説明

蛍光体含有組成物、発光装置、照明装置、および画像表示装置

【課題】 発光装置に充填する工程において、硬化するまでの間の蛍光体の沈降が抑制される蛍光体含有組成物を提供する。
【解決手段】 シリカ微粒子、蛍光体、および液体媒体を含有する蛍光体含有組成物であって、下記の水酸基濃度測定方法(I)で測定される前記シリカ微粒子の水酸基濃度が0.3個/nm以上、2個/nm以下であることを特徴とする蛍光体含有組成物。
水酸基濃度測定方法(I)
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定する。(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量する。
(3)下記式により水酸基濃度を算出する。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018

【発明の詳細な説明】
【技術分野】
【0001】
本発明は蛍光体含有組成物、発光装置、照明装置、および画像表示装置に関する。詳しくは、発光装置へ充填してから硬化するまでの間に蛍光体の沈降が少ない蛍光体含有組成物、および前記蛍光体含有組成物を用いて形成された発光装置、および前記発光装置を用いて形成された照明装置および画像表示装置に関する。
【背景技術】
【0002】
波長変換材料としての蛍光体は、白色発光の発光装置の材料として、近紫外域から青色域発光の半導体発光素子として注目されている発光効率の高い窒化ガリウム(GaN)系発光ダイオード(light emitting diode。以下、適宜「LED」と略称する。)や半導体レーザーダイオード(semiconductor laser diode。以下、適宜「LD」と略称する
。)と組み合わせて用いられており、その発光装置は画像表示装置や照明装置の発光源として用いられている。
前記の蛍光体は半導体発光素子の発光効率の高い近紫外域から青色域の励起光に対し波長変換効率の高いものが要求される(特許文献1〜2)。
【0003】
一方、上記発光装置を製造する場合、蛍光体を発光装置の所望の位置に配置するため、通常、蛍光体を液状媒体に分散させた蛍光体含有組成物を装置内に充填(注入)し、その後この組成物を硬化させる工程が含まれる。しかしながら、この工程の際、注入された蛍光体含有組成物が硬化するまでの間に蛍光体が沈降し、蛍光体含有組成物内部の蛍光体の分布に偏りが生じることがあるため、発光が不均一となり、蛍光体の有効利用の点で問題があった。この問題を解決する目的で、例えば高粘度の液状媒体を使用する方法や、酸化ケイ素などの無機フィラーを添加することにより、蛍光体含有組成物の粘度を増大せしめて蛍光体の沈降を防止する方法が提案されている(特許文献3)。しかしながら、蛍光体含有組成物の粘度が高いと、(i)注入時に配管の閉塞などトラブルの原因となりやすい、(ii)気泡が抜けにくい、(iii)半導体素子のリードワイヤーの断線が起こりやすい、などの悪影響をもたらすことがあった。
【0004】
そこで、注入する際に粘度が増大することなく、注入されて後硬化するまでの間に蛍光体が沈降しない蛍光体含有組成物が求められていた。そして、この問題の解決のために蛍光体含有組成物にその一部が少なくともナノ粒子であるチキソトロープ剤を添加することにより蛍光体の沈降を防止しようとする提案がなされている(特許文献4)。
【特許文献1】特開平10−190066号公報
【特許文献2】特開平10−247750号公報
【特許文献3】特開2003−64358号公報
【特許文献4】特表2005−524737号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、蛍光体含有組成物がチキソトロープ性を有することは発光装置の構造によっては装置内への充填(注入)の最終段階で注入速度が小さくなると粘度が高くなるために充填が不十分となる場合があった。このため、チキソトロープ性を有しないか、有していても前述の装置内への充填不十分という問題のない蛍光体含有組成物が要求されていた。また、従来技術において数多開示されているチキソトロープ剤の中でも、前記の蛍光体の沈降防止効果がさらに優れたものが要求されていた。また、蛍光体の沈降防止効果を実効ならしめるための、蛍光体と液状媒体の組み合わせに応じた適切な組成が要求されていた。
【課題を解決するための手段】
【0006】
本発明者等は上述の課題に鑑み、鋭意研究を重ねた結果、液体媒体と蛍光体からなる蛍光体含有組成物に、特定のシリカ微粒子を添加することにより、蛍光体含有組成物の粘度上昇がなく、チキソトロープ性を示さない場合であっても蛍光体の沈降が抑制されることを見出し、本発明を完成した。即ち、水酸基濃度が0.3個/nm以上、2個/nm以下であり、好ましくは、さらにpH4.5以上、7以下であるシリカ微粒子を含有する蛍光体含有組成物を用いた場合、含有する蛍光体が実質上沈降することが無いことを見出し、その結果、発光分布が均一な半導体発光装置が得られることを見出した。
【0007】
すなわち、本発明の要旨は下記<1>〜<7>に存する。
<1>シリカ微粒子、蛍光体、および液体媒体を含有する蛍光体含有組成物であって、下記の水酸基濃度測定方法(I)で測定される前記シリカ微粒子の水酸基濃度が0.3個/nm以上、2個/nm以下であることを特徴とする蛍光体含有組成物。
水酸基濃度測定方法(I)
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定する。(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量する。
(3)下記式により水酸基濃度を算出する。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
<2>下記のpH測定方法(II)により測定される前記シリカ微粒子のpHが4.5以上、7以下である前記<1>に記載の蛍光体含有組成物。
pH測定方法(II)
水:メタノール=1:1溶液0.1L中にシリカ微粒子4gを加え、液温20〜25℃において、5分間充分に撹拌した後、pH計にてpHを測定する。
【0008】
<3>液体媒体がシリコーン樹脂である前記<1>または<2>に記載の蛍光体含有組成物。
<4>蛍光体がEu付活窒化物蛍光体から選ばれる1以上の蛍光体、ならびにCe付活珪酸塩蛍光体およびCe付活酸化物蛍光体から選ばれる1以上の蛍光体を含有する前記<1>〜<3>のいずれかに記載の蛍光体含有組成物。
【0009】
<5>前記<1>〜<4>のいずれかに記載の蛍光体含有組成物を用いて形成された発光装置。
<6>前記<5>に記載の前記発光装置を用いて形成された画像表示装置。
<7>前記<5>に記載の前記発光装置を用いて形成された照明装置。
【発明の効果】
【0010】
本発明の蛍光体含有組成物は、粘度上昇がなく、チキソトロープ性を示さない場合であっても蛍光体の沈降を抑制することができる。また、本発明の発光装置は、蛍光体の発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため、発光装置の製造上有用である。また、かかる発光装置を使用した画像表示装置および照明装置は、発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため、画像表示装置および照明装置の製造上有用である。
【発明を実施するための最良の形態】
【0011】
以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[1]蛍光体含有組成物
本発明の蛍光体含有組成物は、特定の物性を有するシリカ微粒子、蛍光体、および液体媒体を含有することを必須要件とする。また、要すればその他の任意成分を含有していてもよい。
[1−1]シリカ微粒子
本発明の蛍光体含有組成物は、特定の物性を有するシリカ微粒子を含有することを必須とする。本発明に用いられるシリカ微粒子を用いた場合、蛍光体含有組成物の粘度上昇がなく、チキソトロープ性を示さない場合であっても発光装置への充填(注入)、硬化工程における蛍光体の沈降が抑制される。本発明のシリカ微粒子が前記効果を奏する理由は明らかでないが、以下のように推察される。すなわち、一般にシリカ微粒子が組成物の系に添加されると、シリカ微粒子の水酸基同士の水素結合によりネットワークが形成される。チキソトロープ性発現の理由は、応力が小さい場合はネットワークが維持され高粘度を示すが、応力が大きい場合はネットワークが切れて低粘度を示すものとして説明されている。本発明は水酸基濃度が低いシリカ微粒子を使用するため、上記のようなネットワークが形成されにくく、チキソトロープ性を示さない場合があるものと推定される。このような場合であっても蛍光体の沈降が抑制される理由は、添加したシリカ微粒子が蛍光体表面と相互作用して蛍光体表面に緩やかに結合した緩衝構造を形成することにより、蛍光体同士の凝集を防止し、また、蛍光体含有組成物中の蛍光体の見かけ比重を小さくしているものと推定される。
