説明

熱処理装置

【課題】1200℃以上の熱処理であっても、熱効率が高く、維持費用が安く、スループットが高く、試料の面荒れを低減でき、且つ放電の均一性に優れた熱処理装置を提供する。
【解決手段】平行平板電極2、(3,30)と、それらの間に高周波電圧を印加してプラズマを発生する高周波電源6と、試料1の温度計測用の温度計19と、高周波電源の出力を制御する制御部26とを備えた熱処理装置において、平行平板電極の少なくとも一方(3,30)は、その電極内部に試料が設置される空間を有し、平行平板電極間に生じるプラズマにより電極内部の試料を加熱する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体基板への不純物ドーピング後の活性化アニールや欠陥修復アニールおよび表面の酸化等を行う熱処理装置に関する。
【背景技術】
【0002】
近年、パワー半導体デバイスの基板材料として炭化珪素(SiC)等のワイドバンドギャップを有する新材料の導入が期待されている。ワイドバンドギャップ半導体であるSiCは、高絶縁破壊電界、高飽和電子速度、高熱伝導率のように珪素(Si)よりも優れた物理的性質を有している。高絶縁破壊電界材料であることから、素子の薄膜化や高濃度ドープが可能になり、高耐圧かつ低抵抗の素子を作ることが出来る。また、バンドギャップが大きいために熱励起電子を抑制でき、さらに高熱伝導率により放熱能力が高いことから、高温での安定動作が可能になる。従って、SiCパワー半導体デバイスが実現すれば、電力輸送・変換、産業用電力装置及び家電製品など各種の電力・電気機器の大幅な効率向上と高性能化が期待できる。
【0003】
SiCを基板に用いて各種パワーデバイスを製造する工程は、おおよそSiを基板に用いる場合と同様である。しかし、大きく異なる工程として熱処理工程があげられる。熱処理工程とは、基板の導電性制御を目的に行われる不純物のイオン打ち込み後の活性化アニーリングがその代表である。Siデバイスの場合、活性化アニーリングは800〜1200℃の温度で行われる。一方SiCの場合には、その材料特性から1200〜2000℃の温度が必要となる。
【0004】
SiC向けのアニール装置として、例えば特許文献1に記されている抵抗加熱炉が知られている。また、抵抗加熱炉方式以外には、例えば特許文献2に記されている誘導加熱方式のアニール装置が知られている。さらに、アニールによるSiC表面荒れを抑制する方法として、SiC基板と対面する部分にSiCが露出する蓋を設置する方法が提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−32774号公報
【特許文献2】特開2010−34481号公報
【特許文献3】特開2009−231341号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載されている抵抗加熱炉で1200℃以上の加熱を行う場合、以下に示す課題が顕著となる。
【0007】
第1点目は、熱効率である。炉体からの放熱は輻射が支配的となり温度の四乗に比例して輻射量が増大するため、加熱領域が大きいと加熱に要するエネルギー効率が極端に低下する。抵抗加熱炉の場合、ヒーターからの汚染を回避するため、通常2重管構造が用いられ、加熱領域が大きくなる。また2重管により熱源(ヒーター)から被加熱試料が遠ざかるためヒーター部は被加熱試料の温度以上の高温にする必要があり、これもまた効率を大きく低下させる要因となる。また同様な理由から被加熱領域の熱容量が非常に大きくなり、温度の昇温や降下に時間がかかる。よって被加熱試料の搬入から搬出までに要する時間が長くなることからスループットは低下し、また高温環境下に被加熱試料を滞在させる時間が長くなり、後述する被加熱試料の表面荒れを増大させる要因ともなる。
【0008】
第2点目は、炉材の消耗である。炉材料として、1200〜2000℃に対応できる材料は限られており、高融点で高純度な材料が必要となる。SiC用に活用できる炉材はグラファイト、またはSiCそのものとなる。一般にはSiC焼結体またはグラファイト基材に化学的気相成長法によりSiCを表面にコーティングした材料が用いられる。これらは通常高価であり、炉体が大きい場合、交換する際に多額の費用が必要となる。また、高温であればあるほど炉体の寿命も短くなるので、通常のSiプロセスに比べて交換費用が高くなる。
【0009】
第3点目は、被加熱試料の蒸発に伴う表面荒れの発生である。1800℃程度の加熱では、被加熱試料であるSiCの表面からSiが選択的に蒸発し表面荒れを生じたり、ドーピングした不純物が抜けたりし、必要なデバイス特性が得られなくなる。この高温に伴う被加熱試料の表面荒れ等に対して従来では、被加熱試料の表面にあらかじめカーボン膜を成膜し加熱中の保護膜とする方法が用いられている。しかし、この従来方法では熱処理の為に別工程でカーボン膜の成膜およびその除去が必要となり、工程数が増えコストが増加する。
【0010】
一方、特許文献2に記されている誘導加熱方式は、被加熱対象または被加熱対象を設置する設置手段に高周波による誘導電流を流し加熱する方式であり、先の抵抗加熱炉方式に比べ熱効率が高くなる。但し、誘導加熱の場合、被加熱対象の電気抵抗率が低いと加熱に必要な誘導電流が多くなり、誘導コイル等での熱損失が無視できなくなることから、被加熱対象に対する加熱効率は必ずしも高いわけではない。
【0011】
