説明

蛍光体変換赤外線LED関連アプリケーション

種々の波長の光を生成することは、他の波長で放射する感光剤-希土酸化物イオンをポンプするように既存のLED放射を使用してIR蛍光体ダウンコンバート技術を使用する。感光剤は、LEDチップ・ポンプ放射を吸収し、次いで、高い量子効率でドーパントイオンにエネルギを伝送し、次いで、それらの特性波長で放射する。

【発明の詳細な説明】
【技術分野】
【0001】
[0001] 本出願は2009年6月19日に出願された米国仮出願番号第61/218531号(現在係属中の)の利益を優先権主張し、全体的に本願明細書にリファレンスとして組み入れられる。
【0002】
[0002] 本技術は、発光デバイスに関する。より詳しくは、本技術は、一つ以上の赤外線の発光蛍光体でおおわれている発光半導体構造に関する。
【背景技術】
【0003】
[0003] 発光ダイオード(LED)は、電気エネルギの入ってくるフローを電磁放射の出て行くフローに変換するPN接合デバイスである。LEDは電磁スペクトルの紫外線であるか、可視であるか赤外線の領域の電磁放射を放射し、放射波長は概してそれらが生じるダイオード半導体チップ材料に依存する。例えば、半導体チップ材料を含んでいるアルミニウム・ヒ化ガリウムから形成される赤い可視光を発するように、半導体チップ材料を含んでいるアルミニウム・ガリウム・リン化物から形成されるLEDが緑の可視光を発することは公知であり、電気エネルギーによって励起するとき、半導体チップ材料を含んでいるインジウム窒化ガリウムから形成されるLEDは青い緑光を発することは公知である。
【0004】
[0004] 放射線放射波長に加えて、多くのLEDも、明るさにおいて異なる。多くの用途において、例えばビルボード・ディスプレイまたは段階照明アプリケーションを照らすために、高輝度の可視発光ダイオードは要求され、その一方で、低輝度のLEDは器具上の状況インジケータライトにとって充分であろう。高輝度は、また、フラッシュのようなアプリケーションおよび「白色光」LED(すなわち人間の目が白色光と解釈する波長を有する光を発するLED)を使用するランタンにとって望ましい。白色光LEDが、白色光を生じるために異なる色の蛍光体コーティングを有する1つの色のLEDを連結することによって概して生じる。最も一般的には、(セリウム・ドープ・イットリウム・アルミニウム・ガーネットのような蛍光体を発している黄色でおおわれている)インジウム窒化ガリウム半導体から作られるLEDのような、青いLEDは、白い光放射のCIEチャート表示を有する光を一緒に生じる。例えば、白い蛍光体ベースLEDのこの一般の形成を教示する米国特許第5,998,925号を参照する。この種の「蛍光体に基づくLED」技術は、品質および明るさの程度を変化させることを有する正確なダイナミックなカラー対照を有するLEDの製造を企図する。
【0005】
[0005] 発光ダイオードはまた、赤外線(IR)放射のような非可視放射線を発することができることは公知である。赤外線発光ダイオードは、テレビ遠隔制御装置から短波赤外線(SWIR)カメラのような夜間ビジョン装置までさまざまなアプリケーションのために使用され、通信産業においてもしばしば使用される。典型的市販のIR LEDが1.55ミクロンまでの離散的な2、3の波長値で利用でき、従来は、PおよびN型ガリウム砒素(GaAs)エピタキシャル層から成るエピタキシャル・ウェーハを用いて生成され、GaAsエピタキシャル・ウェーハがシリコンのような両性の不純物によって概してドープされた。例えば、シャープ株式会社によって所有される米国特許第3,757,174号を参照し;(株)日立製作所によって所有される米国特許第4,008,485号を参照する(スズ、セレニウム、テルルまたは硫黄をドープしたGaAsベースLED教示する)。三菱モンサント化成によって所有される米国特許第4,575,742号はまた、かかる従来のIR LEDの効率を改善するために、赤外線発光ダイオード基板上に混合クリスタル層をまた組み込むこのタイプの改良型の赤外線LEDを教示する。米国特許第5,831,268号は、反射する液体の存在を検出するために赤外線LEDを利用する装置を教示する。
【0006】