【0012】
以下、本発明に用いられるシリカ微粒子について詳述する。
[1−1−1]水酸基濃度
本発明に使用するシリカ微粒子は、下記の水酸基濃度測定方法(I)で測定される前記シリカ微粒子の水酸基濃度が0.3個/nm以上、2個/nm以下である。これは、微粒子表面に存在するSiOH基量が特定範囲のシリカ微粒子が、本発明の蛍光体含有組成物の材料として好適であることを表す。
水酸基濃度測定方法(I)
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定する。(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量する。
(3)下記式により水酸基濃度を算出する。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
【0013】
シリカ微粒子の水酸基濃度の下限は、好ましくは0.5個/nm以上である。また、上限は、好ましくは1.5個/nm以下である。水酸基濃度が少なすぎると、蛍光体表面との相互作用が弱くなり、蛍光体粒子を蛍光体含有組成物中に保持する力が弱くなる場合がある。水酸基濃度が多すぎると、蛍光体表面との相互作用が強くなり、シリカ微粒子が蛍光体粒子間の橋架け構造を形成するようになるため、蛍光体の凝集による沈降が起こる場合がある。
[1−1−2]pH
更に本発明に使用するシリカ微粒子は、下記のpH測定方法(II)により測定されるpHが4.5以上、7以下であることが好ましい。
【0014】
pH測定方法(II)
水:メタノール=1:1溶液0.1L中にシリカ微粒子4gを加え、液温20〜25℃、5分間充分に撹拌した後、pH計にてpHを測定する。
シリカ微粒子のpHの下限は、好ましくは4.8以上であり、上限は、好ましくは6.5以下である。pHは蛍光体粒子と粒子間の相互作用に影響を及ぼすため、pHが高すぎると蛍光体を蛍光体含有組成物中に保持する力が弱くなる場合がある。また、pHが低すぎると蛍光体の凝集による沈降が起こる場合がある。
【0015】
[1−1−3]疎水性
本発明に使用するシリカ微粒子は、上述の様に、水酸基同士の水素結合によるネットワークの形成が少ないものであるため、疎水性であることが好ましい。
シリカ微粒子は、例えば親水性のシリカ微粒子の表面に存在するシラノール基と別途添加する表面改質剤を反応させることにより表面を疎水化することができる。
表面改質剤としては、アルキルシラン類の化合物が挙げられ、具体例としてジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン、ジメチルシリコーンオイルなどが挙げられる。
【0016】
なお、シリカ微粒子が前記表面改質剤と反応したことを確認する方法は炭素含有量を測定することにより確認できる。炭素含有量の測定は、例えば下記の方法を採用することができる。
シリカ微粒子を誘導炉にて、1000〜1100℃、10〜60分間の条件下に置き、含有炭素を酸化させて一酸化炭素を生成させる。次に触媒の存在下で、300〜600℃で再酸化させて二酸化炭素とする。生成した二酸化炭素量を炭素分析装置(例えば、LECO社製炭素分析装置「C-244型」等)で測定し、炭素含有量を算出する。
【0017】
[1−1−4]その他物性
本発明のシリカ微粒子は、例えばフュームドシリカを挙げることができる。フュームドシリカは、HとOとの混合ガスを燃焼させた1100〜1400℃の炎でSiClガスを酸化、加水分解させることにより作製される。フュームドシリカの一次粒子は、平均粒径が5〜50nm程度の非晶質の二酸化ケイ素(SiO)を主成分とする球状の超微粒子であり、この一次粒子がそれぞれ凝集し、粒径が数百nmである二次粒子を形成する。フュームドシリカは、超微粒子であるとともに、急冷によって作製されるため、表面の構造が化学的に活性な状態となっている。
【0018】
本発明に使用するシリカ微粒子は、BET法による比表面積が、通常50m/g以上、好ましくは80m/g以上、さらに好ましくは100m/g以上である。また、通常300m/g以下、好ましくは200m/g以下である。比表面積が小さすぎるとシリカ微粒子を添加しても蛍光体粒子の沈降抑制効果が認められず、また、大きすぎるとシリカ微粒子の樹脂中への分散処理が困難になる。
【0019】
本発明に使用するシリカ微粒子の一次粒子の平均粒子径は上記の比表面積から計算により求めたものである。平均粒子径をd(nm)、1gの粉体が有する表面積をS(m/g
)、形状係数をφと
すると
d=6/Sφ
の関係が成立する(出典:化学大辞典)
例えばシリカ微粒子の真比重が2.2、形状が真球の場合はφ=2.2×10−3とおくことによりdを求めることができる。 本発明に使用する前記シリカ微粒子は、市販のものを使用することができ、具体的には、例えば日本アエロジル株式会社製疎水性「アエロジル」(登録商標)が挙げられる。疎水性「アエロジル」(登録商標)の例としては、「R8200」、「R972」、「R972V」、「R972CF」、「R974」、「R202」、「R805」、「R812」、「R812S」、「RX200」「RY200
」、「RY200S」が挙げられる。
【0020】
[1−2]蛍光体
本発明の蛍光体含有組成物に用いられる蛍光体とは、一般に光の照射によって可視光を発する物質をいう。
蛍光体の組成には特に制限はないが、結晶母体であるY、ZnSiO等に代表される金属酸化物、SrSi等に代表される金属窒化物、Ca(PO)Cl等に代表されるリン酸塩及びZnS、SrS、CaS等に代表される硫化物に、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンやAg、Cu、Au、Al、Mn、Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが好ましい。
【0021】
結晶母体の好ましい例としては、例えば、(Zn,Cd)S、SrGa、SrS、ZnS等の硫化物、YS等の酸硫化物、(Y,Gd)Al12、YAlO、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,C
a)(Mg,Zn,Mn)Al1017、BaAl1219、CeMgAl1119
、(Ba,Sr,Mg)O・Al、BaAlSi、SrAl、SrAl1425、YAl12等のアルミン酸塩、YSiO、ZnSiO等の珪酸塩、SnO、Y等の酸化物、GdMgB10、(Y,Gd)BO等の硼酸塩、Ca10(PO)(F,Cl)、(Sr,Ca,Ba,Mg)10(PO)Cl等のハロリン酸塩、Sr、(La,Ce)PO等のリン酸塩等を挙げることができる。
ただし、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制限はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視領域の光を吸収して可視光を発するものであれば用いることが可能である。
【0022】
具体的には、蛍光体として以下に挙げるものを用いることが可能であるが、これらはあくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「YSiO:Ce3+」、「YSiO:Tb3+」及び「YSiO:Ce3+,Tb3+」を「YSiO:Ce3+,Tb3+」と、「LaS:Eu」、「YS:Eu」及び「(La,Y)S:Eu」を「(La,Y)S:Eu」とまとめて示している。省略箇所はカンマ(,)で区切って示す。
【0023】
[1−2−1]橙色ないし赤色蛍光体
本発明の蛍光体含有組成物は、橙色ないし赤色の蛍光を発する蛍光体(以下適宜、「橙 色ないし赤色蛍光体」という。)を含有していてもよい。
赤色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常570nm以上、好ましくは580nm以上、また、通常700nm以下、好ましくは680nm以下が望ましい。
本発明にかかる蛍光体以外の橙色ないし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)S:Euで表わされるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
【0024】
さらに、特開2004−300247号公報に記載された、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なくも1種の元素を含有する酸窒化物及び/又は酸硫化物を含有する蛍光体であって、Al元素の一部又は全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において用いることができる。なお、これらは酸窒化物及び/又は酸硫化物を含有する蛍光体である。
