説明

縮合多環式炭化水素基を有するシリコーン共重合体及びその製造方法

【課題】
200nmで以上の遠紫外線領域でも吸収が高く、かつフェノール性水酸基を有することによりアルカリ可溶な新規シリコーン共重合体を提供する。
【解決手段】
フェノール単位を有するシルセスキオキサンと縮合多環式炭化水素基を有するシルセスキオキサンを含むシリコーン共重合体を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子材料や微細加工の材料として有用な縮合多環式炭化水素基を有する新規シリコーン共重合体に関するものである。
【背景技術】
【0002】
近年、半導体素子の微細化が進むとともに、その製造に用いられるリソグラフィ工程についていっそうの微細化が求められるようになってきている。その微細化が急速に発展してきた背景には、投影レンズの高NA化、レジストの性能向上、短波長化が挙げられる。
【0003】
その中で、フェノール性水酸基をもつポリオルガノシルセスキオキサンを用いて微細加工に使用する例は多く報告されており、フェノール性水酸基を有することによりアルカリ水溶液に可溶であることが特徴である(特許文献1参照)。
【0004】
一方、微細パターンを作成するために、中間層を設ける三層レジストプロセスも考案されており、 特に最近では、フェノール性水酸基をもつラダー型シリコーン共重合体を反射防止膜に用いる例も報告されている。その報告では、特に微細加工で用いられるArFレーザーで反射防止膜を形成している(特許文献2参照)。
【0005】
しかしながら、フェノール性水酸基をもつポリシルセスキオキサンは、KrF露光のような248nmの遠紫外線吸収波長では、光透過性が高く、反射防止膜を形成することはできない。よって、フェノール性水酸基を有しアルカリに可溶である上、さらに200nm以上の紫外線吸収部に吸収があるシロキサン材料の提供が求められていた。
【特許文献1】特開平08−334900号公報
【特許文献2】特開2004−341479号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、200nm以上の紫外線吸収部にも吸収を高くするため縮合多環式炭化水素基を導入し、かつアルカリ水溶液にも可溶なフェノール性水酸基を有するシリコーン共重合体を提供することを目的としてなされたものである。
【課題を解決するための手段】
【0007】
本発明者らは、KrF(248nm)のような遠紫外線露光波長でも光を吸収し、かつフェノール性水酸基を有するシリコーン共重合体について、種々検討を重ねた結果、特定の組成をもつシリコーン共重合体では、例えばKrF(248nm)のような200nm以上遠紫外線露光波長で吸収があり、かつフェノール性水酸基を有することにより微細加工に使用される材料として好適な新規材料を見出し、この知見に基づいて本発明をなすに至った。
【0008】
すなわち、本発明は、フェノール単位を有するシルセスキオキサンと縮合多環式炭化水素基を有するシルセスキオキサンを含むシリコーン共重合体を提供することである。
【発明の効果】
【0009】
本発明により、縮合多環式炭化水素基をもつため200nm以上の遠紫外線領域でも吸収が高く、かつフェノール性水酸基を有することによりアルカリ可溶なシリコーン共重合体が提供される。
【0010】
本発明シリコーン共重合体は例えば248nm露光波長のような200nm以上の遠紫外線領域で光を吸収し反射防止膜的な役割を果たすため、微細加工プロセスに導入することができる。また、フェノール性水酸基を反応ポイントにして、様々な置換基を導入することができることから、塗料、接着剤等にも応用することができる。
【発明を実施するための最良の形態】
【0011】
本発明は、フェノール単位を有するシルセスキオキサンと縮合多環式炭化水素基を有するシルセスキオキサンを含むシリコーン共重合体である。
【0012】
本発明のシリコーン共重合体は、好ましくは、フェノール単位を有するシルセスキオキサンと縮合多環式炭化水素基を有するシルセスキオキサンを含むシリコーン共重合体は、下記一般式
【0013】
【化1】

【0014】
(式中、nは0〜10を示す)
で示されるフェノール単位を有するシルセスキオキサン単位と下記一般式
【0015】
【化2】

【0016】
(Aは縮合多環式炭化水素基)
で示されるシルセスキオキサン単位を含む骨格を有するシリコーン共重合体であり、より好ましくは、下記一般式
【0017】
【化3】