[0006] 可視発光LEDと比較して、この種の従来の赤外線発光LEDは、よりかなり強度でない赤外線照明を生成し、効果的バンドギャップ構造を生成することができないために、約1ミリワット/LED半導体チップを発するだけである。したがって、種々の波長でより強いIR放射LEDに関する技術が必要である。本技術は、従来技術においてこの必要の解決を提供する。加えて、他の波長の光が、他の第2の光の波長で放射するドーパント(例えば、希土酸化物イオン)を励起するためのポンプとして、既存のLEDの第1の光放射を使用してIR蛍光体ダウンコンバート技術を使用して生成される。
【発明の概要】
【課題を解決するための手段】
【0007】
[0007] 一つ以上の赤外線放射蛍光体でおおわれている発光半導体構造を、ここに開示する。
[0008] ある態様では、a)光源、および、b)蛍光体材料を光源にエネルギダウンコンバートするエネルギを包含するストークス放射発光デバイスが提供される。蛍光体材料は、前記光源から発される光エネルギを吸収し、前記吸収された光エネルギに応答して赤外線を放射する少なくとも一つの赤外線放射発光蛍光体を含むことができる。
【0008】
[0009] 別の態様では、a)レセスカップおよびリードを備えるマウントリードと、b)マウントリードのレセスカップに取り付けられた発光ダイオード半導体チップと、c)発光ダイオード半導体チップ上の蛍光体材料と、を包含するストークス放射発光ダイオードアセンブリを提供する。レセスカップは、紫外線を赤外線に反射することができる反射金属を任意に含む。発光ダイオード半導体チップは、電気的にマウント・リードに接続している電極を有することができ、電気エネルギーで励起するとき、発光ダイオード半導体チップは、電磁スペクトルで紫外線から近赤外線領域まで変化する波長を備えた光を放射する材料を含むことができる。蛍光体材料は、前記発光ダイオード半導体チップからの光エネルギを吸収し、前記吸収された光エネルギに応じて赤外線を発する蛍光体を放射する少なくとも一つの赤外線放射蛍光体を含むことができる。
【図面の簡単な説明】
【0009】
【図1】[0010] 図1は、発光ダイオード・アセンブリの一実施形態の概略断面図である。
【図2】[0011] 図2は、半導体チップに直接おおわれている蛍光体材料を有するレセスカップの発光ダイオード半導体チップの一実施形態を例示する概略断面図である。
【図3】[0012] 図3は、レセスカップの発光ダイオード半導体チップの一実施形態を例示している概略断面図であり、ここで、蛍光体材料はカップを満たし、半導体チップに適用される赤外線-透明な材料を有する混合物として存在する。
【図4】[0013] 図4は、光学フィルタおよびコリメータレンズを含む本技術による発光ダイオード・アセンブリの一実施形態を例示する概略断面図である。
【図5】[0014] 図5は、ネオジム(Nd)(660ナノメートルLEDチップ・ポンプを有するベース蛍光体)の発光スペクトルのグラフである。
【図6】[0015] 図6は、イッテルビウム(Yb)(660ナノメートルLEDチップ・ポンプを備えたベース蛍光体)の発光スペクトルのグラフである。
【図7】[0016] 図7は、エルビウム(Er)(660ナノメートルLEDチップ・ポンプを有するベース蛍光体)の発光スペクトルのグラフ図である。
【発明を実施するための形態】
【0010】
[0017] 本技術の赤外線発光LEDは、可視光の強度および輝度能力を備え、従来の赤外線発光LEDより非常に強い光を生成する。本願明細書において開示されるLEDは、光源上に赤外線発行蛍光体材料を使用する。蛍光体材料は、光源によって発生する放射線を吸収し、その後、吸収された光に応答するダウンコンバートされたストークス放射(stokes radiation)を放射する。ここで使用しているように、「ストークス放射(stokes radiation)」は、励起されまたは生成された放射よりも低いエネルギ(長い波長)を有する放射(すなわち、フォトン)として定義され、ダウンコンバージョン(downconversion)が起こることを意味する。したがって、「ストークス放射発光デバイス(stokes radiation emitting device)」は、ストーク放射を放射するように製造されたデバイスとして定義される。
【0011】