【0025】
また、そのほか、赤色蛍光体としては、(La,Y)S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O:Eu、Y:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)SiO:Eu,Mn、(Ba,Mg)SiO:Eu,Mn等の Eu,Mn付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO:Eu等のEu付活アルミン酸塩蛍光体、LiY(SiO):Eu、Ca(SiO):Eu、(Sr,Ba,Ca)SiO:Eu、SrBaSiO:Eu等のEu付活珪酸塩蛍光体、(Y,Gd)Al12:Ce、(Tb,Gd)Al12:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)Si:Eu、(Mg,Ca,Sr,Ba)SiN:Eu、(Mg,Ca,Sr,Ba)AlSiN:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO)Cl:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、(BaMg)Si:Eu,Mn、(Ba,Sr,Ca,Mg)(Zn,Mg)Si:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF・GeO:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La):Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y,Lu,La)S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP:Eu,Mn、(Sr,Ca,Ba,Mg,Zn):Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)WO:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)Si:Eu,Ce(但し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,Ba,Mg)10(PO)(F,Cl,Br,OH):Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1−xScCe)(Ca,Mg)1−r(Mg,Zn)2+rSiz−qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
【0026】
赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f’]−4,4’,7,7’−テトラフ ェニル}ジインデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン)、アント ラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
【0027】
また、赤色蛍光体のうち、ピーク波長が580nm以上、好ましくは590nm以上、また、620nm以下、好ましくは610nm以下の範囲内にあるものは、橙色蛍光体として好適に用いることができる。このような橙色蛍光体の例としては、(Sr,Ba)SiO:Eu、(Sr,Mg)(PO:Sn等が挙げられる。
【0028】
[1−2−2]緑色蛍光体
本発明の蛍光体含有組成物は、緑色の蛍光を発する蛍光体(以下適宜、「緑色蛍光体」 という。)を含有していてもよい。
緑色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常490nm以上、好ましくは500nm以上、また、通常570nm以下、好ましくは550nm以下が望ましい。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si:Euで表わされるユウロピウム付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)SiO:Euで表わ
されるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
【0029】
また、そのほか、緑色蛍光体としては、SrAl1425:Eu、(Ba,Sr, Ca)Al:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)AlSi:Eu、(Ba,Mg)SiO:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Eu等のEu付活珪酸塩蛍光体、YSiO:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr−Sr:Eu等のEu付活硼酸リン酸塩蛍光体、SrSi−2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体、ZnSiO:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、YAl12:Tb等のTb付活アルミン酸塩蛍光体、Ca(SiO):Tb、LaGaSiO14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y(Al,Ga)12:Ce、(Y,Ga,Tb,La,Sm,Pr,Lu)(Al,Ga)12:Ce等のCe付活アルミン酸塩蛍光体、CaScSi12:Ce、Ca(Sc,Mg,Na,Li)Si12:Ce等のCe付活珪酸塩蛍光体、CaSc:Ce等のCe付活酸化物蛍光体、SrSi:Eu、(Sr,Ba,Ca)Si:Eu、Eu付活βサイアロン、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)S:Tb等のTb付活酸硫化物蛍光体、LaPO:Ce,Tb等のCe,Tb付活リン酸塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO:Ce,Tb、NaGd:Ce,Tb、(Ba,Sr)(Ca,Mg,Zn)B:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、CaMg(SiO)Cl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In):Eu等のEu付活チオアルミネート蛍光体やチオガレート蛍光体、(Ca,Sr)(Mg,Zn)(SiO)Cl:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。
【0030】
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。
【0031】
[1−2−3]青色蛍光体
本発明の蛍光体含有組成物は、青色の蛍光を発する蛍光体(以下適宜、「青色蛍光体」 という。)を含有していてもよい。
青色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、ピーク波長が、通常420nm以上、好ましくは440nm以上、また、通常480nm以下、好ましくは470nm以下が望ましい。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表わされるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr ,Ba)(PO)Cl:Euで表わされるユウロピウム付活ハロリン酸カルシウム系 蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)Cl:Euで表わされるユウロピウム付活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al:Eu又は(Sr,Ca,Ba)Al1425:Euで表わされるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
【0032】
