な利点を有する炭素ブロックフィルタを得るための特有な平均粒子径と粒度分布を備えている。前記利点は、以下に詳細が記述される。中心が中空の円筒型ブロックに関連して述べられているが、本発明は、他の様々な構造の炭素ブロックフィルタでの使用によく適合する。本書では、“内側の”、“内側へ”、“外側の”、“外側へ”という言葉は、炭素ブロックフィルタの幾何的軸中心に対する方向を示すために使用される。
【0011】
不織布プラスチック芯14は、ポリプロピレン製スパンボンド不織布のような通常の不織布プラスチック材質で、それは水がスリーブの芯を通って、特に半径方向において、容易に流れることのできる多孔性の円周状の壁として形成される。プラスチック芯14は、所望の不織布材料の好ましいロールシートから製造される。稼動時において、不織布材料は、フィルタから分離して出力水に流れ込む可能性のある多量の炭素粒子流れの発生を防ぐが、十分な水量を得るのに必要な程度に多孔性である。プラスチック芯14の外径は、用途により変化するであろうが、炭素スリーブ12の内径にぴたりと合うような寸法に選定されることが好ましい。好ましくは、プラスチック芯14は約25.4mm(約1in)の外径を持つこととなるであろう。
【0012】
上蓋16は、炭素スリーブ12の上部軸端からの水の流出を防ぐために炭素スリーブ12の上部軸端上に配される。上蓋16は、ポリプロピレンのような非多孔性の好ましい高分子材料から製造される。上蓋16は、プラスチック芯14と同軸な中央の穴30と、この穴30の周囲を取り囲んでいる首状部分32を有するのが好ましい。首状部分32は、炭素ブロックフィルタ10が、ねじを有する適切なフィルタハウジング(図示していない)にねじ込まれ装着できるように、ねじ山が形成されている。穴30の内径は、芯14の内径とほぼ一致することが望ましい。
【0013】
底蓋18は炭素スリーブ12の底部軸端から水が流れ出ることを防ぐため、炭素スリーブ12の底部軸端に配置される。底蓋18は、完全に閉じられており、首状部分や穴がないことを除けば、本質的には上蓋16に等しい。
【0014】
炭素スリーブ12の内部は、在来の炭素ブロック結合剤により相互に固結された活性炭粒子の連続で切れ目のないブロックである。炭素スリーブ12は、中央穴28を形成している円周状の好ましい壁26を含んでいる。壁26と中央穴28との寸法は、用途により変化するであろう。混合炭素の構成は、以下により詳細に記述される。結合剤は、非常に低いメルトインデックス(メルトフロウレート)を持った重合材料であることが望ましく、また超高分子な、高密度ポリエチレンのHostalen(登録商標名)GUR−212のような材料が望ましい。好ましい結合剤は、VanderBilt等による米国特許第4,753,728号の炭素ブロックフィルタと関連して記述されまた説明される。なお、前記米国特許第4,753,728号は、引用することにより記載に代える。
【0015】
本発明の炭素ブロックフィルタ10は、在来の製造技術と製造装置を使用して製造される。一般的に、結合剤(粉末である)と炭素は、結合剤が炭素全体に均一に分散されるよう混合される。結合剤は、炭素と結合剤の合算重量に対して、約17から約25%が好ましく、約20%が最も好ましい割合である。炭素と結合剤の混合物は、上方に突き出たダボを中心部に持っている在来の円筒形の型(図示されない)に供給される。型とその内容物はそれから約175℃から約205℃で加熱される。同時に、炭素と結合剤の混合物は、在来の加圧ピストン(図示されない)を通じて約207kPa(約30psi)から約827kPa(約120psi)の圧力を受ける。そしてこのピストンは、型の中へ押し下げられ、また中央部に前記ダボに対する逃げ穴を持っている。炭素と結合剤の混合物は、それから冷却され、そしてその結果出来たものは型より外されて一体化された炭素スリーブ12となる。
【0016】