[0018] 図1および2を参照すると、ストーク放射発光LEDアセンブリ100は、光源102上のエネルギダウンコンバーティング蛍光体材料104と、光源102とを含むことができる。光源102は、電磁スペクトルの紫外線から近赤外線の領域に変動している一つ以上の波長を有する光エネルギとして、光を発する。光源102によって発される光エネルギはまた、ここでは、第1の光、第1の光エネルギまたは第1の放射線と称される。ここで使用しているように、「蛍光体」は、特定の波長の第1の光によって励起されるとき、光エネルギとして第2の光を発する材料として定義され、ここで、第1の光エネルギは前記光源102から生じる。蛍光体104によって発される光エネルギはまた、本願明細書において第2の光、第2の光エネルギまたは第2の放射線と称される。蛍光体材料104は、前記光源102からの光エネルギを吸収し、前記吸収された光エネルギに応答する赤外線を発光する少なくとも一つの赤外線発光蛍光体を含むことができる。赤外線ストークス放射を生成するために、光源102は、より短い波長および赤外線より大きなエネルギーを有する光(放射線)を生成し、および放射する。したがって、光源102は電磁スペクトルの紫外線領域から、電磁スペクトルの近い赤外線領域まで変動している一つ以上の波長で、光を発することができ、それは可視光を含む。より好ましくは、光源102は約350ナノメートル乃至約980ナノメートルの波長から変動する一つ以上の波長で、光を発することができる。最も好ましくは、前記光源102は、約350ナノメートル乃至約980ナノメートルの波長で光を発する一つ以上の発光ダイオードを含むことができる。
【0012】
[0019] 図1乃至3に示すように、光源102は、従来技術においてまたLEDダイとして知られるLED半導体チップを有し、1以上の紫外線発光LED乃至近赤外線発光LEDを包含するのが好ましい。例えばテキサス州プラノのClairex Technologies社から、適切なLED型/チップが市販されている。蛍光体でおおわれるとき、この種のLED光源はまた、従来技術において「ポンプ」または「ポンプLED」と称され、ここで、LEDは「ポンプ光」を発する。複数の発光ダイオードがあるとき、それらの全ては同一であってよく、または、それらは種々のLED半導体チップ材料から造られることができる。
【0013】
[0020] 電気エネルギによって励起されまたは活性化されるとき、
適切なLED半導体チップ材料は、電磁スペクトルの近赤外線の領域に紫外線の放射を発する材料を非排他的に含む。好ましくは、前記光源/発光ダイオード半導体チップ102は、ガリウム砒素、アルミニウムガリウム砒素、窒化ガリウム、インジウムガリウム砒素、インジウム窒化ガリウム、アルミニウム窒化ガリウム、アルミニウム・ガリウム・リン化物、ヒ化ガリウム・リン化物、ガリウム・リン化物、アルミニウム・ガリウム・インジウム窒化物、または、それらの組み合わせを含むそれらの2以上のものから形成される半導体から成る一つ以上の発光ダイオードを含むことができる。最も好ましくは、光源/LED半導体チップ102は、インジウム・ヒ化ガリウム(InGaAs)から形成される半導体から成る一つ以上の発光ダイオードを含むことができる。周知のように、LEDチップは、ベース基板(図には図示せず)の上に共通にエピタキシャルに形成され、サファイヤ、シリコンまたは炭化ケイ素のような材料から形成される基板の排他的でない例である。
【0014】
[0021] 一般に、蛍光体104でおおわれているLED半導体チップ102は、限定することなくいかなる従来の発光ダイオード・アセンブリにも取り付けられることができる。図1は、本願明細書において役立つ典型的な発光ダイオード・アセンブリを例示する。図1にて例示したように、ストークス放射発光ダイオード・アセンブリ100は、内側リード110およびマウント・リード108、好ましくはレセスカップ106から成るマウント・リード108を含むことができる。光源/LED半導体チップ102は、マウント・リード108のレセスカップ106に取り付けられることができる。この種類のレセスハウジング構造はまた、ディンプルカップまたはディンプルコーンとして、若しくは、米国特許第5,865,529号にて開示したように従来技術において一般に公知技術である。