また誘導加熱方式は、被加熱試料または被加熱対象を設置する設置手段に流れる誘導電流により加熱均一性が決まるため、デバイス製造に用いるような平面円盤では加熱均一性が十分得られない場合がある。加熱均一性が悪いと急加熱の際、被加熱試料を熱応力により破損する恐れがある。そのため温度上昇の速度を応力の発生しない程度に下げる必要性からスループットの低下要因となる。さらに前記抵抗炉加熱方式と同様に、超高温時のSiC表面からのSi蒸発を防止するキャップ膜の生成/除去工程が別途必要となる。
【0012】
さらに、特許文献3に記されているSiC基板設置方法は、SiC基板に対面する部分にSiCが被覆されている蓋を設置する方法が提案されている。高温環境下においてSiC基板表面からSi原子が蒸発によって離脱するが、対向面からもSi原子が蒸発するため、SiC基板表面のSiが離脱した後の部分に対向面から放出されたSi原子を取り込むことで、SiC基板表面の表面荒れを防止するものである。特許文献3で示されている蓋は、加熱コイルや抵抗加熱ヒーターによる加熱において、Si原子の供給源として使用しているに過ぎない。
【0013】
そこで、加熱手段として、平行平板電極を用いて発生させたプラズマを用いたところ、熱効率が高く、維持費用が安く、処理時間短縮によりスループットが向上すると共に面荒れを低減でき、且つ、1200℃以上にSiC基板を加熱できる見通しが得られた。但し、プラズマを用いた加熱処理について詳細に検討した結果、SiC基板の周辺部に放電の不均一性に起因する表面荒れが生じることが判明した。
【0014】
本発明の目的は、被加熱試料を1200℃以上に加熱する場合であっても、熱効率が高く、維持費用が安く、スループットが高く、被処理基板の面荒れを低減でき、且つ、放電の均一性に優れた熱処理装置を提供することにある。
【課題を解決するための手段】
【0015】
上記目的を達成するための一実施形態として、平行平板電極と、前記平行平板電極間に高周波電圧を印加してプラズマを発生する高周波電源と、被加熱試料の温度を計測する温度計測手段と、前記高周波電源の出力を制御する制御部とを備え、前記平行平板電極の少なくとも一方は、その電極内部に前記被加熱試料が設置される空間を有し、前記制御部は、前記温度計測手段により計測された温度を用い、前記高周波電源の出力を制御することで前記被加熱試料の熱処理温度の制御を行うことを特徴とする熱処理装置とする。
【0016】
また、平行平板電極と、前記平行平板電極間に高周波電圧を印加してプラズマを発生する高周波電源とを有し、前記平行平板電極は、非プラズマ接触面側にそれぞれ高融点かつ低輻射率の平板またはコーティングを備え、前記平行平板電極の少なくとも一方は、その電極内部に前記被加熱試料が設置される空間を有することを特徴とする熱処理装置とする。
【0017】
また、平行平板電極と、前記平行平板電極間に高周波電圧を印加してプラズマを発生する高周波電源とを有し、前記平行平板電極は、回転放物面で構成された反射鏡で囲われており、前記平行平板電極の少なくとも一方は、その電極内部に前記被加熱試料が設置される空間を有することを特徴とする熱処理装置。
【発明の効果】
【0018】
本発明は、平行平板電極の少なくとも一方の電極内部に設置される被加熱試料をプラズマ加熱する構成を有することにより、被加熱試料を1200℃以上に加熱する場合であっても、熱効率が高く、維持費用が安く、スループットが高く、被処理基板の面荒れを低減でき、且つ、放電の均一性に優れた熱処理装置を提供することができる。
【図面の簡単な説明】
【0019】
【図1】本発明の実施例1に係る熱処理装置の基本構成図である。
【図2】本発明の実施例1に係る熱処理装置における放電形成部の詳細図であり、特に熱処理時の放電形成部の状態を示す。
【図3】本発明の実施例1に係る熱処理装置における第1例の放電形成部の詳細図であり、特に被加熱試料搬送時の放電形成部の状態を示す。
【図4】本発明の実施例1に係る熱処理装置における第2例の放電形成部の詳細図であり、特に被加熱試料搬送時の放電形成部の状態を示す。
【図5】本発明の実施例1に係る熱処理装置における第3例の放電形成部の詳細図であり、特に被加熱試料搬送時の放電形成部の状態を示す。
【図6】本発明の実施例2に係る熱処理装置における放電形成部の詳細図であり、特に熱処理時の放電形成部の状態を示す。
【図7】本発明の実施例1に係る熱処理装置の動作説明図である。
【発明を実施するための形態】
【0020】
本発明者等は、プラズマを用いた熱処理により被加熱試料の周辺部が荒れる原因について調べたところ、被加熱試料の周辺角部で電界強度が強いこと、被加熱試料を載置する下部電極に被加熱試料が収まる凹部を設け、被加熱試料の表面と下部電極の表面の高さを揃えても、被加熱試料と下部電極との材料の違い(誘電率の違い)等により、被加熱試料の周辺部を含め全面に渡り電界強度を完全に均一にすることは困難であることが判明した。本発明は上記知見に基づいて生まれたものであり、被加熱試料が放電用電界に影響しない構成とする。即ち、被加熱試料を放電電極で覆う構成とした。この構成により、電界強度が均一となり、放電の均一性が向上する。
以下、実施例により詳細に説明する。
【実施例1】
【0021】