炭素スリーブ12は、必要であればそのあとバリ取りされる。布22とスクリム20は炭素ブロックに加えられ、主として前置フィルタとして機能する。不織のスクリム20とある程度厚い不織布22との層は、切断されてそして炭素ブロックの周囲に巻きつけられる。布22は、約10μmの有効空隙と約3.2mm(約1/8in)の厚さを持つのが好ましい。布22とスクリム20は、布22とスクリム20の外側を在来の方法で巻きつけているプラスチックネット24により所定位置に保持されている。
【0017】
不織プラスチック芯14は通常、所望の不織素材のシートから切断される。その切断されたシート素材は、チューブ状に丸められ、そして炭素スリーブ12の中央部に挿入される。芯14は炭素スリーブ12の中央部に接着または他の方法で固定することが可能であるが、典型的には、芯14の巻き戻ろうとする性質と、蓋16と18との間の相互作用による摩擦力により所定位置に保持される。
【0018】
底蓋18は、在来のアルミニュウム製の型(図示されない)を使用した在来の方法で製造される。一般的に、粉末ポリプロピレンのような粉末プラスチックがアルミニュウム製の型に流れ込みそして液状になるまで加熱される。炭素スリーブ12はそれからその底部軸端部をプラスチックに接触するように型へ押し入れられ、炭素スリーブ12は、プラスチックが底蓋18を形成できるよう冷えて固くなるまで型に残る。上蓋16は、上蓋用の型(図示されない)が内部にねじ山がある首状部分32を形成するために形作られていることを除いて、同様の方法で製造される。再び、粉末状のプラスチックが型に供給されそして液状になるまで加熱される。そして炭素スリーブ12は、その上部軸端をプラスチックに接するように上蓋用型に押し入れられる。炭素ブロックはプラスチックが十分冷却されるまでその場所に残される。炭素スリーブ12と蓋との組立部はそれから、ネジ部材のためのネジ形成が行われそして型から取り出される。他の方法としては、上と下の蓋は、例えば在来の射出成形によって、個別に製造することも可能で、そして炭素スリーブ12へ接着剤、粘着剤その他の方法で取り付けることも可能である。もし必要なら、適当なフィルタハウジングに炭素ブロックフィルタ10を装着するためのねじ部材を備えるために、上蓋の成形過程でねじインサートを使用することも可能である。
【0019】
本説明においては、炭素の粒子径と粒度は、在来一般の湿式ふるい分け試験により計測されたメッシュサイズという用語で通常記述されることとなる。湿式ふるい分け試験は、混合炭素を粒子径に基づいた範囲または“ビン”(“bins”)へ分けることができる在来の方法である。一般的に、混合炭素は、水の力を借りて、500メッシュのふるいまで次第に小さくなる孔を持つ一連のふるいを順次通過する。規定のふるい目開きより大きな粒子はそのふるいを通過せずに残り、小さな粒子はそのふるいを通過し次のより小さなふるいへ至る。500メッシュのふるい目開きより小さな粒子は、一般的には“微紛”に属する。微紛のレベルは、混合炭素毎で著しく変化し、そしていくつかの混合炭素では重量比で20%の量を含むこともある。微紛は、炭素製造者の炭素等級分けにおいては彼ら自身により一般的に無視されている。請求項も含めた本説明において、微紛は粒度分布の目的として考えられるが平均粒子径の目的としては無視される。便宜的手段として、在来のメッシュサイズ表記は、サイズ範囲を表示するものとして使用される。さらに具体的にいうと、メッシュサイズの前に付された表記“+”は、表記されたサイズのふるいを通過するには大きすぎる粒子に該当する。例えば、+140メッシュは、140メッシュサイズのふるいを通過するには大きすぎる粒子に当てはまる。同様に、メッシュサイズの前に付された表記“−”は表記されたサイズのふるいを通過するのに十分な小ささの粒子に該当する。例えば、−500メッシュは、500メッシュサイズのふるいを通り抜けるのに十分小さい粒子に当てはまる。この表記法によると、“微紛”という言葉は、−500メッシュの炭素粒子にあてはまる。粒子分布の表示において、二つのメッシュサイズの間の表記“x”はサイズの範囲を示す。例えば、140x200は、140メッシュより小さく200メッシュより大きい炭素粒子径の範囲または箱であることを表す。