また、そのほか、青色蛍光体としては、Sr:Sn等のSn付活リン酸塩蛍光体、SrAl1425:Eu、BaMgAl1017:Eu、BaAl13:Eu等のEu付活アルミン酸塩蛍光体、SrGa:Ce、CaGa:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu付活アルミン酸塩蛍光体、(Ba,Sr ,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO)Cl:Eu、(Ba,Sr,Ca)(PO)(Cl,F,Br,OH):Eu,Mn,Sb等のEu付活ハロリン酸塩蛍光体、BaAlSi:Eu、(Sr,Ba)MgSi:Eu等のEu付活珪酸塩蛍光体、Sr:Eu等のEu付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、YSiO:Ce等のCe付活珪酸塩蛍光体、CaWO等のタングステン酸塩蛍光体、(Ba,Sr,Ca)BPO:Eu,Mn、(Sr,Ca)10(PO)・nB:Eu、2SrO・0.84P・0.16B:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、SrSi・2SrCl:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
【0033】
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
なお、上述のような蛍光体は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用しても良い。
【0034】
[1−2−4]黄色蛍光体
本発明の蛍光体含有組成物は、黄色の蛍光を発する蛍光体(以下適宜、「黄色蛍光体」 という。)を含有していてもよい。
黄色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、通常530nm以上、好ましくは540nm以上、より好ましくは550nm以上、また、通常620nm以下、好ましくは600nm以下、より好ましくは580nm以下の波長範囲にあることが好適である。黄色蛍光体の発光ピーク波長が短すぎると黄色成分が少なくなり演色性が劣る発光装置となる可能性があり、長すぎると発光装置の輝度が低下する虞がある。
【0035】
このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫化物系、酸硫化物系等の蛍光体が挙げられる。
特に、RE12:Ce(ここで、REは、Y,Tb,Gd,Lu,Smの少なくとも1種類の元素を表し、Mは、Al,Ga,Scの少なくとも1種類の元素を表す。)やM2M3M412:Ce(ここで、M2は2価の金属元素、M3は3価の金属元素、M4は4価の金属元素)等で表されるガーネット構造を有するガーネット系蛍光体、AEM5O:Eu(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表し、M5は、Si,Geの少なくとも1種類の元素を表す。)等で表され るオルソシリケート系蛍光体、これらの系の蛍光体の構成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、AEAlSiN:Ce(ここで、AEは、Ba,Sr,Ca,Mg,Znの少なくとも1種類の元素を表す。)等のCaAlSiN構造を有する窒化物系蛍光体等のCeで付活した蛍光体が挙げられる。
【0036】
また、そのほか、黄色蛍光体としては、CaGa:Eu(Ca,Sr)Ga:Eu、(Ca,Sr)(Ga,Al):Eu等の硫化物系蛍光体、Cax(Si,Al)12(O,N)16:Eu等のSiAlON構造を有する酸窒化物系蛍光体等のEuで付活した蛍光体を用いることも可能である。
【0037】
[1−2−5]蛍光体の組み合わせ
本発明の蛍光体含有組成物に使用される蛍光体の具体的な好ましい組み合わせの例として、赤色蛍光体としてEu付活窒化物蛍光体から選ばれる1以上の蛍光体、ならびに緑色蛍光体としてCe付活珪酸塩蛍光体およびCe付活酸化物蛍光体から選ばれる1以上の蛍光体を含有する蛍光体含有組成物が挙げられる。
【0038】
Eu付活窒化物赤色蛍光体としては、(Ca,Sr,Ba)Si:Eu、(Mg ,Ca,Sr,Ba)SiN:Eu、(Mg,Ca,Sr,Ba)AlSiN:Eu等 が挙げられ、中でもCaAlSiN:Eu(以下「CASN」と略記することがある。)、および(Sr,Ca)AlSiN:Eu(以下「SCASN」と略記することがある)が好適である。
【0039】
Ce付活珪酸塩緑色蛍光体としては、CaScSi12:Ce、Ca(Sc ,Mg,Na,Li)Si12:Ce等が挙げられ、中でもCa(Sc,Mg, Na,Li)Si12:Ce(以下「CSMS」と略記することがある)が好適である。
Ce付活酸化物緑色蛍光体としては、CaSc:Ce(以下「CSO」と略記することがある。)の組み合わせが挙げられる。これらの蛍光体の組み合わせは所望の色度座標、演色指数、発光効率などに応じて適宜組み合わせればよい。
【0040】
[1−2−6]その他の蛍光体の物性
本発明に使用する蛍光体の粒径は特に制限はないが、中央粒径(D50)で通常0.1μm以上、好ましくは2μm以上、さらに好ましくは10μm以上である。また、通常100μm以下、好ましくは50μm以下、さらに好ましくは20μm以下である。D50が小さすぎると、輝度が低下し、蛍光体粒子が凝集してしまう虞がある。一方、D50が大きすぎると、塗布ムラやディスペンサー等の閉塞が生じる虞がある。
【0041】
蛍光体粒子の粒度分布(QD)は、蛍光体含有組成物中での粒子の分散状態をそろえるために小さい方が好ましいが、小さくするためには分級収率が下がってコストアップにつながるので、通常0.03以上、好ましくは0.05以上、更に好ましくは0.07以上である。また、通常0.4以下、好ましくは0.3以下、更に好ましくは0.2以下である。また、蛍光体粒子の形状は、蛍光体部形成に影響を与えない限り、特に限定されない。
【0042】
なお、本発明において、中央粒径(D50)、粒度分布(QD)は、重量基準粒度分布曲線から得ることが出来る。前記重量基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、例えば以下のように測定することが出来る。
気温25℃、湿度70%の環境下において、エチレングリコールなどの溶媒に蛍光体を分散させる。
【0043】
レーザ回折式粒度分布測定装置(堀場製作所 LA−300)により、粒径範囲0.1μm〜600μmにて測定する。
この重量基準粒度分布曲線において積算値が50%のときの粒径値を中央粒径D50と表記する。また、積算値が25%及び75%の時の粒径値をそれぞれD25、D75と表記し、QD=(D75−D25)/(D75+D25)と定義する。QDが小さいことは粒度分布が狭いことを意味する。
【0044】
[1−2−7]蛍光体の表面処理
本発明に使用する蛍光体は、耐水性を高める目的で、または蛍光体含有組成物中で蛍光体の不要な凝集を防ぐ目的で、表面処理が行われていてもよい。
かかる表面処理の例としては、例えば特開2002−223008号公報に記載の有機材料、無機材料、ガラス材料などを用いた表面処理、特開2000−96045号公報等に記載の金属リン酸塩による被覆処理、金属酸化物による被覆処理、シリカコート等の公知の表面処理が挙げられる。
具体的には、例えば蛍光体の表面に上記金属リン酸塩を被覆させるには、下記(i)〜(iii)の手順による被覆方法が挙げられる。(i)所定量のリン酸カリウム、リン酸ナ
トリウムなどの水溶性のリン酸塩と塩化カルシウム、硫酸ストロンチウム、塩化マンガン、硝酸亜鉛等のアルカリ土類金属、Zn及びMnの中の少なくとも1種の水溶性の金属塩化合物とを蛍光体懸濁液中に添加し、攪拌する。(ii)アルカリ土類金属、Zn及びMnの中の少なくとも1種の金属のリン酸塩を懸濁液中で生成させると共に、生成したこれらの金属リン酸塩を蛍光体表面に沈積させる。(iii)水分を除去する。
【0045】
また、シリカコートとしては、水ガラスを中和してSiOを析出させる方法、アルコキシシランを加水分解したものを表面処理する方法(例えば、特開平3−231987号公報)等が挙げられ、分散性を高める点においてはアルコキシシランを加水分解したものを表面処理する方法が好ましい。
【0046】
[1−3]液状媒体
使用される液状媒体としては無機系材料および/または有機系材料が使用できる。
無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液(例えばシロキサン結合を有する無機系材料)等を挙げることができる。
有機系材料としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。従来、半導体発光装置用の蛍光体分散材料としては、一般的にエポキシ樹脂が用いられてきたが、特に照明など大出力の発光装置が必要な場合、耐熱性や耐光性等を目的として珪素含有化合物を使用するのが好ましい。
【0047】