本発明に係る熱処理装置における基本構成を図1にて説明する。被加熱試料1は、第一の下部電極3上に設置され、被加熱試料1上に第二の下部電極30が設置されている。また、第二の下部電極30は、第一の下部電極3と外周で接触しており、被加熱試料1とは接触していない。本実施例では、被加熱試料1として4インチ(φ100mm)のSiCを用いた。上部電極2および第一の下部電極3の直径は120mm、厚さは5mmとした。一方、第二の下部電極30の直径は120mm、厚さは1mmとした。第二の下部電極30の厚さは、強度と熱容量を考慮して決めることができる。上部電極2と第一の下部電極3および第二の下部電極30は、グラファイト基材の表面にSiCを化学的気相成長法により堆積したものを用いた。第二の下部電極30と上部電極2とのギャップ4は0.8mmとした。なお、被加熱試料1は0.5mm〜0.8mm程度の厚さを備え、被加熱試料1を載置する第一の下部電極3にはこの被加熱試料1の厚さを越えた深さを有する窪みが設けられている。また上部電極2と第二の下部電極30の対向するそれぞれの円周角部はテーパーあるいはラウンド状に加工されている。これは、電極角部での電界集中によるプラズマ局在を抑制するためである。
【0022】
上部電極2には、給電線5を介して高周波電源6からの高周波電力が供給される。本実施例では、高周波電源6の周波数として13.56MHzを用いた。第二の下部電極30は、第一の下部電極3と外周で接続されており、さらに第一の下部電極3は給電線7を介してアースに接続されている。給電線5、7も上部電極2および第一の下部電極3の構成材料であるグラファイトで形成されている。
【0023】
高周波電源6と上部電極2間にはマッチング回路8(なお、図中のM.BはMatching Boxの略である。)が配置されており、高周波電源6からの高周波電力を効率良く上部電極2と第二の下部電極30間に形成されるプラズマに供給する構造となっている。上部電極2と第一の下部電極3および第二の下部電極30が配置される容器9内には、ガス導入手段10によりガスを0.1気圧から10気圧の範囲で導入できる構造となっている。ガスは、給電線5内のガス通路11を経て、平行平板電極間のギャップ4内に導入される。導入するガスの圧力は圧力検出手段12によりモニタされる。また容器9は排気口13および圧力調整バルブ14に接続される真空ポンプによりガス排気可能となっている。
【0024】
容器9内の上部電極2、第一の下部電極3および第二の下部電極30はそれぞれに回転放物面で構成された反射鏡35で囲われる構造となっている。回転放物面で形成される反射鏡35は金属基材の放物面を光学研磨し、研磨面に金をメッキあるいは蒸着することで構成される。また反射鏡35の金属基材には冷媒流路36が形成されており、冷却水を流すことで温度が一定に保てる構造となっている。反射鏡35を備えることにより、上部電極2、第一の下部電極3および第二の下部電極30からの輻射熱が反射されるため、熱効率を高めることができる。なお、処理温度が低い場合には必ずしも備える必要はない。
【0025】
また上部電極2、第一の下部電極3および第二の下部電極30と反射鏡35との間には保護石英板37が配置されている。保護石英板37は、超高温の上部電極2、第一の下部電極3および第二の下部電極30からの放出物(グラファイトの昇華等)による反射鏡35面の汚れ防止と、反射鏡35から被加熱試料1に混入する可能性がある汚染の防止機能を有する。
【0026】
上部電極2および第一の下部電極3の非プラズマ接触側には高融点かつ低輻射率の板材またはコーティング15が配置される。高融点かつ低輻射率の板材またはコーティング15を備えることにより、上部電極2および第一の下部電極3からの輻射熱が低減されるため、熱効率を高めることができる。なお、処理温度が低い場合にはこれらを必ずしも備える必要はない。超高温処理の場合には、高融点かつ低輻射率の板材またはコーティング15と反射鏡35のいずれか一者を備えることにより、或いはその両者を備えることにより所定の温度に加熱することができる。容器9には冷却手段18が設置されている。被加熱試料1の温度は、放射温度計19により計測される。本実施例では、上部電極2および第一の下部電極3の非プラズマ接触側に施す高融点かつ低輻射率の板材またはコーティング15に、グラファイト基材にTaC(炭化タンタル)をコーティングした板材を用いた。なお、符号22は被加熱試料上下機構、符号23は上下機構20の駆動電源および制御機構、符号24は圧力調整バルブの駆動電源および制御機構、符号31は第二の下部電極上下機構を示す。同一符号は同一構成要素を示す。
【0027】
次に図1の基本構成における、基本動作例を説明する。また、活性化熱処理工程およびその過程における被加熱試料1の温度推移を図7に模式的に示す。図7において、符号42は被加熱試料の設置および加熱準備工程を、符号43は加熱工程を、符号44は冷却工程を、符号38はガス圧力の模式的変化を、符号39はHeガス流量の模式的変化を、符号40は高周波電力の模式的変化を、符号41は被加熱試料温度の模式的変化を示す。
【0028】
まず容器9内のガスを排気口13より排気し、高真空状態とする。十分排気が終了した段階で、排気口13を閉め、第一のガス導入手段10よりガスを導入し、容器9内を0.6気圧程度する。本実施例では、導入ガスにHeを用いた。予備室(図示せず)で400℃に予備加熱された被加熱試料1を搬送口190から搬送し、第一の下部電極3上に配置する。被加熱試料1の第一の下部電極3上への配置の詳細は図2、図3および図4にて別途説明する。
【0029】
第一の下部電極3上に被加熱試料1を配置後、被加熱試料1上に第二の下部電極30を設置し、第一の下部電極3および第二の下部電極30の位置を上下機構20により所定位置(本実施例では、ギャップ4を0.8mmとした)に配置する。
【0030】