【0020】
本発明の混合炭素の特有な性質は、図2、図3との関係で記述される。図2は一般的な従来技術の80x325メッシュ炭素の重量による粒度分布を示している。図示された分布は、在来の湿式ふるい分け試験を用いて得られたであろう一般的な80x325メッシュ炭素の代表値であるが、一般的な80x325メッシュ炭素はその粒度分布と平均粒子径が製造業者毎にまた製造ロット毎に変化することが認識されるべきである。通常の80x325メッシュ炭素は、公知の炭素製造業者から既製品として入手され、そして多様な炭素ブロック製造業者によって改変なしに使われる。図2の棒グラフは“箱”もしくは範囲に分けられており、それぞれの箱はその特定サイズの箱に落ちた炭素粒子の重量割合を示している。例えば、100x140の上の棒グラフは、100メッシュより小さく140メッシュより大きい粒子の重量割合を示している。図に示されるように、+140メッシュの粒子の割合は40%以上である。この代表的な分布では、平均粒子径は約98μmである。この炭素から製造される炭素ブロックフィルタは、低い濾過性能を含めた様々な短所を持っている。図3は、在来の湿式ふるい分け試験により計測された従来技術の改良80x325メッシュ炭素の重量による粒度分布を示している。この炭素は、小さくされた平均粒子径を得るように設計された改良粉砕工程により製造されるので、“改良された”ものとして引用される。より具体的には、その改良80x325メッシュ炭素は、微紛のレベルを高めるために粉砕され、そして次にそれは平均粒子径を小さくしてより良い濾過性能を与える。図示されるように、+140メッシュ粒子の割合は25%以上でまた−500メッシュ粒子は20%に近づいている。この改良80x325メッシュ炭素は、通常の80x325メッシュ炭素から製造されたフィルタに比較して改良された濾過性能が得られるが、しかしそれらには他の短所もある。例えば、改良80x325メッシュから製造されたフィルタは、比較的軟らかく、流量が減少し、そして最大20%の製品不良率を有する。
【0021】
図3は、本発明の好ましい実施形態に従った混合炭素の、在来の湿式ふるい分け試験によって計測された、重量による粒度分布も示している。図示されるように、+140メッシュ粒子の割合は5%未満で−500メッシュ粒子は約7.5%である。本発明のユニークな炭素で製造された炭素ブロックフィルタは、改良80x325メッシュ炭素と比較したときに、劇的に改善された製品歩留まり(最大98%)を有する。従来技術による通常のあるいは改良80x325メッシュ炭素に対する本発明の更なる利点は、以下に記述される。
【0022】
本発明は、図1に示す通常の80x325メッシュ炭素のような大きな平均粒子径を持った混合炭素から製造された炭素ブロックフィルタよりも、改良された濾過性能を提供する。第一に、小さな平均粒子径を持ったフィルタは、改善された機械的濾過作用を提供する。これは、水が通り抜けねばならない炭素粒子の間の隙間が、平均して小さくなるためである。隙間が小さくなるので、隙間はより小さな粒子を機械的に捕捉し、改良された機械的濾過作用を提供する。第二に、より小さい平均粒子径のフィルタは、長期にわたって改善された濾過作用をも提供する。図4は、低平均粒子径の炭素ブロックフィルタにより与えられた、改善された濾過性能のグラフ図である。図4は、異なる平均粒子径のフィルタによって与えられるクロロホルムの経時的な削減率変化を、ANSI/NSF53−1999aに従った試験により比較したものである。なお、前記ANSI規格のタイトルは、“Drinking Water Treatment Units−Health Effects”で、本明細書では引用することにより記載に代えている。この試験では、与えられたフィルタが規定された基準の濾過性能を得られなくなる前までに処理することができる水量を計測することにより、フィルタの寿命評価を提供することが意図されている。