珪素含有化合物とは分子中に珪素原子を有する化合物をいい、ポリオルガノシロキサン等の有機材料(シリコーン系材料)、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等の無機材料、及びホウケイ酸塩、ホスホケイ酸塩、アルカリケイ酸塩等のガラス材料を挙げることができる。中でも、ハンドリングの容易さや、硬化物が応力緩和力を有する点から、シリコーン系材料が好ましい。半導体発光装置用シリコーン樹脂に関しては例えば特開平10−228249号公報や特許2927279号公報、特開2001−36147号公報などで封止剤への使用、特開2000−123981号公報において波長調整コーティングへの使用が試みられている。
【0048】
[1−3−1]シリコーン系材料
シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい、例えば一般組成式で表される化合物及び/またはそれらの混合物が挙げられる。
(RSiO1/2M(RSiO2/2D(RSiO3/2T(SiO4/2Q
ここで、RからRは同じであっても異なってもよく、有機官能基、水酸基、水素原子からなる群から選択される。またM、D、T及びQは0から1未満であり、M+D+T+Q=1を
満足する数である。
シリコーン系材料を半導体発光素子の封止に用いる場合、液状のシリコーン系材料を用いて封止した後、熱や光によって硬化させて用いることができる。
【0049】
[1−3−2]シリコーン系材料の種類
シリコーン系材料を硬化のメカニズムにより分類すると、通常付加重合硬化タイプ、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン系材料を挙げることができる。これらの中では、付加重合硬化タイプ(付加型シリコーン樹脂)、縮合硬化タイプ(縮合型シリコーン樹脂)、紫外線硬化タイプが好適である。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
【0050】
[1−3−2−1]付加型シリコーン系材料
付加型シリコーン系材料とは、ポリオルガノシロキサン鎖が、有機付加結合により架橋されたものをいう。代表的なものとしては、例えばビニルシランとヒドロシランをPt触媒などの付加型触媒の存在下反応させて得られるSi−C−C−Si結合を架橋点に有する化合物等を挙げることができる。
【0051】
上記付加型シリコーン系材料は、具体的には、例えば下記平均組成式(1a)で表されるアルケニル基含有オルガノポリシロキサン(A)と下記平均組成式(2a)で表されるヒドロシリル基含有オルガノポリシロキサン(B)を(A)の総アルケニル基に対して(B)の総ヒドロシリル基量が0.5〜2.0倍となる量比で混合し、触媒量の(C)付加反応触媒の存在下反応させて得ることが出来る。
【0052】
(A)アルケニル基含有オルガノポリシロキサン
RnSiO〔(4−n)/2〕 (1a)
(但し、式中Rは同一又は異種の置換又は非置換の1価炭化水素基、アルコキシ基、又は水酸基で、nは1≦n<2を満たす正数である。)で示される1分子中に少なくとも2個のケイ素原子に結合したアルケニル基を有するオルガノポリシロキサンである。
【0053】
(B)ヒドロシリル基含有ポリオルガノシロキサン
R’aHbSiO〔(4−a−b)/2〕 (2a)
(但し式中R’は脂肪族不飽和炭化水素基を除く同一又は異種の置換又は非置換の1価炭化水素基、a、bは0.7≦a≦2.1、0.001≦b≦1.0かつ、0.8≦a+b≦2.6を満たす正数である。)で示される1分子中に少なくとも2個のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサンである。
【0054】
以下、付加型シリコーン樹脂につき更に詳しく説明する。
上記式(1a)のRにおいて、アルケニル基とはビニル基、アリル基、ブテニル基、ペンテニル基などの炭素数2〜8のアルケニル基である。Rが炭化水素基である場合はメチル基、エチル基などのアルキル基、ビニル基、フェニル基等の炭素数1〜20の1価炭化水素基から選択される。好ましくは、メチル基、エチル基、フェニル基である。それぞれは異なっても良いが、耐UV性が要求される場合にはRの80%以上はメチル基であることが好ましい。Rが炭素数1〜8のアルコキシ基や水酸基であってもよいが、アルコキシ基や水酸基の含有率は(A)の重量の3%以下であることが好ましい。
【0055】
nは1≦n<2を満たす正数であるが、この値が2以上であると封止材としての十分な強度が得られなくなり、1未満であると合成上このオルガノポリシロキサンの合成が困難になる。
次に、(B)成分のオルガノハイドロジェンポリシロキサン(2a)は、(A)成分のオルガノポリシロキサン(1a)とヒドロシリル化反応により組成物を硬化させる架橋剤として作用するものであり、下記平均組成式(2a)
R’aHbSiO(4−a−b)/2 (2a)
(但し、式中R’はアルケニル基を除く一価の炭化水素基であり、a、bは0.7≦a≦2.1、0.001≦b≦1.0、かつ0.8≦a+b≦2.6、好ましくは0.8≦a≦2、0.01≦b≦1、1≦a+b≦2.4を満たす正数である。)で示される1分子中に少なくとも2個、好ましくは3個以上のSiH結合を有するオルガノハイドロジェンポリシロキサンが好ましい。
【0056】
ここで、R’としては、式(1a)中のR2と同様の基を挙げることができるが、好ましくはアルケニル基を有さないものがよい。また、耐UV性要求される用途に用いる場合には少なくとも80%以上はメチル基であることが好ましい。
このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、1分子中のケイ素原子の数(又は重合度)は3〜1000、特に3〜300程度のものを使用することができる。
【0057】
上記(B)成分のオルガノハイドロポリシロキサン(2a)の配合量は、(A)成分のオルガノポリシロキサン(1a)の総アルケニル基量に依存し、オルガノポリシロキサン(1a)の総アルケニルキ基に対して総SiH量が0.5〜2.0倍となる量好ましくは0.8〜1.5倍となる量とすればよい。
(C)成分の付加反応触媒は、(A)成分中のアルケニル基と(B)成分中のSiH基とのヒドロシリル化付加反応を促進するための触媒であり、この付加反応触媒としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。なお、この付加反応触媒の配合量は触媒量とすることができるが、通常、白金族金属として(A)及び(B)成分の合計重量に対して1〜500ppm、特に2〜100ppm程度配合することが好ましい。
【0058】
本発明の組成物には、上記(A)〜(C)成分に加え、任意成分として硬化性、ポットライフを与えるために付加反応制御剤、硬度・粘度を調節するために例えばアルケニル基を有する直鎖状のジオルガノポリシロキサンの他にも直鎖状の非反応性オルガノポリシロキサン、ケイ素原子数が2〜10個程度の直鎖状又は環状の低分子オルガノポリシロキサンなどを本発明の効果を損なわない範囲で添加してもよい。
【0059】
なお、上記組成物の硬化条件は特に制限されないが、120〜180℃、30〜180分の条件とすることが好ましい。得られる硬化物が硬化後にも柔らかいゲル状である場合には、ゴム状や硬質プラスチック状のシリコーン樹脂と比較して線膨張係数大きいため、室温付近の低温にて10〜30時間硬化することにより内部応力の発生を抑制することができる。
付加型シリコーン系材料は公知のものを使用することができ、さらには金属やセラミックスへの密着性を向上させる添加剤や有機基を導入しても良い。例えば、特許3909826号公報、特許3910080号公報、特開2003−128922号公報、特開2004−221308号公報、特開2004−186168号公報に記載のシリコーン材料が好適である。また、これらは市販のものを使用することができ、例えば付加重合硬化タイプの具体的商品名としては、信越化学工業社製「LPS−1400」「LPS−2410」「LPS−3400」等が挙げられる。
【0060】
[1−3−2−2]縮合型シリコーン系材料
縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分解・重縮合で得られるSi−O−Si結合を架橋点に有する化合物を挙げることができる。
具体的には、下記一般式(1b)及び/又は(2b)で表わされる化合物、及び/又はそのオリゴマーを加水分解・重縮合して得られる重縮合物が挙げられる。
m+n1m-1 (1b)
(式(1b)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基
を表わし、mは、Mの価数を表わす1以上の整数を表わし、nは、X基の数を表わす1以上の整数を表わす。但し、m≧nである。)
(Ms+s−t−1 (2b)
(式(2b)中、Mは、ケイ素、アルミニウム、ジルコニウム、及びチタンより選択される少なくとも1種の元素を表わし、Xは、加水分解性基を表わし、Y1は、1価の有機基
を表わし、Y2は、u価の有機基を表わし、sは、Mの価数を表わす1以上の整数を表わ