所定位置に第一の下部電極3および第二の下部電極30を配置後、高周波電源6からの高周波電力をマッチング回路8および電力導入端子21を介して上部電極2に供給し、ギャップ4内にプラズマを生成することで被加熱試料1の加熱を行う。高周波電力のエネルギーはプラズマ内の電子に吸収され、さらにその電子の衝突により原料ガスの原子あるは分子が加熱される。また電離によって生じたイオンは、電極前面のシースに発生する電位差で加速され、原料ガスと衝突しながら電極に入射する。この衝突過程において、電極前面のガス温度や電極表面温度を上昇させることが出来る。
【0031】
特に、今回のような大気圧付近では、イオンがシースを通過する際に原料ガスと頻繁に衝突することになるので、電極前面の原料ガスを効率的に加熱できると考える。この結果、原料ガスの温度を容易に1200〜2000℃程度に加熱することができる。この加熱された高温ガスの接触により、上部電極2および第二の下部電極30が加熱される。また、電子衝突によって励起された中性ガスの一部は、発光を伴って脱励起し、この時の発光によっても電極が加熱される。さらに高温ガスが回り込むことや加熱された上部電極2および第二の下部電極30からの熱伝導や輻射により第一の下部電極3および被加熱試料1が加熱される。
【0032】
ここで、第一の下部電極3および被加熱試料1の上に第二の下部電極30があることで、高温ガスにより第二の下部電極30が加熱された後に、被加熱試料1が加熱されるため、被加熱試料1を均一に加熱する効果が得られる。また、第二の下部電極30を設置することにより、被加熱試料1の設置の形状に関わらず、第二の下部電極30と上部電極2との間に均一性の高い電場を形成し、均一な放電を形成することが可能になる。さらに被加熱試料1を第一の下部電極3および第二の下部電極30で囲むことにより、被加熱試料1がギャップ4に形成された放電プラズマに直接曝されることが無いことや、またグロー放電からアーク放電に移行してしまった場合でも、被加熱試料1を経由することなく、第一の下部電極3および第二の下部電極30に放電電流が流れることから、被加熱試料1へのダメージを避けることが出来る。
【0033】
この加熱の際、ガス導入手段10から少量のHeガスを供給し、さらに圧力調整バルブ14により容器9の圧力を一定に保つよう制御する。加熱処理の際に導入するHeガス量は本実施例では100sccm程度とした。これは加熱処理中のギャップ4内のガス純度を保つためであり、加熱中も十分ガス純度が保たれている場合はそのガス流量を減らすことも可能である。もちろんガス純度に問題ない場合、Heガス導入を行わなくても良い。加熱中に流すガス流量が多いほどガスによる熱損失が多くなるので、必要最小限なガス流量とすることが望ましい。
【0034】
加熱中の被加熱試料1の温度は放射温度計19により計測され、それを用いて制御部26により所定の温度になるよう連動して高周波電源6の出力が制御されるため、高精度な被加熱試料1の温度制御が可能となる。本実施例では、投入する高周波電力を最大10kWとした。上部電極2および第一の下部電極3は被加熱試料1とほぼ等温度に加熱される。
【0035】
上部電極2および第二の下部電極30(第一の下部電極3、被加熱試料1を含む)の温度を効率良く上昇させるには、給電線5、7からの伝熱、Heガス雰囲気を介する伝熱および高温域からの輻射(赤外光から可視光域)の抑制が必要となる。特に1200℃以上の超高温状態では、輻射による放熱が非常に大きく、輻射損失の低減が加熱効率の向上に必須となる(輻射損失は絶対温度の四乗に比例して輻射量が増加)。
【0036】
輻射損失抑制のため、本実施例では上述したように、高融点かつ低輻射率の板材またはコーティング15を上部電極2および第一の下部電極3に配置した。高融点かつ低輻射率の材料にはTaCを用いた。TaCは輻射率0.05−0.1程度であり、輻射に伴う赤外線を90%程度の反射率で反射する。よって、これにより上部電極2および第一の下部電極3からの輻射損失が抑制され被加熱試料1を高い熱効率で1200〜2000℃程度の超高温にすることができる。
【0037】
TaCは直接プラズマに接しない形で配置されており、TaまたはTaCに含まれる不純物が被加熱試料1の熱処理中に混入しないようになっている。またTaCで構成される高融点かつ低輻射率の板材またはコーティング15の熱容量は極めて小さいことから、加熱部の熱容量増加を最小限にとどめられる。これにより高融点かつ低輻射率の板材またはコーティング15を配置することによる昇温/降温速度の低下もほとんどない。
【0038】
グロー放電域のプラズマとすることで、上部電極2と第二の下部電極30間に均一に広がったプラズマを形成でき、この平面的なプラズマを熱源として被加熱試料1を加熱することで平面的な被加熱試料1を均一に加熱することが可能となる。また平面的に均一に加熱できることから急速に温度を上昇させても、被加熱試料1内での温度不均一に伴う破損等を生じるリスクが低い。以上から高速な温度上昇および下温が可能となり、一連の加熱処理に必要な時間を短縮できる。この効果により加熱処理のスループット向上や、被加熱試料1の必要以上な高温雰囲気での滞在を抑制でき、高温に伴うSiC表面荒れ等を低減できる。
【0039】