ANSI/NSF53−1999aで規定されているように、フィルタは、クロロホルムの基準で少なくとも95%の削減をそれ以後与える能力がなくなったとき、規格不満足とされる。線Aは、平均濃度340ppbのクロロホルムの流れに関して、平均粒子径92μmの炭素ブロックフィルタによって与えられるクロロホルム削減率のプロットである。図示のように、約4.54m3(約1200gal)の水が処理されると、このフィルタの性能は劇的に低下してゆく。実際、フィルタは、約6.25m3(約1650gal)が処理されると、ANSI/NSF53−1999aで設定された95%の削減基準を満足できなくなる。線Bは、平均粒子径65μmの炭素ブロックフィルタによって与えられるクロロホルム削減率のプロットであるが、同じく、平均濃度340ppbのクロロホルムの流れに関してのものである。図示されるように、このフィルタの性能は、7.57m3(約2000gal)の水を処理した後でさえ95%を十分超えて維持されている。このことから、経時的な濾過性能が改善されたことが証明されている。
【0023】
本発明は、従来技術の改良80x325メッシュ炭素から作られた炭素ブロックフィルタより改善された流量も提供する。図5は、ゲージ圧68.9kPa(10psi)から206.8kPa(30psi)の圧力範囲のときに試験炭素ブロックフィルタを通った水量を示している。前記圧力範囲は、家庭用に存在しているフィルタブロックの中に存在する圧力の範囲にほぼ等しい。線Cは、改良80x325メッシュ炭素から製造されたフィルタの圧力68.9kPa(10psi)から206.8kPa(30psi)における通過水量を表す。線Dは、本発明の好ましい実施形態に一致した混合炭素から製造されたフィルタの圧力68.9kPa(10psi)から206.8kPa(30psi)における通過水量を表す。図示されるように、好ましい炭素から製造されたフィルタは、はっきりと改善された流量を示し、これは与えられた時間の中でより多くの水を処理する能力があることを意味している。
【0024】
従来技術の改良80x325メッシュ炭素に対する本発明の他の利点は、より固い(より強い)炭素ブロックフィルタをもたらすことである。図6は、好ましい炭素から作られたフィルタ及び従来技術の改良80x325メッシュ炭素から作られたフィルタで実行された六回の硬さ試験の結果を示す。試験は、ASTM D217−97、これは引用することにより記載に代えるが、に従って実施された。一般的に、試験は、正しく規定された条件に従った円錐圧子によりフィルタに付けられた貫入くぼみの深さを計測することから成る。試験は、Precision Scientific Company製のコーン貫入計を使って実施された。示されるように、好ましい炭素から作られたフィルタは、改良80x325メッシュ炭素から作られたフィルタより十分に固いことを示している。実際、好ましい炭素の六回の試験における貫入くぼみの平均値は、改良80x325メッシュ炭素のものの半分しかなかった。これらの試験は、好ましい炭素で作られた炭素ブロックフィルタが、例えば製造中、輸送中、または設置中において、損傷を受け難くなりうることを実証している。
【0025】
本発明は、特有の粒度分布及び平均粒子径との関係において記述されるが、記述された実施形態から少し変化した平均粒子径と粒度分布を持つ混合炭素を範囲として含むことを意図している。より具体的にいうと、本発明は、平均粒子径が約60μmから80μmの範囲で且つ+140メッシュ粒子と−500メッシュ粒子がそれぞれ約10%未満であるような粒度分布を持った混合炭素を意図している。しかし平均粒子径は、約65μmから約75μmがより好適であり、約70μmのときが最も好適である。+140メッシュ粒子と−500メッシュ粒子がそれぞれ約8%未満の粒度分布がより好適であり、また+140メッシュ粒子が約7%未満で且つ−500メッシュ粒子が約7.5%未満の粒度分布が最も好適である。最も好ましい平均粒子径と粒度分布は、濾過性能と流量と製品歩留りと硬さの最適バランスを提供するはずである。図7は、本発明の各種の実施形態に従った各種の混合炭素の粒度分布を示している。図7は、本発明の範囲を限定することを意図していない、それよりむしろ、本発明の目的とする平均粒子径と粒度分布を満足する各種の混合炭素の代表的サンプルを提供することを意図している。