し、tは、1以上、s−1以下の整数を表わし、uは、2以上の整数を表わす。)
また、硬化触媒としては、例えば金属キレート化合物などを好適なものとして用いることができる。金属キレート化合物は、Ti、Ta、Zrのいずれか1以上を含むものが好ましく、Zrを含むものがさらに好ましい。
【0061】
縮合型シリコーン系材料は公知のものを使用することができ、例えば、特開2006−77234号公報、特開2006−291018号公報、特開2006−316264号公報、特開2006−336010号公報、特開2006−348284号公報、および国際公開2006/090804号パンフレットに記載の半導体発光デバイス用部材が好適である。
【0062】
シリコーン系材料の中で、特に好ましい材料について、以下に説明する。
シリコーン系材料は、一般に半導体発光素子や素子を配置する基板、パッケージ等との接着性が弱いことが欠点とされるが、密着性が高いシリコーン系材料として、特に、以下の特徴〈1〉〜〈3〉のうち1つ以上を有するシリコーン系材料が好ましい。
〈1〉ケイ素含有率が20重量%以上である。
〈2〉後に詳述する方法によって測定した固体Si−核磁気共鳴(NMR)スペクトルにおいて、下記(a)及び/又は(b)のSiに由来するピークを少なくとも1つ有する。
【0063】
(a)ピークトップの位置がシリコーンゴムを基準(−22.333ppm)としてケミカルシフト−40ppm以上、0ppm以下の領域にあり、ピークの半値幅が0.3ppm以上、3.0ppm以下であるピーク。
(b)ピークトップの位置がシリコーンゴムを基準(−22.333ppm)としてケミカルシフト−80ppm以上、−40ppm未満の領域にあり、ピークの半値幅が0.3ppm以上5.0ppm以下であるピーク。
〈3〉シラノール含有率が0.01重量%以上、10重量%以下である。
【0064】
本発明においては、上記の特徴〈1〉〜〈3〉のうち、特徴〈1〉を有するシリコーン系材料が好ましい。さらに好ましくは、上記の特徴〈1〉及び〈2〉を有するシリコーン系材料が好ましい。特に好ましくは、上記の特徴〈1〉〜〈3〉を全て有するシリコーン系材料が好ましい。また、上記の特徴を有するシリコーン系材料の中でも、縮合型シリコーン系材料が耐熱性、耐光性等の観点より好ましい。
【0065】
[1−3−3]液状媒体の含有量
液状媒体は、本発明の蛍光体含有組成物全体に対して、通常50重量%以上、好ましくは75重量%以上であり、通常99重量%以下、好ましくは95重量%以下である。
液状媒体の量が多い場合には特段の問題は起こらないが、半導体発光装置とした場合に所望の色度座標、演色指数、発光効率等を得るには、通常、上記のような配合比率で蛍光体を添加する必要がある。少なすぎると流動性がなく取り扱いにくい。
液状媒体は、前述の様に、本発明の蛍光体含有組成物において、主にバインダーとしての役割を有する。液状媒体は単独で用いてもよいが、複数を混合してもよい。例えば、耐熱性や耐光性等を目的として珪素含有化合物を使用する場合は、珪素含有化合物の耐久性を損なわない程度に、エポキシ樹脂など他の熱硬化性樹脂を含有してもよい。この場合、他の熱硬化性樹脂の含有量は、通常、バインダーに対して25重量%以下、好ましくは10重量%以下である。
【0066】
[1−4]その他の成分
本発明の蛍光体含有組成物は、上記成分の他に、色素、酸化防止剤、安定化剤(燐系加工安定化剤などの加工安定化剤、酸化安定化剤、熱安定化剤、紫外線吸収剤などの耐光性安定化剤など)、シランカップリング剤、光拡散材、フィラーなど、当該分野で公知の添加物のいずれをも用いることができる。
【0067】
[1−5]蛍光体含有組成物の製造方法
本発明の蛍光体含有組成物の製造法には特に制限はなく、蛍光体、シリカ微粒子、および必要に応じて添加する添加物が液状媒体中に均一に分散する方法であれば良い。
シリカ微粒子の配合量は液状媒体100重量部に対して通常0.1重量部以上、好ましくは0.3重量部以上である。また、通常30重量部以下、好ましくは20重量部以下、更に好ましくは15重量部以下、特に好ましくは10重量部以下、とりわけ好ましくは5重量部以下である。シリカ微粒子の配合量が少なすぎると、蛍光体粒子の沈降抑制効果が発現せず、多すぎるとシリカ微粒子の分散が困難となったり、蛍光体含有組成物の粘度が高くなりすぎて、発光装置に充填(注入)する際に困難を生ずることがある。
【0068】
蛍光体の配合量は通常、液状媒体100重量部に対して通常0.01重量部以上、好ましくは0.1重量部以上、さらに好ましくは1重量部以上である。また、通常100重量部以下、好ましくは80重量部以下、さらに好ましくは60重量部以下である。
液状媒体としてシリコーン樹脂を使用する場合は、例えばシリコーン樹脂、蛍光体、シリカ微粒子、ならびに架橋剤、硬化触媒、増量材、およびその他の添加剤を配合し、ミキサー、高速ディスパー、ホモジナイザー、3本ロール、ニーダー等で混合する等、従来公知の方法で製造することができる。この場合、前記成分を全て混合して、1液の形態として液状シリコーン樹脂組成物を製造しても良いが、
(i)シリコーン樹脂と蛍光体及び増量材を主成分とするシリコーン樹脂液と、(ii)架橋剤と硬化触媒を主成分とする架橋剤液の2液を調製しておき、使用直前にシリコーン樹脂液と架橋剤液を混合して液状シリコーン樹脂組成物を製造しても良い。
【0069】
[1−6]蛍光体含有組成物の物性
[1−6−1]粘度
本発明の蛍光体含有組成物の粘度は、通常500mPa・s以上、好ましくは1000mPa・s以上、さらに好ましくは2000mPa・s以上であり、通常15000mPa・s以下、10000mPa・s以下、好ましくは8000mPa・s以下である。粘度が高すぎると発光装置に充填(注入)時に配管の閉塞などトラブルの原因となりやすく、また気泡が抜けにくい、更には半導体素子のリードワイヤーの断線が起こりやすいなどの悪影響をもたらす。一方、粘度が低すぎると蛍光体粒子の沈降が起こるので好ましくない。
【0070】
なお本発明の蛍光体含有組成物は、発光装置内へ十分に充填(注入)させ得るために、チキソトロープ性を示さないものが好ましい。チキソトロープ性を示さないことは、ローター回転数を1rpmおよび5rpmとした場合のB型粘度計における粘度が略等しいことで確認することができる。
[2]発光装置
本発明の発光装置は、[1]に記載の蛍光体含有組成物を用いて、公知の方法により形成される。以下、本発明の発光装置について説明する。
【0071】
[2−1]光源
本発明の発光装置における光源は、前記[1−2]の蛍光体や後述するその他の蛍光体を励起する光を発光するものである。光源の発光波長は、蛍光体の吸収波長と重複するものであれば、特に制限されず、幅広い発光波長領域の蛍光体を使用することができる。通常は、近紫外領域から青色領域までの発光波長を有する蛍光体が使用され、具体的数値としては、通常300nm以上、好ましくは330nm以上、また、通常500nm以下、好ましくは480nm以下のピーク発光波長を有する発光体が使用される。この光源としては、一般的には半導体発光素子が用いられ、具体的には発光ダイオード(LED)や半導体レーザーダイオード(LD)等が使用できる。
【0072】
中でも、光源としては、GaN系化合物半導体を使用したGaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、前記蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、同じ電流負荷に対し、通常GaN系LEDやLDはSiC系の100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlxGayN発光層、GaN発光層、又はInxGayN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInxGayN発光層を有するものの発光強度が非常に高いので、さらに好ましく、InxGayN層とGaN層の多重量子井戸構造のものが発光強度が非常に高いので、特に好ましい。
【0073】
なお、上記においてx+yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。
GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlxGayN層、GaN層、又はInxGayN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが、発光効率がさらに高く、より好ましい。
【0074】
[2−2]蛍光体の選択
本発明の発光装置において、前述の蛍光体(赤色蛍光体、緑色蛍光体、青色蛍光体等)の使用の有無及びその種類は、発光装置の用途に応じて適宜選択すればよい。