【0018】
(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす)
で示される繰り返し単位を有するものである。
【0019】
本発明のシリコーン共重合体は、重量平均分子量(ポリスチレン換算)が500〜100000の範囲にあるものが好ましく、1000〜10000の範囲にあるものが最も好ましい。分散度は1.0〜10.0の範囲にあるものが好ましく、1.2〜5.0の範囲にあるものが最も好ましい。
【0020】
また、本発明のシリコーン共重合体は、好ましくは、下記一般式
【0021】
【化4】

【0022】
(ここでのBは一般的な有機基を示す)
で示す各ケイ素原子に3個の酸素原子と結合し、各酸素原子が2個のケイ素原子に結合している。
【0023】
本発明のシリコーン共重合体は下記一般式
【0024】
【化5】

【0025】
(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす)
に示す構造式で示すこともできる。
【0026】
また、本発明のシリコーン共重合体は、下記一般式
【0027】
【化6】

【0028】
(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす)
で示されるラダー型シリコーン共重合体でも良い。
【0029】
ここで、下記一般式
【0030】
【化7】

【0031】
のnは0〜10の整数を示すが、原料の入手から考えるとnは0〜5が好ましく、合成上の容易さを考慮するとnが0〜3がより好ましい。
【0032】
下記一般式
【0033】
【化8】

【0034】
の繰り返し単位中、Aで示される縮合多環式炭化水素基は、2個以上のベンゼン環が縮合している炭化水素を示し、好ましい例としては、ナフタレン、アントラセン、フェナントレン、ペンタセン、ヘキサセン、トリフェニレン、ピレン、ピセン等が挙げられる。また、ベンゼン環以外の骨格を有するペンタレン、インデン、アズレン、ヘプタレン、ビフェニレン、アセナフチレン等も縮合多環式炭化水素基であり好ましい例として挙げられる。フェノール性水酸基の特性を活かし、アルカリ可溶性ポリシルセスキオキサンにするためには、立体的に嵩高い縮合多環式炭化水素基よりも立体的に小さいものがより好まれることから、より好ましい例として、ペンタレン、インデン、アズレン、ヘプタレン、ビフェニレン、ナフタレン、アントラセン、フェナントレン等のベンゼン環単位が3つ以下の縮合多環式炭化水素基である。
下記一般式
【0035】
【化9】

【0036】
の繰り返し単位中、Rで示される有機基としては、特に選ばないが、炭素数1〜20の直鎖状、分枝状または環状の1価炭化水素基が好ましく、架橋炭化水素基でも良い。好ましい例として、炭素数1〜20の直鎖状飽和炭化水素基メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等の炭化水素基が挙げられる。分枝状炭化水素基としては、イソプロピル機、イソブチル基等の炭化水素基が挙げられる。環状炭化水素基としてシクロペンチル基、シクロヘキシル基、シクロヘプチル基等の環状炭化水素基が挙げられる。また、架橋環状炭化水素基として、下記構造式の架橋炭化水素基等が挙げられる。
【0037】
【化10】

【0038】
本発明のシリコーン共重合体を製造する場合は、フェノール部位を保護したシリコンモノマーと縮合多環式炭化水素基を有するシリコンモノマーを加水分解次いで重合を行い、フェノール部位を保護したシロキサンポリマを製造し、最後にフェノール部位の保護部分を脱保護することにより製造することができる。
【0039】
本発明のシリコーン共重合体を製造する場合は、好ましくは下記で示される合成法で製造することができる。
【0040】
【化11】

【0041】
(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす。Mは炭素数1〜5の炭化水素基を示し、カルボニル基を有していても良い。Xは加水分解性基を示す。)
すなわち、下記構造式
【0042】
【化12】