【0026】
上の記述は、本発明の好ましい実施形態のものである。前述の請求項において定義された発明のより広い態様と精神から逸脱することなしに、種々の修正と変更を行うことが可能であり、またその請求項は均等論を含む特許法の原理に従って解釈される。例えば、冠詞の“a”、“an”、“the”、または“said”が使われた単数形請求要素の引用は、要素を単数形に制限して解釈されるわけではない。
【産業上の利用可能性】
【0027】
本明細書で記述された炭素ブロックフィルタは水濾過装置で使用されるであろう。本炭素ブロックフィルタは、家庭用水処理装置での使用に特によく適合する。
【図面の簡単な説明】
【0028】
【図1】図1は、本発明の好ましい実施形態に従って製造された炭素ブロックフィルタの断面斜視図である。
【図2】図2は、従来技術の80x325メッシュ炭素の粒度分布を示す棒グラフである。
【図3】図3は、従来技術の改良80x325メッシュ炭素の粒度分布と、本発明の好ましい実施形態による混合炭素の粒度分布を示す棒グラフである。
【図4】図4は、異なる平均粒子径のフィルタ二種類の経時的な濾過性能を示したグラフである。
【図5】図5は、改良80x325メッシュ炭素から製造されたフィルタと、本発明の好ましい実施形態による混合炭素から製造されたフィルタの、流量を示すグラフである。
【図6】図6は、改良80x325メッシュ炭素から製造されたフィルタと、本発明の好ましい実施形態による混合炭素から製造されたフィルタで実施された硬さ試験の結果を示した表である。
【図7】図7は、本発明の各種実施形態による各種の混合炭素の粒度分布を示す棒グラフである。
【符号の説明】
【0029】
10 炭素ブロックフィルタ
12 炭素スリーブ
14 不織プラスチック芯
16 上蓋
18 底蓋
20 スクリム
22 不織布
24 プラスチックネット
28 中央穴

【特許請求の範囲】
【請求項1】
活性炭素粒子と、非常に低いメルトインデックスを有する重合材料からなる結合剤とを具備する炭素ブロックフィルタ用炭素ブロックであって、前記炭素粒子はその平均粒子径の範囲が60μmから80μmであり、及び前記炭素粒子は、140メッシュより大きい粒子が10%未満の重量比率で存在し且つ500メッシュより小さい粒子が10%未満の重量比率で存在する粒度分布をもち、前記結合剤は、前記炭素粒子と該結合剤の合算重量に対して17%から25%の重量比率で含まれる、炭素ブロック。
【請求項2】
前記平均粒子径が65μmから75μmの範囲にある、請求項1に記載の炭素ブロック。
【請求項3】
前記炭素粒子は、140メッシュより大きい粒子が8%未満の重量比率で存在する粒度分布をもつ、請求項1に記載の炭素ブロック。
【請求項4】
前記炭素粒子は、500メッシュより小さい粒子が8%未満の重量比率で存在する粒度分布をもつ、請求項1に記載の炭素ブロック。
【請求項5】
前記炭素粒子は、140メッシュより大きい粒子が7%未満の重量比率で存在する粒度分布をもつ、請求項1に記載の炭素ブロック。
【請求項6】
前記炭素粒子は、500メッシュより小さい粒子が7.5%未満の重量比率で存在する粒度分布をもつ、請求項1に記載の炭素ブロック。
【請求項7】
前記平均粒子径が70μmである、請求項1に記載の炭素ブロック。
【請求項8】
前記炭素粒子は、140メッシュより大きい粒子が7%未満の重量比率で存在し且つ500メッシュより小さい粒子が7.5%未満の重量比率で存在する粒度分布をもつ、請求項7に記載の炭素ブロック。
【請求項9】