本発明の発光装置を白色発光の発光装置として構成する場合には、所望の白色光が得られるように、1種以上の蛍光体を適切に組み合わせればよい。光源として青色発光素子を使用する場合は蛍光体として青色の補色関係にある黄色蛍光体を、より演色性の高い白色を得るには赤、及び緑色蛍光体を使用することが好ましい。近紫外光を発する半導体発光素子を用いる場合は赤、緑、青の3色の蛍光体を使用するのが好ましい。
【0075】
具体的に、本発明の発光装置を白色発光の発光装置として構成する場合における、光源と、蛍光体との好ましい組み合わせの例としては、以下の(i)〜(iii)の組み合わせ が挙げられる。
(i)光源として青色発光体(青色LED等)を使用し、蛍光体として赤色蛍光体および緑色蛍光体を使用する。
(ii)光源として近紫外発光体(近紫外LED等)を使用し、蛍光体として赤色蛍光体、緑色蛍光体及び青色蛍光体を併用する。
(iii)光源として青色発光体(青色LED等)を使用し、橙色蛍光体および緑色蛍光体 を使用する。
【0076】
[2−3]発光装置の構成
本発明の発光装置は、上述の光源および本発明の蛍光体含有組成物を備えていればよく、そのほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の光源および蛍光体含有組成物を配置してなる。この際、光源の発光によって蛍光体が励起されて発光を生じ、且つ、この光源の発光および/または蛍光体の発光が、外部に取り出されるように配置されることになる。この場合、赤色蛍光体は、緑色蛍光体、青色蛍光体とは必ずしも同一の層中に混合されなくてもよく、例えば、赤色蛍光体を含有する層の上に青色蛍光体と緑色蛍光体を含有する層が積層されていてもよい。
【0077】
[2−4]発光装置の実施形態
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲

において任意に変形して実施することができる。
図1は、本発明の一実施形態に係る発光装置の構成を模式的に示す図である。本実施形態の発光装置1は、フレーム2と、光源である青色LED3と、青色LED3から発せられる光の一部を吸収し、それとは異なる波長を有する光を発する蛍光体含有部4からなる。
【0078】
フレーム2は、青色LED3、蛍光体含有部4を保持するための金属または樹脂製の基部である。フレーム2の上面には、図1中上側に開口した断面台形状の凹部(窪み)2Aが形成されている。これにより、フレーム2はカップ形状となっているため、発光装置1から放出される光に指向性をもたせることができ、放出する光を有効に利用できるようになっている。更に、フレーム2の凹部2A内面は、銀などの金属メッキにより、可視光域全般の光の反射率を高められており、これにより、フレーム2の凹部2A内面に当たった光も、発光装置1から所定方向に向けて放出できるようになっている。
【0079】
フレーム2の凹部2Aの底部には、光源として青色LED3が設置されている。青色LED3は、電力を供給されることにより青色の光を発するLEDである。この青色LED3から発せられた青色光の一部は、蛍光体含有部4内の発光物質(蛍光体)に励起光として吸収され、また別の一部は、発光装置1から所定方向に向けて放出されるようになっている。
【0080】
また、青色LED3は前記のようにフレーム2の凹部2Aの底部に設置されているが、ここではフレーム2と青色LED3との間は接着剤5によって接着され、これにより、青色LED3はフレーム2に設置されている。
更に、フレーム2には、青色LED3に電力を供給するための金製のワイヤ6が取り付けられている。つまり、青色LED3の上面に設けられた電極(図示省略)とは、ワイヤ6を用いてワイヤボンディングによって結線されていて、このワイヤ6を通電することによって青色LED3に電力が供給され、青色LED3が青色光を発するようになっている。なお、ワイヤ6は青色LED3の構造にあわせて1本又は複数本が取り付けられる。
【0081】
更に、フレーム2の凹部2Aには、青色LED3から発せられる光の一部を吸収し異なる波長を有する光を発する蛍光体含有部4が設けられている。蛍光体含有部4は、蛍光体と透明樹脂とで形成されている。蛍光体は、青色LED3が発する青色光により励起されて、青色光よりも長波長の光である光を発する物質である。蛍光体含有部4を構成する蛍光体は一種類であっても良いし、複数からなる混合物であってもよく、青色LED3の発する光と蛍光体発光部4の発する光の総和が所望の色になるように選べばよい。色は白色だけでなく、黄色、オレンジ、ピンク、紫、青緑等であっても良い。また、これらの色と白色との間の中間的な色であっても良い。また、透明樹脂は蛍光体含有部4の封止材料であり、ここでは、本発明の蛍光体含有組成物を硬化させて用いている。
【0082】
モールド部7は、青色LED3、蛍光体含有部4、ワイヤ6などを外部から保護するとともに、配光特性を制御するためのレンズとしての機能を持つ。モールド部7には主にエポキシ樹脂を用いることができる。
図2は、図1に示す発光装置1を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図2において、8は面発光照明装置、9は拡散板、10は保持ケースである。
【0083】
この面発光照明装置8は、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源及び回路等(図示せず。)を設けて配置したものである。発光の均一化のために、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を固定している。
そして、面発光照明装置8を駆動して、発光装置1の青色LED3に電圧を印加することにより青色光等を発光させる。その発光の一部を、蛍光体含有部4において波長変換材料である蛍光体が吸収し、より長波長の光に変換し、蛍光体に吸収されなかった青色光等との混色により、高輝度の発光が得られる。この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。
【0084】
また、本発明の発光装置において、特に励起光源として面発光型のものを使用する場合、蛍光体含有部を膜状とするのが好ましい。即ち、面発光型の発光体からの光は断面積が十分大きいので、蛍光体含有部をその断面の方向に膜状とすると、第1の発光体からの蛍光体への照射断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。
【0085】
また、光源として面発光型のものを使用し、蛍光体含有部として膜状のものを用いる場合、光源の発光面に、直接膜状の蛍光体含有部を接触させた形状とするのが好ましい。ここでいう接触とは、光源と蛍光体含有部とが空気や気体を介さないでぴたりと接している状態をつくることを言う。その結果、光源からの光が蛍光体含有部の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。
【0086】
図3は、このように、光源として面発光型のものを用い、蛍光体含有部として膜状のものを適用した発光装置の一例を示す模式的斜視図である。図3中、11は、前記蛍光体を有する膜状の蛍光体含有部、12は光源としての面発光型GaN系LD、13は基板を表す。相互に接触した状態をつくるために、光源12のLDと蛍光体含有部11とそれぞれ別個につくっておいてそれらの面同士を接着剤やその他の手段によって接触させても良いし、光源12の発光面上に蛍光体含有部11を製膜(成型)させても良い。これらの結果、光源12と第2の蛍光体含有部11とを接触した状態とすることができる。
【0087】
[7]発光装置の用途
本発明の発光装置は使用する蛍光体の種類、量により各色の発光が可能であるが照明用途などは、白色光を発するもの発光装置が有用である。本発明の発光装置は、発光効率が通常20lm/W以上、好ましくは30lm/W以上、より好ましくは40lm/W以上であり、特に好ましくは60lm/W以上であり、平均演色評価指数Raが80以上、好ましくは90以上、より好ましくは95以上である。
【0088】
なお、上記平均演色評価指数Raは、JIS Z 8726により算出される。
本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種の分野に使用することが可能である。また、単独で、又は複数個を組み合わせて用いても良い。具体的には、例えば、照明ランプ、液晶パネル用等のバックライト、超薄型照明等の種々の照明装置、画像表示装置の光源として使用することができる。なお、本発明の発光装置を画像表示装置の光源として用いる場合には、カラーフィルターと併用してもよい。
【実施例】
【0089】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
[1]蛍光体含有組成物
[1−1]蛍光体の表面処理