この種のディンプル構造が、義務的でなく、蛍光体材料104から発される赤外線の角度発散を減らすのに効果的であるが、金属または他の適切なヒートシンク材料で製作されるとき、有効なヒートシンクとして役立つ。更に、図1において例示されるように、少なくとも一つの電極112は電気的にリード108および110および光源/LED半導体チップ102に接続し、光源/チップ102にリード108および110を結合する。一般に公知技術であるように、前記電極は金導線で形成され、また、金の結合導線と称される。この種のLEDアセンブリはまた、回路に対する供給流および直流電圧の連続供給を生じるように電力供給に連結する動力調節装置にLEDに接続している回路(図示せず)、回路に連結する電力供給およびケーブルを介してLEDを含むことができる。動力調節装置は、電動レジスタの入力に連結することができ、電動レジスタの出力はLEDに連結することができ、その全ては従来技術において従前通りである。この種の構造は、蛍光体104でおおわれているLED 102が、レセスハウジング構造106に載置され、従来技術において「LEDパッケージ」とも称され得る。
【0015】
[0022] 前述のように、LED半導体チップはチップによって発する光を吸収して、前記吸収された光に応答する赤外線を発し、蛍光体材料104が「蛍光体」として公知技術の一つ以上の物質から成る蛍光体材料104で被覆される。好ましくは、蛍光体材料104は、約800ナノメートル以上の波長で、赤外線を発する。最も好ましくは、蛍光体材料は、微粒子の物質または約800ナノメートル以上の波長で、赤外線を発する微粒子の物質の組合せを含むことができる。蛍光体104は、ホスト格子として公知技術の結晶構造から代わりに成ることができ、ホスト格子が発光ドーパントと結合される。この種のホスト格子構造およびホスト格子-ドーパント組合せは、一般に従来技術において周知で、更に詳細に下に記載する。本願明細書において使用する「ドーパント」は、光源から生じている第1の光エネルギを吸収し、前記第1の光エネルギに応答して第2の波長の第2の光を発する物質である。ホスト格子と結合して使われるとき、ドーパントは概して、ホスト格子結晶の置換元素であり、他の元素の代替として役立つ。置換される元素は、ホスト格子の構成に依存する。ドーパント元素は、一般に同じ電荷のものであり、更に、それが置換する元素と比較して小さいレベルであるのが一般的である。例えば、Nd:Cr:YGGからなるホスト格子-ドーパント組合せでは、ネオジム(Nd)およびクロミウム(cr)はドーパントであり、YGGはホスト格子の材料であり、NdおよびCrはホスト格子の材料のイットリウムと置換される。
【0016】
[0023] 蛍光体材料から成る物質は、一つ以上の感光剤、一つ以上のドーパント、または、一つ以上の感光剤と一つ以上のドーパントの両方を含むことができる。ここで使用しているように、「感光剤」は、ドーパント・イオンを供給するためのドーパントとして機能する元素からなり、感光剤物質は、光源から光エネルギを吸収することができ、前記光エネルギを発光ドーパントに非放射的に変換することもできる。ホスト格子において、感光剤はドーパント・イオンとして蛍光体ホスト格子に組み込まれることができる。他の材料(例えばセリウム、ツリウムおよびエルビウム)と同様に、役立つ感光剤は、非排他的にクロミウム(cr)および鉄(Fe)を含む。これらのうちで、他の放射イオン(例えばサマリウム、ホルミウムおよびツリウム)と関係しているとき、セリウム、ツリウムおよびエルビウムは感光剤として最も有効である。感光剤はまた、光を発することができることがありえ、その場合には、別々のドーパントは任意である。このタイプの感光剤の例は、クロミウムである。したがって、ドーパントは、光源、感光剤、または、光源と感光剤の両方から光エネルギを吸収し、次いで、前記吸収された光エネルギに応答する放射線を発する。感光剤の使用は、義務的でない。しかし、LED光放射は、一般にスペクトルで、感光剤のない蛍光体の吸収帯より非常に広い。蛍光体は概してバンドおよびこのように一部のソースLEDライトが蛍光体を通じさせるかもしれない狭い吸収を有し、すなわち、蛍光体はLED放射の一部を吸収することに失敗することがありえ、または、蛍光体によるLED放射物の吸収は部分的に減少することができるが、但し、LED放射は一般に非常に蛍光体分子によってさらに点在する。