非常に低いメルトインデックスを有する重合材料からなる結合剤で混合活性炭素を固結することにより形成された炭素ブロックであって、前記混合活性炭素は、60μmから80μmの範囲の平均粒子径と、140メッシュより大きい粒子と500メッシュより小さい粒子がそれぞれ10%未満の重量比率で存在する粒度分布とをもち、前記結合剤は、前記混合活性炭素と該結合剤の合算重量に対して17%から25%の重量比率で含まれる、炭素ブロックと;
前記炭素ブロックの対向する端部にそれぞれ装着される第一の蓋と第二の蓋と;
前記炭素ブロックの周囲に配置された不織布と;
を具備している炭素ブロックフィルタ。
【請求項10】
前記平均粒子径が65μmから75μmの範囲にある、請求項9に記載の炭素ブロックフィルタ。
【請求項11】
前記混合活性炭素は、140メッシュより大きい粒子が8%未満の重量比率で存在する粒度分布をもつ、請求項9に記載の炭素ブロックフィルタ。
【請求項12】
前記混合活性炭素は、500メッシュより小さい粒子が8%未満の重量比率で存在する粒度分布をもつ、請求項11に記載の炭素ブロックフィルタ。
【請求項13】
前記混合活性炭素は、140メッシュより大きい粒子が7%未満の重量比率で存在する粒度分布をもつ、請求項9に記載の炭素ブロックフィルタ。
【請求項14】
前記混合活性炭素は、500メッシュより小さい粒子が7.5%未満の重量比率で存在する粒度分布をもつ、請求項13に記載の炭素ブロックフィルタ。
【請求項15】
前記平均粒子径が70μmである、請求項14に記載の炭素ブロックフィルタ。
【請求項16】
非常に低いメルトインデックスを有する重合材料からなる結合剤とこの結合剤により相互に固結された炭素粒子の混合物とから成る炭素ブロックフィルタ用の炭素ブロックであって、前記炭素粒子は、140メッシュより大きい粒子が10%未満の重量比率で存在し且つ500メッシュより小さい粒子が10%未満の重量比率で存在する粒度分布を有し、前記結合剤は、前記炭素粒子と該結合剤の合算重量に対して17%から25%の重量比率で含まれる、炭素ブロック。
【請求項17】
前記炭素粒子が60μmから80μmの範囲の平均粒子径を有する、請求項16に記載の炭素ブロック。
【請求項18】
前記炭素粒子は、140メッシュより大きい粒子が7%未満の重量比率で存在し且つ500メッシュより小さい粒子が7.5%未満の重量比率で存在する粒度分布をもつ、請求項17に記載の炭素ブロック。
【請求項19】
前記炭素粒子が70ミクロンの平均粒子径を有する、請求項18に記載の炭素ブロック。
【請求項20】
60μmから80μmの範囲の平均粒子径と、140メッシュより大きい粒子と500メッシュより小さい粒子がそれぞれ10%未満の重量比率で存在する粒度分布とをもつ混合炭素を用意する工程と、この混合炭素と非常に低いメルトインデックスを有する重合材料からなる結合剤にして、前記混合炭素と該結合剤の合算重量に対して17%から25%の重量比率で含まれる結合剤とを混ぜ合わせる工程と、この結合剤を混合炭素の全体にむらなく分散させる工程と、混合炭素と結合剤との混合体に熱と圧力を加える工程と、混合炭素と結合剤との混合体を硬化させ、そこで一体になった構造が形成される工程とから成る炭素ブロック製造方法。
【請求項21】
前記混合炭素が65μmから75μmの範囲の平均粒子径をもつ、請求項20に記載の炭素ブロック製造方法。
【請求項22】
前記混合炭素が70μmの平均粒子径をもつ、請求項20に記載の炭素ブロック製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−237175(P2007−237175A)
【公開日】平成19年9月20日(2007.9.20)
【国際特許分類】
【出願番号】特願2007−94314(P2007−94314)
【出願日】平成19年3月30日(2007.3.30)
【分割の表示】特願2002−544143(P2002−544143)の分割
【原出願日】平成13年10月25日(2001.10.25)
【出願人】(302070822)アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー (122)
【Fターム(参考)】