上記加熱が終了したら、一定期間の冷却時間を置き、ある程度被加熱試料1の温度が低下した段階で、搬送口190から被加熱試料1を排出し、次の被加熱試料を搬送して第一の下部電極3上に配置し、一連の操作を繰り返す。被加熱試料1を入れ替える際、搬送口190に接続される被加熱試料退避位置のガス雰囲気を容器9内と同程度に保つことで、被加工試料入れ替えに伴う容器9内のHe入れ替えを行う必要がなく、使用ガス量の削減が可能となる。もちろん、ある程度処理を繰り返すことで容器9内のHe純度が低下することもあるので、その際は定期的に入れ替えを実施する。放電ガスにHeを用いる場合、Heは比較的高価なガスであるため、その使用量を極力削減することでランニングコストの抑制につながる。これは加熱処理中に導入するHeガス量にも言えることであり、処理中のガス純度を保つのに必要最小限な流量とすることでガス使用量の削減が可能となる。また被加熱試料1の冷却時間をこのHe導入により短縮することも可能である。つまり、加熱処理終了後(放電終了後)Heガス流量を増加させることで、そのガス冷却効果により冷却時間を短縮できる。
【0040】
上記図1に示す熱処理装置の基本動作では、ギャップ4を0.8mmとしたが0.1mmから2mmの範囲でも同様な効果がある。0.1mmより狭いギャップの場合も放電は可能であるが、上部電極2と下部電極3間の平行を維持するのに高精度な機能が必要となり、また電極表面の変質(荒れ等)がプラズマに影響するようになり好ましくない。一方ギャップ4が2mmを超える場合は、プラズマの着火性低下やギャップ間からの輻射損失増大が問題となり好ましくない。
【0041】
上記図1に示す熱処理装置の基本動作では、所定位置に第一の下部電極3および第二の下部電極30を配置後、高周波電源6からの高周波電力をマッチング回路8および電力導入端子21を介して上部電極2に供給し、ギャップ4内にプラズマを生成することで被加熱試料1の加熱を行ったが、第一の下部電極3または第二の下部電極30のどちらか一方の電極、あるいは第一の下部電極3および第二の下部電極30を同時に、高周波電源からの高周波電力をマッチング回路および電力導入端子を介して下部電極に供給し、ギャップ4内にプラズマを生成することで被加熱試料1の加熱を行っても同様の効果が得られる。さらに、上記実施例では、上部電極あるいは下部電極どちらか一方にのみ高周波電力を印加しているが、上部電極と下部電極に同時に高周波電力を印加しても良い。
【0042】
上記図1に示す熱処理装置の基本動作では、プラズマ形成の圧力を0.6気圧としたが、0.1気圧から10気圧の範囲でも同様の動作が可能である。なお、10気圧を越えると均一なグロー放電の発生が困難となる。0.1気圧より低い圧力で動作させる場合、上部電極2および下部電極3からのガス雰囲気の伝熱による熱損失を低減でき、また温度上昇にともなうグロー放電からアーク放電への遷移も抑制する効果がある。但し、0.1気圧より低い圧力では、プラズマ中のイオンが被加熱試料1に比較的高いエネルギーで入射するようになり、ダメージを発生させる場合があるので望ましくない。
【0043】
一般的に結晶面にダメージを与える運動エネルギーは10エレクトロンボルト以上であり、この値を超えるイオンの加速が生じるとダメージを与える。よって被加熱試料1に入射するイオンのエネルギーを10エレクトロンボルト以下とする必要がある。プラズマ中のイオンは被加熱試料1表面に形成されるイオンシース内での電圧で加速され入射する。イオンシース内の電圧はプラズマバルク中のイオンと電子のエネルギー差で生じる。よってイオン、電子、中性粒子が熱平衡状態である大気圧では、イオンシースの電圧発生が少なくまたイオンシース内での中性原子との衝突が100〜1000回程度生じるためイオン入射に伴う被加熱試料1の表面ダメージの発生はほとんど生じない。しかし、減圧していくとイオンと電子の運動エネルギーに差が生じイオンシースにイオンを加速する電圧が発生する。例えば数十〜100V程度の電位差がイオンシースに発生した場合を想定する。イオンシースの厚さは通常数十μmから数百μmである。一方、Heイオンの平均自由工程は、例えば1800℃の0.1気圧以下のHe雰囲気では20μm以下である。よってイオンシース内での衝突回数が1〜10回程度しかなく電位差に近い値までイオンが加速される割合が大きくなり、前記した10エレクトロンボルトを超えるエネルギーを有するイオンが入射する可能性が高まる。
【0044】
上記図1に示す熱処理装置の基本動作では、プラズマ生成の原料ガスにHeを用いたが他にAr、Xe、Kr等の希ガスを主原料としたガスを用いても同様の効果があることは言うまでもない。前記動作説明で用いたHeは大気圧近辺でのプラズマ着火性や安定性に優れるが、ガスの熱伝導率が高くガス雰囲気を介した伝熱による熱損失が比較的多い。一方Ar等質量の大きいガスは熱伝導率が低いため、熱効率の観点では有利である。
【0045】
本記図1の実施例では、上部電極2および第一の下部電極3の非プラズマ接触側に施す高融点かつ低輻射率の板材またはコーティング15に、グラファイト基材にTaC(炭化タンタル)をコーティングした板材を用いたが、他にWC(炭化タングステン)、MoC(炭化モリブデン)、Ta(タンタル)、Mo(モリブデン)、W(タングステン)を用いても同様な効果がある。
【0046】
上記図1に示す熱処理装置の基本動作では、原料ガスの導入を上部電極2と下部電極3間に行う第一のガス導入手段10のみを用いる場合について記したが、第一のガス導入手段とは別に第ニのガス導入手段27を設けて、上部電極2と下部電極3間以外からガスを導入することも可能である。特に第ニのガス導入手段27からは、容器9内を真空排気後にガス充填する場合等比較的大流量でガスを導入する場合に用いる。熱処理中や熱処理後の冷却機関等比較的微量なガスを有効に被加熱試料1に供給する場合には、第一のガス導入手段10を用い、容器9の大気開放時や先に記した排気後のガス充填時に第ニのガス導入手段27を用いる。