少なくとも、LED放射光の一部が吸収されないとき、それはエネルギー転送に貢献せず、効率は減少する。このエネルギー損失を減らすための1つの手段は、吸収の量を増やすためにより多くの蛍光体を加えることになっている。しかし、これは散乱損失および他の負の効果を増やすことができ、全体的な効率がより低くなる。あるいは、感光剤はこの問題を避けるために用いることができる。感光剤は、本質的にLEDエネルギーを吸収する第2のドーパントであるが、非放射的(non-radiatively)にエネルギーを蛍光体(例えば希土類元素)の放射ドーパントへ移す。多くの場合、かかる非放射性の転送は非常に高い量子効率を有すし、LEDの改良された性能に結果としてなる。より高い量子効率は、より大きなストークス放射変換効率およびエネルギー損失の引き下げに至る。ストークス放射発光デバイスの出力および効率を最大にするのが要求されるとき、当業者は、蛍光体、感光剤ドーパント・レベル、粒子サイズ、活性化イオン・ドーパント・レベル、および、特定のアプリケーションに関して材料を励起する特定のLEDで最適の量を決めることができる。
【0017】
[0024] 好適な実施形態では、蛍光体は、ホスト格子とドーパントとの混成または組合せとしてある。ホスト格子は、公知技術である結晶構造のいずれかでありえる。ホスト格子-ドーパント混合の最適化は、最大変換効率をIR LEDパッケージに提供することができる。適切なホスト材料は非排他的に一つ以上のガーネット、一つ以上の鋼鉄ガーネット、一つ以上の酸硫化物、一つ以上のフッ化物およびcolquiriiteを含み、それぞれは結晶構造を呈する。好適なホスト格子の材料の実施形態は、イットリウム・ガリウム・ガーネット(YGG)およびイットリウム・アルミニウム・ガーネット(YAG)を含む。これらは、Y3Ga5O12(YGG)および、それぞれ、Y3Al5O12(YAG)の化学組成を有する基本的な結晶構造である。
【0018】
[0025] ホスト格子-ドーパント組合せにおいて、蛍光体は一般に他の要素を光学放射特性を有する少ないパーセンテージのホスト格子のひとつと置換する。この目的にかなっている蛍光体は単一のドーパントから成ることができるかまたは多数のドーパントから成ることができ、ドーパントのうちの1つは感光剤として作用するかもしれない。それがあるときに、感光剤イオンは、蛍光体のための第1の吸収体であるが、メイン・エミッタでない。感光剤が吸収するエネルギーは、非射出転送によるメイン活性エミッタ・イオン(主ドーパント)へ移される。基底状態までそのエネルギー・カスケードとして光を発することができる励起した状態に、発しているイオンは、その転送によって励起した。上記の例を繰り返し、Nd:Cr:YGGからなるホスト格子-ドーパント組合せでは、Ndは、活性剤イオン(光学的活性化および第1の放射ドーパント)と考えられ、Crは感光剤(第1の吸収体およびエネルギー変換エージェント)であり、YGGはホスト格子材料である。2つのドーパント(NdおよびCr)は、ホスト格子材料のイットリウムと置換される。典型的には、Ndは相対的に低い濃度で組み込まれ、重量で約1%であり、Crは典型的には、典型的には高い濃度で組み込まれ、結合されるホスト格子-ドーパント材料の重量で一般的に約2%乃至約20%である。
【0019】
[0026] ドーパントの濃度は、ホスト格子材料および利用される特定のドーパント・イオンの構成に従い、広く変化する。これは一般に多くの活性剤(すなわち、第1の放射ドーパント)が非線形の挙動(例えばコンセントレーションクエンチ(concentration quenching))を呈するという理由であり、イオンはしばしば互いに相互作用し、減少する量子効率および減少減衰寿命のような潜在的問題を生じる。更に、より多くの吸収体(すなわち感光剤)の追加が、材料吸収能力を増やすと共に、それは同じ問題に結果としてなることがありえる。加えて、全ての元素は、陽子、中性子および電子の数のために、異なるサイズであるので、使われる各々の元素のために、格子への「適合」はやや異なる。共鳴状況が変わるので、元素の置換によってさまざまなサイズを変えることは、活性剤イオン放射波長または吸収波長を僅かに移動させるような、さまざまな効果を有する。このように、それは特定のアプリケーションのために要求するような効果および不利な点をバランスさせるのに必要である。