[1−1−1]赤色蛍光体の表面処理(合成例1)
赤色蛍光体(CaAlSiN:Eu、中央粒径D50=8.2μm)1kgを水10kgに加え、10分撹拌した後、10%NaPO・12HO水溶液50mlを添加し10分撹拌した。ついで、20%Ca(NO・4HO水溶液25mlを添加し、30分間撹拌した後,静置した。上澄み液を排出した後、純水を導入し撹拌を10分行った。静置から純水導入までの工程を3回繰り返し、上澄み液の電気伝道度を1.8mS/m以下とした後、乾燥して表面処理された赤色蛍光体を得た。
【0090】
[1−1−2]緑色蛍光体の表面処理(合成例2)
合成例1の赤色蛍光体を、緑色蛍光体(CaScSi12:Ce、中央粒径D50=11.5μm)に代えた以外は、合成例1と同様にして表面処理された緑色蛍光体を得た。
[1−2]シリカ微粒子の物性測定
表1に示される実施例1〜4、および比較例1〜4で使用するシリカ微粒子について、下記の物性を測定した。
[1−2−1]水酸基濃度の測定
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定した。
(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量した。
(3)下記式により水酸基濃度を算出した。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
結果を表1に示す。
【0091】
[1−2−2]pHの測定
水:メタノール=1:1溶液0.1リットル中に各シリカ微粒子4gを加え、液温20〜25℃において、5分間充分に撹拌した後、pH計にてpHを測定した。結果を表1に示す。
[1−3]蛍光体含有組成物の製造
信越化学工業製付加硬化型シリコーン樹脂商品名LPS−2410(粘度=4.7Pa・s、硬化物のTypeA硬さ=42)100重量部(主剤:架橋剤=100:10)に後述する実施例1〜4、比較例1〜4のシリカ微粒子0.5重量部を加えて手攪拌した後、前述の合成例1で得られた赤色蛍光体1重量部と合成例2で得られた緑色蛍光体(CaScSi12:Ce、中央粒径D50=11.5μm)8重量部とを加え、シンキー社製攪拌装置(「あわとり練太郎」AR−100)で3分混練して蛍光体含有組成物とした。
【0092】
[1−4]蛍光体含有組成物の粘度測定
前述で得られた蛍光体含有組成物について、ブルックフィールド社製プロクラマブルデジタル粘度計コーンプレート型(型式: RVDV−11)を用いて、ローター回転数1rpmおよび5rpmにおける粘度を測定した。
結果を表1に示す。
【0093】
[2]発光装置
[2−1]発光装置の製造
東洋電波製SMD LEDパッケージ「TY−SMD1202B」(2.8×3.5×1.9mm厚)にCREE社製LEDチップ「C460−MB290」(発光波長=461nm)をボンディングした。
実施例1〜4および比較例1〜4の蛍光体含有組成物を前記LEDチップ付きパッケージの上面ぎりぎりまで充填した後、150℃、1時間硬化させて十分冷却し、発光装置を得た。
【0094】
[2−2]発光装置の評価
気温25℃±1℃に保たれた室内において、駆動電流20mA通電時の発光スペクトルを測定した。オーシャン オプティクス社製の色・照度測定ソフトウエア及びUSB2000シリーズ分光器(積分球仕様)を用いて測定し、この発光スペクトルの380nm〜780nmの波長領域のデータから、JIS Z8701で規定されるXYZ表色系における色度座標として色度値(Cx,Cy,Cz)を算出した。なお、この場合、Cx+Cy+Cz=1の関係式が成立する。結果を表1に示す。
【0095】
また、目標とする色度座標点(Cx,Cy)=(0.33,0.33)と出来上がった発光装置の色度座標点(Cx,Cy)の距離L={(Cx−Cx+(Cy−Cy1/2を算出した。
結果を表1に示す。
本発明の発光装置において、蛍光体含有組成物中での蛍光体粒子の沈降が激しい場合ほど、添加した蛍光体によるLEDチップからの発光の波長変換が十分に行なわれなくなるため、Lが大きくなってしまう。
【0096】
また、青色発光LEDを使用した場合は、蛍光体の分散が均一である程、青色励起光が蛍光体に吸収される効率が高まるので、蛍光体の発光量が増加することによって、Cx,Cy値が増加し、逆にCzが小さな値となる。従ってCz値が小さいことが蛍光体の沈降が少ないことの証左となるのでCzを蛍光体の沈降抑制度の指標とすることができる。
【0097】
【表1】

【0098】
A:日本エアロジル社製疎水性アエロジル「R8200」
B:日本エアロジル社製疎水性アエロジル「RY200」
C:日本エアロジル社製疎水性アエロジル「R972」
D:日本エアロジル社製疎水性アエロジル「RY200S」
E:日本エアロジル社製親水性アエロジル「#200」
F:日本エアロジル社製親水性アエロジル「#130」
G:日本エアロジル社製親水性アエロジル「#380」
表1の実施例1〜4、比較例1〜4の結果より、以下のことが確認された。
【0099】
即ち、水酸基濃度及びpHが所定の範囲にあるシリカ微粒子を添加した蛍光体含有組成物は、チキソトロープ性を示さないにもかかわらず、蛍光体粒子の沈降が抑制されており、これを用いて製作した発光装置は、蛍光体粒子の沈降に伴う所望の白色光からの色ずれが小さな発光が得られた。
【産業上の利用可能性】
【0100】
本発明の蛍光体含有組成物は、粘度上昇がなく、チキソトロープ性を示さない場合であっても蛍光体の沈降を抑制することができる。また、本発明の発光装置は、蛍光体の発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため発光装置の製造上有用である。また、かかる発光装置を使用した画像表示装置および照明装置は、発光分布が均一であり、高品質である。また、蛍光体が有効に利用されるため、画像表示装置および照明装置の製造上有用である。従って、本発明の蛍光体含有組成物、発光装置、画像表示装置、および照明装置は、当該各分野における産業上の利用可能性が極めて高い。
【図面の簡単な説明】
【0101】
【図1】本発明の発光装置の一実施例を示す模式的断面図である。
【図2】本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図である。
【図3】本発明の発光装置の他の実施の形態を示す模式的な斜視図である。
【符号の説明】
【0102】
1 発光装置
2 フレーム
2A フレームの凹部
3 青色LED
4 蛍光体含有部
5 銀ペースト
6 ワイヤ
7 モールド部
8 面発光照明装置
9 拡散板
10 保持ケース
11 蛍光体含有部
12 光源
13 基板

【特許請求の範囲】
【請求項1】
シリカ微粒子、蛍光体、および液体媒体を含有する蛍光体含有組成物であって、下記の水酸基濃度測定方法(I)で測定される前記シリカ微粒子の水酸基濃度が0.3個/nm以上、2個/nm以下であることを特徴とする蛍光体含有組成物。
水酸基濃度測定方法(I)
(1)シリカ微粒子の1g当たりの比表面積a(m/g)をBET法により測定する。(2)シリカ微粒子1gを10−2hPaの真空中で100℃、1時間乾燥した後、ジエチレングリコールジメチルエーテル1L中でLiAlH10gと反応させ、発生したH量b(ml)を定量する。
(3)下記式により水酸基濃度を算出する。
水酸基濃度(個/nm)=(6×1023×b)/(22400×a×1018
【請求項2】
下記のpH測定方法(II)により測定される前記シリカ微粒子のpHが4.5以上、7以下である請求項1に記載の蛍光体含有組成物。
pH測定方法(II)
水:メタノール=1:1溶液0.1L中にシリカ微粒子4gを加え、液温20〜25℃において、5分間充分に撹拌した後、pH計にてpHを測定する。
【請求項3】
前記液体媒体がシリコーン樹脂である請求項1または2に記載の蛍光体含有組成物。
【請求項4】
前記蛍光体がEu付活窒化物蛍光体から選ばれる1以上の蛍光体、ならびにCe付活珪酸塩蛍光体およびCe付活酸化物蛍光体から選ばれる1以上の蛍光体を含有する請求項1〜3のいずれか1項に記載の蛍光体含有組成物。
【請求項5】
請求項1〜4のいずれか1項に記載の蛍光体含有組成物を用いて形成された発光装置。
【請求項6】
請求項5に記載の前記発光装置を用いて形成された画像表示装置。
【請求項7】
請求項5に記載の前記発光装置を用いて形成された照明装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−50593(P2008−50593A)
【公開日】平成20年3月6日(2008.3.6)
【国際特許分類】
【出願番号】特願2007−193781(P2007−193781)
【出願日】平成19年7月25日(2007.7.25)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】