【0047】
上記実施例では、上部電極2、第一の下部電極3および第二の下部電極30をCVD法による炭化シリコンをコーティングしたグラファイトを用いたが、他にグラファイト単体、グラファイトに熱分解炭素をコーティングした部材、グラファイト表面をガラス化処理した部材、およびSiC(焼結体、多結晶、単結晶)を用いても同様な効果がある。上部電極2および下部電極3の基材となるグラファイトやその表面に施すコーティングは被加熱試料1への汚染防止の観点から高純度なものが望ましいのは言うまでもない。
【0048】
また上記実施例では、高融点かつ低輻射率の板材またはコーティング15にTaCを用いたが同様に他の高融点(使用温度に耐える融点)かつ低輻射率な材料で同様な効果がある。例えばTa(タンタル)単体、Mo(モリブデン)、W(タングステン)またはWC(炭化タングステン)等でも同様な効果がある。
【0049】
また超高温時には給電線5、7からも被加熱試料1への汚染が影響する場合もある。よって本実施例では給電線5、7も上部電極2および下部電極3と同様なグラファイトを用いた。また上部電極2および下部電極3の熱は給電線5、7を伝熱し損失となる。よって給電線5、7からの伝熱を必要最小限にとどめる必要がある。よって、グラファイトで形成される給電線5、7の断面積はなるべく小さく、長さを長くする必要がある。しかし、給電線5、7の断面積を極端に小さくし、長さも長くしすぎると給電線5、7での高周波電力損失が大きくなり、被加熱試料1の加熱高率の低下を招く。本実施例では、以上の観点からグラファイトで形成される給電線5、7の断面積を12mm、長さを40mmとした。同様な効果は断面積5mm〜30mm、長さ30mm〜100mmの範囲で得られる。
【0050】
上記実施例では,高融点かつ低輻射率の板材またはコーティング15で電極からの輻射損失を低減させると同時に反射鏡35により輻射光を電極に戻すことで加熱効率の向上が得られたが,高融点かつ低輻射率の板材またはコーティング15のみの設置した場合でも加熱効率の向上を期待できるのは勿論である。同様に,反射鏡35のみ設置した場合でも,加熱効率の向上を期待できる。さらに,保護石英板37は,汚染防止の効果を期待するために設置しているものであり,保護石英板37を使用しなくても,十分な加熱効率を得ることが出来る。
【0051】
本実施例では前述したように加熱効率を決定する上部電極2および第一の下部電極3からの放熱は、(1)輻射、(2)ガス雰囲気の伝熱、(3)給電線5、7からの伝熱が主である。1200℃以上の場合、この中で主なのが前述した(1)輻射で、その抑制に上部電極2および下部電極3の非プラズマ接触側に配置した高融点かつ低輻射率の板材またはコーティング15用いた。また給電線5、7からの放熱は前述した給電線の断面積および長さを最適化し最小限に抑制した。
【0052】
残る(2)のガス雰囲気の伝熱に関しては、ガスの伝熱距離(高温部である上部電極2および下部電極3と低温部であるシールド(保護石英板)37または容器9壁までの距離)により抑制した。大気圧付近のHe雰囲気では比較的ガスの伝熱による放熱が高くなる(Heの熱伝導率が高いため)。よって本実施例では、上部電極2および第一の下部電極3からシールド(保護石英板)37または容器9壁までの距離をそれぞれ30mm以上確保する構造とした。距離が長い方が放熱抑制には有利であるが、加熱領域に対する容器9の大きさが大きくなり好ましくない。30mm以上の距離を確保することで、容器9の大きさを抑制しつつガス雰囲気の伝熱による放熱を抑制できる。もちろん熱伝導率の低いAr等を用いることでさらにガス雰囲気の伝熱を抑制することが可能となることは言うまでもない。
【0053】
実施例1では、放電の生成に13.56MHzを用いたがこれは工業周波数であるために低コストで電源が入手でき、かつ電磁波漏洩基準も低いので装置コストが低減できるためである。しかし、原理的には他の周波数でも同様な原理で加熱できることは言うまでもない。特に、1MHz以上100MHz未満の周波数が好適である。1MHzより低い周波数になると加熱に必要な電力を供給する際の高周波電圧が高くなり、異常放電(不安定な放電や上部電極と下部電極間以外での放電)を生じ、安定な動作が難しくなるためふさわしくない。また100MHzを超える周波数は、上部電極2と第二の下部電極30のギャップ4間のインピーダンスが低く、プラズマ生成に必要な電圧が得にくくなりため好適でない。
【0054】
図2および図3に図1に示す熱処理装置の加熱領域(被加熱試料1、上部電極2、第一の下部電極3、第二の下部電極30、高融点かつ低輻射率の板材またはコーティング15、シールド(保護石英板)37)の詳細図を示す。図2は加熱または加熱後の冷却中の状態を示し、図3は被加熱試料1の搬送時の状態を示す。
【0055】
第一の下部電極3上に載置される被加工試料1を搬出する場合、まず図2処理状態から第一の下部電極3を上下機構20にて下げ図3の状態とする。第一の下部電極3位置を下げることで、第一の下部電極3、第二の下部電極30および被加熱試料1に隙間を形成する。この隙間に搬送アーム(図示せず)を挿入し、その後被加熱試料上下機構22を下げることで被加熱試料1は搬送アームに引き渡され、搬出することが可能となる。
【0056】