【0020】
[0027] 好適な蛍光体材料料は、一つ以上の希土類元素ドーピングしたガーネット、一つ以上の希土類元素ドーピングした鉄ガーネット、一つ以上の希土類元素ドーピングした酸硫化物、一つ以上の希土類元素ドーピングしたフッ化物を含む、colquiriitesドーピングされた一つ以上の希土類元素、混合ガーネットを含んでいる他の希土酸化物ドーピングしたガーネット、および、それらの組合せおよび混合を非排他的に含み、前記蛍光体の各々が、一つ以上の希土類元素を含み、または、ドープされる。より詳しくは、好ましい蛍光体材料料は、光子放射イオンとして作用する一つ以上の希土類元素によってドープされた少なくとも一つのガーネット・ホスト蛍光体と、感光剤として、または、エミッタおよび任意に一つ以上の光子放射希土類元素としてのクロミウムによってドープされた少なくとも一つのガーネット・ホスト蛍光体と、感光剤として、または、エミッタおよび任意に一つ以上の光子放射希土類元素としてのイオンでドープされた少なくとも一つのガーネット・ホスト蛍光体と、イットリウム・ガリウム・ガーネット、イットリウム・アルミニウム・ガーネット、または、それらの組合せおよび混合を含む一つ以上のそれらを非排他的に含む。活性希土類元素は、セリウム(Ce)、プラセオジミウム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(TM)およびイッテルビウム(Yb)を含む。これらのうちで、好適な蛍光体は、ガーネット・ホストを含み、希土類元素ネオジム、ホルミウム、エルビウムおよび/またはイッテルビウムから成るドーパントに基づく。3つの好適なIR LEDは例1-3において下で例証され、それらの発光スペクトルは図5-7において視覚的に例示される。
【0021】
[0028] ホストおよび格子ドーパントを含む前記混合では、ドーパントの異なるレベルは、ホスト格子の材料および感光剤の混合に従って使用される。この判断をなす公式はないけれども、前記混合は典型的には、混合の重量で約0.1%乃至約50%のドーパント濃度を有する。ドーパント濃度範囲は一般にドーパントのタイプおよび/または使用される感光剤に依存し、このレンジは制限することを企図としない。例えば、ホスト-格子混合で、クロミウム感光剤は、ホスト-格子混合の重量で約1%乃至約30%を有するのが典型的であり、ネオジム・ドーパントは、ホスト-格子混合の重量で約0.1%乃至約2%から成り、エルビウム・ドーパントは、ホスト-格子混合の重量で約0.1%乃至約50%から成り、ツリウム・ドーパントは、ホスト-格子混合の重量で約0.1%乃至約8%から成り、ホルミウム・ドーパントは、ホスト-格子混合の重量で約0.1%乃至約10%から成り、イッテルビウム・ドーパントは、ホスト-格子混合の重量で約0.1%乃至約30%から成り、プラセオジミウム・ドーパントは、ホスト-格子混合の重量で約0.1%乃至約10%から成る。感光剤および別の放射ドーパント(主ドーパント)の両方があるとき、感光剤:放射ドーパントの比率はまた、広く変化することができる。感光剤があるとき、それは概して放射ドーパントより大きな濃度に存在する。ホスト格子-ドーパント組合せでは、ドーパントは、感光剤および放射ドーパントの両方を有し、感光剤は典型的には、ホスト格子-ドーパント組合せの重量で約1%乃至約25%の量があり、放射ドーパント(放射ドーパントイオン)は、典型的には、ホスト格子-ドーパント組合せの重量で約0.1%乃至約10%の量がある。しかし、これらの特徴は、使用される特定のホスト格子の材料に従い、広く変化し、これらのレンジは制限することを企図しない。
【0022】
[0029] ある実施形態では、蛍光体材料は、LED放射を吸収するクロミウムまたは鉄感光剤を備えたガーネット・ホストを有するのが最も好ましく、一つ以上の希土類元素ドーパントを更に有する。LEDのスペクトル位置は、最も好ましくは感光剤の広い吸収と一致する。感光剤は、希土類元素ドーパントから非放射的(non-radiatively)にエネルギーを希土酸化物イオンへ移し、次いで、その特性波長で光エネルギを発する。ほとんどの希土酸化物イオンは、利用できるLEDのスペクトル幅と比較して、非常に幅が狭いスペクトル吸収線を呈する。スペクトル的に非常に幅広い吸収体感光剤の使用は、次いで、LED放射のより多くを捕獲することができ、能率的にそれをイオンが同じLED放射を有するそれ自体によってすることができるより、大きな効率を有する放射イオンへ転送することができる。