【0043】
に示すフェノール性水酸基を保護したトリクロロシランモノマーあるいはトリアルコキシシランモノマーと下記構造式
【0044】
【化13】

【0045】
(Aは縮合多環式炭化水素基)
で示されるトリクロロシランモノマーあるいはトリアルコキシシランモノマーと下記構造式
【0046】
【化14】

【0047】
(Rは有機基)
を加水分解後、重合することにより高分子化し、下記構造式
【0048】
【化15】

【0049】
(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす。Mは炭素数1〜5の炭化水素基を示す)
のシリコーン共重合体を合成することができる。ここで、Mはフェノール性水酸基を保護した保護基を示し、好ましい例として炭素数1〜5の炭化水素基であるメチル基、エチル基、n-プロピル基、n-ブチル基、iso-プロピル基、tert-ブチル基、n-ペンチル基等の炭化水素基が挙げられ、アセチル基、エチルカルボニル基、n-プロピルカルボニル基などのカルボニル基を有する場合でも良い。また、原料入手の容易さからメチル基、エチル基、tert-ブチル基が特に好ましく、カルボニル基を有する場合では原料入手の容易さからアセチル基が特に好ましい。
【0050】
また、Xは加水分解性基を示し、ハロゲンもしくは炭素数1〜5の直鎖状もしくは分枝状のアルコキシ基を示す。
【0051】
この加水分解例として、使用するシランモノマーが共にトリクロロシランモノマーの場合は、炭酸水素ナトリウム水溶液のような中性に近い条件で容易に加水分解できる。また、トリアルコキシシランモノマーを使用する場合は、強塩基条件では3次元化したポリマになりやすいため、塩酸やリン酸水溶液のような酸性条件もしくはアミンを用いた弱塩基性条件で行うほうが好ましい。
次に加水分解で回収した油層を200℃まで加熱することにより、フェノール性水酸基が保護基Mで保護された下記化合物
【0052】
【化16】

【0053】
(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす。Mは炭素数1〜5の炭化水素基を示す)
を得ることができる。この上記シリコーン共重合体の重量平均分子量(ポリスチレン換算)が1000〜100000の範囲にあるものが好ましく、2000〜30000の範囲にあるものが最も好ましい。分散度は1.0〜10.0の範囲にあるものが好ましく、1.5〜5.0の範囲にあるものが最も好ましい。
【0054】
次に、シリコーン共重合体のフェノール性水酸基を保護基Mで保護した部位を脱保護して目的の水酸基を有する下記化合物
【0055】
【化17】