被加熱試料1を下部電極3に搭載する際はその逆の工程をたどる。第一の下部電極3、第二の下部電極30および被加熱試料上下機構22とも下げた状態で被加熱試料1を搭載した搬送アームを第一の下部電極3上に挿入する。その後、被加熱試料上下機構22位置を上方に上げ、被加熱試料1を搬送アームから受け取る。さらに第一の下部電極3を加熱処理位置に上げることで被加熱試料1を第一の下部電極3上に配置し、引き続き第二の下部電極30を第一の下部電極3上に設置することができる。被加熱試料上下機構22も比較的高温に曝されることから高温に耐え汚染も出ない材料で構成することが望ましい。本実施例では、被加熱試料上下機構22を焼結体のSiC(炭化シリコン)で形成した。なお、被加熱試料上下機構22の平面配置は、被加熱試料1が保持でき、且つ搬送アームが通過できる位置であればどこでも良い。また、第二の下部電極上下機構31の平面配置は、第二の下部電極30が保持でき、且つ被加熱試料1を保持した搬送アームが通過できる位置であればどこでもよい。
【0057】
上記実施例では、第一の下部電極3および第二の下部電極30の直径を等しくしたが、第一の下部電極3よりも第二の下部電極30の直径を大きくしても同様の効果がある。また図4に示す加熱領域のように、第二の下部電極30aは被加熱試料1を設置する第一の下部電極の上面だけではなく側面も覆うような構造にすることで、さらに均一に加熱することが期待できると同時に、第一の下部電極3と第二の下部電極30aの位置がずれるのを防ぐことや、第一の下部電極と第二の下部電極の接点をプラズマが生成されるギャップ4から遠ざかるので、放電を安定に形成する効果が得られる。
【0058】
上記実施例では、第一の下部電極3および第二の下部電極30のように分割した電極間に被加熱試料1を下部電極内部に設置したが、図5に示すように、下部電極が分割されておらず、一体型で形成されていても良い。空洞型下部電極32は、該下部電極の側面の一部から電極内部にかけて空洞になっており、被加熱試料1を電極内部に設置することができる。被加熱試料1は、被加熱試料上下機構22位置を上方に上げることで、空洞型下部電極32との間に隙間を形成し、この隙間に搬送アームを挿入し、被加熱試料1の搬入および搬出が可能である。
【0059】
図6は、下部電極だけでなく、上部電極の内部にも被加熱試料1を配置する場合である。空洞型上部電極33に被加熱試料1を設置するには、プラズマを形成するギャップ4側の該空洞型上部電極33の空洞壁上に被加熱試料1を置くことになる。下部電極で用いた様な被加熱試料上下機構を使用するには、空洞型上部電極33のギャップ4側に孔を形成することになり、加熱均一性が損なわれる恐れがある。そこで、空洞型上部電極33の空洞内部に突起34を設け、該突起34上に被加熱試料1を配置することで、空洞型上部電極33の空洞内部壁と被加熱試料1との間に隙間を形成することができ、搬送アームによる被加熱試料1の搬入および搬出が可能になる。被加熱試料1は上部電極の突起34と局所的に接することになるが、加熱のメカニズムは、主に加熱されたガスによるものであり、この加熱ガスと電極温度はほぼ等しく、被加熱試料1を均一に加熱することができる。上記実施例では、空洞型上部電極33は電極内部を空洞にすることで一体型となっているが、2つ以上に分割されていても同様の効果が得られるのは勿論である。
【0060】
上記図1、図2、図3、図4、図5、図6に示す実施例では、上部電極あるいは下部電極に対し、それぞれ1枚の被加熱試料1を配置する場合について記したが、上部電極および下部電極を大型化し、複数枚の被加熱試料1を上部電極内部および下部電極内部に配置し、同時に処理することも可能である。
【0061】
図1に示した熱処理装置を用いてイオン打ち込みを行なったSiC基板を1500℃で1分間の熱処理を行なったところ、良好な導電特性を得ることができた。また、SiC基板表面には、周辺部を含め、面荒れは認められなかった。
【0062】
以下、実施例に示した本発明の効果を纏める。本技術では、狭ギャップ間で生成する大気圧グロー放電によるガス加熱を熱源とて被加熱試料1を加熱する。本原理に伴い従来技術に無い以下に示す4つの効果が得られる。
【0063】
第一点目は熱効率である。ギャップ間のガスは熱容量が極めて少なく、また被加熱試料1を含む上部電極2および下部電極3の非プラズマ接触面に高融点かつ低輻射率の板材またはコーティング15配置することにより輻射に伴う加熱損失が極めて少ない体系にて被加熱試料1を加熱できる。
【0064】
第二点目は加熱応答性と均一性である。加熱部の熱容量が極めて小さいため急速な昇温および降温が可能となる。またグロー放電によるガス加熱を熱源に用いるため、グロー放電の広がりにより平面的に均一な加熱が可能となる。温度均一性が高いことで熱処理に伴う被加熱試料1面内でのデバイス特性バラツキを抑制できると同時に、急激な昇温等を行った際に被加熱試料1面内の温度差に伴う熱応力による損傷も抑制できる。
【0065】
第三点目は、加熱処理に伴う消耗部品の低減である。本技術では被加熱試料1を覆う電極に接触するガスを直接加熱するため、高温化する領域は被加熱試料1の極めて近傍に配置される部材に限定され、かつその温度も被加熱試料1と同等である。よって、部材の寿命が長く、部品劣化に伴う交換の領域も少ない。
【0066】
第四点目は被加熱試料1の表面荒れ抑制である。本技術では、先に記し効果により昇温/降温時間が短くできることから被加熱試料1を高温環境下に曝す時間が必要最低限に短縮され表面荒れを抑制できる。また本技術では、大気圧グロー放電によるプラズマを加熱源として使用するが、被加熱試料は電極材料によりシールドされ、プラズマに直接曝されることはない。これにより熱処理装置とは別装置で行う保護膜の形成および除去工程が不要となり製造コストの低減が可能となる。
【符号の説明】
【0067】
1…被加熱試料、2…上部電極、3…第一の下部電極、4…ギャップ、5…給電線、6…高周波電源、7…給電線、8…マッチング回路、9…容器、10…第一のガス導入手段、11…ガス通路、12…圧力検出手段、13…排気口、14…圧力調整バルブ、15…高融点かつ低輻射率の板材またはコーティング、18…冷却手段、19…放射温度計、20…上下機構、21…電力導入端子、22…被加熱試料上下機構、23…上下機構20の駆動電源および制御機構、24…圧力調整バルブの駆動電源および制御機構、26…制御部、27…第ニのガス導入手段、30…第ニの下部電極、30a…第ニの下部電極、31…第二の下部電極上下機構、32…空洞型下部電極、33…空洞型上部電極、34…突起、35…反射鏡、36…冷媒流路、37…保護石英板(シールド)、38…ガス圧力の模式的変化、39…Heガス流量の模式的変化、40…高周波電力の模式的変化、41…被加熱試料温度の模式的変化、42…被加熱試料の設置および加熱準備工程、43…加熱工程、44…冷却工程、190…搬送口。

【特許請求の範囲】
【請求項1】
平行平板電極と、
前記平行平板電極間に高周波電圧を印加してプラズマを発生する高周波電源と、
被加熱試料の温度を計測する温度計測手段と、
前記高周波電源の出力を制御する制御部とを備え、
前記平行平板電極の少なくとも一方は、その電極内部に前記被加熱試料が設置される空間を有し、
前記制御部は、前記温度計測手段により計測された温度を用い、前記高周波電源の出力を制御することで前記被加熱試料の熱処理温度の制御を行うことを特徴とする熱処理装置。
【請求項2】
請求項1記載の熱処理装置において、
前記平行平板電極は、非プラズマ接触面側にそれぞれ高融点かつ低輻射率の平板またはコーティングを備えることを特徴とする熱処理装置。
【請求項3】
請求項1記載の熱処理装置において、
前記平行平板電極は、回転放物面で構成された反射鏡で囲われていることを特徴とする熱処理装置。
【請求項4】
請求項3記載の熱処理装置において、
前記平行平板電極と前記反射鏡との間には、保護石英板がそれぞれ配置されていることを特徴とする熱処理装置。
【請求項5】
請求項1記載の熱処理装置において、
前記被加熱試料が設置される前記平行平板電極は、二つ以上に分割された部品の組み合わせで構成されていることを特徴とする熱処理装置。
【請求項6】
請求項1記載の熱処理装置において、
前記被加熱試料が設置される前記平行平板電極は、前記空間に通じる側部開口を有することを特徴とする熱処理装置。
【請求項7】
請求項5記載の熱処理装置において、
前記被加熱試料が設置される前記平行平板電極は、前記プラズマに主に接触する第1の部分と、前記プラズマに対して前記第1の部分の陰になる第2の部分とを有し、前記第1の部分の面積が前記第2の部分の面積よりも大きいことを特徴とする熱処理装置。
【請求項8】
請求項1記載の熱処理装置において、
前記平行平板電極のギャップは、0.1mm〜2mmの範囲にあることを特徴とする熱処理装置。
【請求項9】
請求項1記載の熱処理装置において、
前記平行平板電極の少なくとも一方の電極内部に設置される被加熱試料の数は、複数であることを特徴とする熱処理装置。
【請求項10】
請求項1記載の熱処理装置において、
前記被加熱試料を熱処理するときの圧力は、0.1〜10気圧の範囲にあることを特徴とする熱処理装置。
【請求項11】
請求項1記載の熱処理装置において、
前記被加熱試料を熱処理するときの雰囲気は、希ガスを主原料としたガスであることを特徴とする熱処理装置。
【請求項12】
請求項11記載の熱処理装置において、
前記希ガスは、He、Ar、Kr、又はXeであることを特徴とする熱処理装置。
【請求項13】
平行平板電極と、
前記平行平板電極間に高周波電圧を印加してプラズマを発生する高周波電源とを有し、
前記平行平板電極は、非プラズマ接触面側にそれぞれ高融点かつ低輻射率の平板またはコーティングを備え、
前記平行平板電極の少なくとも一方は、その電極内部に前記被加熱試料が設置される空間を有することを特徴とする熱処理装置。
【請求項14】
平行平板電極と、
前記平行平板電極間に高周波電圧を印加してプラズマを発生する高周波電源とを有し、
前記平行平板電極は、回転放物面で構成された反射鏡で囲われており、
前記平行平板電極の少なくとも一方は、その電極内部に前記被加熱試料が設置される空間を有することを特徴とする熱処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−238629(P2012−238629A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2011−104841(P2011−104841)
【出願日】平成23年5月10日(2011.5.10)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 平成23年3月9日 社団法人応用物理学会発行の「2011年春季<第58回>応用物理学関係連合講演会[講演予稿集](DVD−ROM)」に発表
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】