【0056】
(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす)
のシリコーン共重合体を得ることができる。この脱保護条件例として、酸性条件下が好ましく、トリメチルシリルヨードのような脱保護試薬を使用することで容易に脱保護反応することができる。次いで水で加水分解することによりシリコーン共重合体を得ることができる。このトリメチルシリルヨードの代わりにトリメチルシリルクロライドとヨウ化ナトリウムを使用してもかまわない。アルカリ条件ではSi−Oの結合が切断される可能性があるため避けるべきである。この脱保護反応の溶媒はアセトニトリルやクロロホルム等が使われるが、フェノール部位を保護されたシリコーン共重合体の溶解性により使い分ける。
【0057】
このように脱保護することにより水酸基をもつシリコーン共重合体を合成することができる。
【0058】
このシリコーン共重合体は、200nm以上の遠紫外線露光波長では光に吸収があり、248nmの波長で透過率は80%以下のものが好ましいが、反射防止膜用途で使用するためには248nmの波長で透過率50%以下のものがより好ましく、さらに20%以下のものがさらに好ましい。
【0059】
本発明により、縮合多環式炭化水素基をもつため200nm以上の紫外線領域でも吸収が高く、かつフェノール性水酸基を有することによりアルカリ可溶なシリコーン共重合体が提供される。
【0060】
本発明シリコーン共重合体は、縮合多環式炭化水素基を有しており、200nm以上の紫外線領域でも吸収し反射防止膜的な役割を果たすため、微細加工プロセスに導入することができる。また、フェノール性水酸基を反応ポイントにして、様々な置換基を導入することができることから、塗料、接着剤等にも応用できるが、その応用範囲が、これらに限られるものではない。
【実施例】
【0061】
以下、実施例を示して本発明を具体的に説明するが、本発明は下記例に制限されるものではない。
【0062】
測定には下記装置を使用し、原料は一般的な試薬メーカーから購入した。
【0063】
測定装置
NMR測定・・・日本電子製400MHz NMR測定器
IR測定・・・島津製IR Prestige-21
GPC測定・・・東ソー製HLC-8220
UV測定・・・島津製UV-2400PC(2×10-4mol/lのエタノール溶液を調整し、光路長10mmの角形石英セルに入れ25℃で50Wハロゲンランプを使用して測定した)。
【0064】
実施例1
p−ヒドロキシベンジルシルセスキオキサン・9−フェナントレニルシルセスキオキサン共重合体(n=1、a=70mol%、b=30mol%、c=0mol%、A=9−フェナントレニル)の合成
撹拌機、環流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、水117g仕込み、p−メトキシベンジルトリクロロシラン45.2g(0.187モル)と9−フェナントレニルトリメトキシシラン23.9g(0.080モル)のトルエン117g溶液を反応温度10〜20℃で滴下した。滴下終了後、同温度で2時間熟成後に静置後分液を行い、油層を回収した。次いで5%炭酸水素ナトリウム水溶液で洗浄し、トルエン油層を回収した。
【0065】
次にそのトルエン溶液を撹拌機、蒸留塔、冷却器及び温度計を備えた1L4つ口フラスコに移し、オイルバスに入れ、徐々に加熱し、トルエンを留去した。トルエン留去後にさらに温度を上げ、200℃で2時間熟成し、GPC分析により、重量平均分子量(Mw:ポリスチレン換算)3000、分散度(Mw/Mn:ポリスチレン換算)1.4のp−メトキシベンジルシルセスキオキサン・9−フェナントレニルシルセスキオキサン共重合体46.5g合成した。
【0066】
NMRにより構造を確認した。
1H-NMR(CDCl3):δ(ppm)=0.82-2.40(bs、-CH2-)、3.30-3.70(bs、-OCH3)、6.10-7.70(m、ベンゼン環)
IR(KBr):ν(cm-1)=1018-1196(Si-O)
次に、撹拌機、環流冷却器、滴下ろう斗及び温度計を備えた500mL4つ口フラスコに、アセトニトリル215gを仕込み、p−メトキシベンジルシルセスキオキサン・9−フェナントレニルシルセスキオキサン共重合体40.2gとヨウ化ナトリウム66.8g(0.445モル)とトリメチルクロロシラン48.4g(0.445モル)を順次加え、65〜70℃で24時間還流した。還流後、水71.7gを滴下し、65〜70℃で6時間還流後に冷却し、亜硫酸水素ナトリウム水溶液で遊離ヨウ素を還元した後、15%食塩水で2回洗浄し、油層を回収した。さらに、油層を水に落として結晶を回収し、その結晶を乾燥し、GPC分析により、重量平均分子量(Mw:ポリスチレン換算)2500、分散度(Mw/Mn:ポリスチレン換算)1.3のp−ヒドロキシベンジルシルセスキオキサン・1−ナフチルシルセスキオキサン共重合体43.2g合成した。
【0067】
NMRとIR分析により構造を確認した。
1H-NMR(CDCl3):δ(ppm)=0.82-2.40(bs、-CH2-)、6.10-7.70(m、ベンゼン環)、8.80-9.10(bs、-OH)
IR(KBr):ν(cm-1)=3340(-OH)、993-1251(Si-O)
実施例2
p−ヒドロキシベンジルシルセスキオキサン・1−ナフチルシルセスキオキサン共重合体(n=1、a=70mol%、b=30mol%、c=0mol%、A=ナフチル)の合成
実施例1の9−フェナントレニルトリメトキシシランを1−ナフチルトリメトキシシラン20.9gに変えた以外は、実施例1と同条件で合成し、GPC分析により、重量平均分子量(Mw:ポリスチレン換算)2500、分散度(Mw/Mn:ポリスチレン換算)1.3のp−ヒドロキシベンジルシルセスキオキサン・1−ナフチルシルセスキオキサン共重合体を合成した。
【0068】
NMRとIR分析により構造を確認した。
1H-NMR(CDCl3):δ(ppm)=0.85-2.40(bs、-CH2-)、6.20-8.20(m、ベンゼン環)、8.80-9.10(bs、-OH)
IR(KBr):ν(cm-1)=3335(-OH)、993-1251(Si-O)
実施例3
p−ヒドロキシベンジルシルセスキオキサン・1−アントラセニルシルセスキオキサン共重合体(n=1、a=70mol%、b=30mol%、c=0mol%、A=アントアセニル)の合成
実施例1の9−フェナントレニルトリメトキシシランを1−アントラセニルトリメトキシシラン20.9gに変えた以外は、実施例1と同条件で合成し、GPC分析により、重量平均分子量(Mw:ポリスチレン換算)2300、分散度(Mw/Mn:ポリスチレン換算)1.4のp−ヒドロキシベンジルシルセスキオキサン・1−アントラセニルシルセスキオキサン共重合体を合成した。
【0069】
NMRとIR分析により構造を確認した。
1H-NMR(CDCl3):δ(ppm)=0.85-2.40(bs、-CH2-)、6.20-8.20(m、ベンゼン環)、8.65-9.25(bs、-OH)
IR(KBr):ν(cm-1)=3338(-OH)、995-1250(Si-O)
実施例4
p−ヒドロキシフェネチルシルセスキオキサン・9−フェナントレニルシルセスキオキサン共重合体(n=1、a=70mol%、b=30mol%、c=0mol%、A=ナフチル)の合成
実施例1のp−メトキシベンジルトリクロロシランをp−アセトキシフェネチルトリクロロシラン22.8gに変えた以外は、実施例1と同条件で合成し、GPC分析により、重量平均分子量(Mw:ポリスチレン換算)2000、分散度(Mw/Mn:ポリスチレン換算)1.2のp−ヒドロキシベンジルシルセスキオキサン・1−ナフチルシルセスキオキサン共重合体を合成した。
【0070】
NMRとIR分析により構造を確認した。
1H-NMR(CDCl3):δ(ppm)=0.82-2.45(bs、-CH2-)、6.20-8.20(m、ベンゼン環)、8.80-9.10(bs、-OH)
IR(KBr):ν(cm-1)=3335(-OH)、990-1250(Si-O)
参考例1
p−ヒドロキシベンジルシルセスキオキサン重合体(n=1、a=100mol%、b=0mol%、c=0mol%)の合成
実施例1の1−ナフチルトリクロロシランを使用しない以外は実施例1と同条件で合成し、GPC分析により、重量平均分子量(Mw:ポリスチレン換算)4500、分散度(Mw/Mn:ポリスチレン換算)1.5のp−ヒドロキシベンジルシルセスキオキサン重合体を合成した。
【0071】
NMRとIR分析により構造を確認した。
1H-NMR(CDCl3):δ(ppm)=0.82-2.40(bs、-CH2-)、6.10-7.70(m、ベンゼン環)、8.80-9.10(bs、-OH)
IR(KBr):ν(cm-1)=3340(-OH)、993-1251(Si-O)
参考例2
p−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体(n=1、a=70mol%、b=30mol%、c=0mol%、A=フェニル)の合成
実施例1の1−ナフチルトリクロロシランをフェニルトリクロロシラン16.9gに変更した以外は実施例1と同条件で合成し、GPC分析により、重量平均分子量(Mw:ポリスチレン換算)8000、分散度(Mw/Mn:ポリスチレン換算)1.8のp−ヒドロキシベンジルシルセスキオキサン・フェニルシルセスキオキサン共重合体を合成した。
【0072】
NMRとIR分析により構造を確認した。
1H-NMR(CDCl3):δ(ppm)=0.82-2.40(bs、-CH2-)、6.10-7.70(m、ベンゼン環)、8.80-9.10(bs、-OH)
IR(KBr):ν(cm-1)=3340(-OH)、993-1251(Si-O)
それぞれ合成したシリコーン共重合体をエタノールに溶解したときのUV測定結果(透過率)を次表に示す。248nmは遠紫外線の代表的な波長である。
【0073】
【表1】

【0074】
このように、縮合多環式炭化水素基を導入することにより、248nm波長でも透過率が小さいシリコーン共重合体が得られた。

【特許請求の範囲】
【請求項1】
フェノール単位を有するシルセスキオキサンと縮合多環式炭化水素基を有するシルセスキオキサンを含むシリコーン共重合体。
【請求項2】
下記一般式
【化1】

(式中、nは0〜10を示す)
で示されるフェノール単位を有するシルセスキオキサン単位と下記一般式
【化2】

(Aは縮合多環式炭化水素基)
で示されるシルセスキオキサン単位を含む骨格を有する請求項1記載のシリコーン共重合体。
【請求項3】
下記一般式
【化3】

(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす)
で示される繰り返し単位をもつ請求項1または2記載のシリコーン共重合体。
【請求項4】
下記一般式
【化4】

(式中、nは0〜10を示し、Aは縮合多環式炭化水素基を示す。a、bはモル%を示し、a、bは1〜99モル%、a+b=100を満たす)
で示される繰り返し単位をもつ請求項1から3記載のシリコーン共重合体
【請求項5】
下記一般式
【化5】

(式中、nは0〜10を示し、Aは縮合多環式炭化水素基、Rは有機基を示す。a、b、cはモル%を示し、a、bは1〜99モル%、cは0モル%でも良く、a+b+c=100を満たす。Mは炭素数1〜5の炭化水素基を示し、カルボニル基を有していても良い)
で示される繰り返し単位を有するシリコーン共重合体を、脱保護することを特徴とする請求項1から4記載のシリコーン共重合体の製造方法。

【公開番号】特開2006−312717(P2006−312717A)
【公開日】平成18年11月16日(2006.11.16)
【国際特許分類】
【出願番号】特願2006−74767(P2006−74767)
【出願日】平成18年3月17日(2006.3.17)
【出願人】(000187046)東レ・ファインケミカル株式会社 (153)
【Fターム(参考)】