【0023】
[0030] 蛍光体材料104は、パウダー粒子がバインダ材料と一緒に保持されるのが好ましい微粒子としてパウダー形式で供給されるのが好ましい。蛍光体分子は、好ましくはミクロンスケールの直径を有し、好適な粒子直径は、約0.1μm乃至約50μm、より好ましくは、約0.1μm乃至約10μm、最も好ましくは、約0.1μm乃至約5μmのレンジの粒子サイズを有する。蛍光体の充分な量は、LED放射物の効果的吸収(>90%)のためのLEDチップに配置されることを必要とする。蛍光体は、次いで、LED波長(すなわち第1の光)での放射を希土酸化物イオン(すなわち第2の光)の特性波長に変換する。
【0024】
[0031] 蛍光体材料104は、光源/LED半導体チップ102上へ、アプリケーションの前にバインダと結合されるのが典型的である。図2に示すように、蛍光体材料104は、層または表面コーティングとして光源/LED半導体チップ102上へ、直接塗布されることができ、蛍光体材料104は光源/LED半導体チップ102上へ、アプリケーションの前にバインダを混ぜ合わせられるのが好ましい。適切なバインダは、シリコーン、アクリル樹脂、エポキシ、ポリイミドおよび当業者で測定される他の熱可塑性材料を非排他的に含む。典型的には、一つ以上の蛍光体粉または蛍光体粉の混成は、硬化されてないスラリーを形成するために硬化されてないバインダと混ぜ合わせられ、次いで、スラリーが光源/LED半導体チップ102上に堆積され、その後硬化する。蛍光体を塗布する技術は、従来技術において在来のものであり、例えば、在来のスプレー、従来のスパッタリングなど、ゾル・ゲル技術のような化学的方法、並びに、無線周波数(RF)スパッタリングのような洗練された方法を含む。硬化技術はまた、周知である。好ましい実施形態では、バインダは、室温加硫(RTV)シリコーンから成る。
【0025】
[0032] 少量の蛍光体だけは、希土酸化物イオンの放射を成し遂げるのに必要である。光源/LED半導体チップ102上の蛍光物質層の必須の厚みは、蛍光体のドーピング・レベルに依存する、なぜならばそれが蛍光体の吸収レベルを決定するからである。一般には、光源/半導体チップ102の蛍光物質層は、約50μmから約150μmまで、より好ましくは、約50μmから約100μmまで、最も好ましくは、約75μmから約100μmまでの厚さを有するのが好ましい。加えて、コーティングは、光源/LED半導体チップ102の全ての表面上で実質的に均一であるのが好ましい。別の実施形態では、図3において例示し、更に詳細に下で議論されるように、蛍光体粒子は、IR透明な被覆材114と混ぜ合わせられることができる。IR-透明な被覆材114は、上述したバインダに加えて使用されることができ、または、それ自身でバインダとして役立つことができる。蛍光体104およびIR-透明な被覆材114が混合を形成するために混合されるとき、混合は光源/LED半導体チップ102をレセスカップ102にカプセル化するために用いる。別の実施形態では、光源/LED半導体チップ102は、最初に蛍光体材料104で被覆され、材料114で被覆された光源のカプセル化が続く。
【0026】
[0033] 図2および3にて図示したように、マウントリード108のレセスカップ106を満たすこと、および、LED半導体チップを実質的に完全にカバーすることは、LED半導体チップ102をカプセル化する上述した赤外線-透明な被覆材114である。IR-透明な被覆材114はまた、在来の従来技術のように、実質的に完全にカバーすることができ、または、部分的に各々の電極112をカバーすることができる。ここで使用しているように、「実質的に完全にカバーする」は、IR-透明な被覆材114が、チップを機械的な損傷、水分および大気の露出から保護するために全てのチップ102をカバーし、空気にさらされるチップと関連してチップからの光抽出効率を増やすのにもまた役立つことができる。適切なIR-透明な被覆材は、公知技術であり、エポキシ樹脂、シリコンおよびガラスのような材料を含む。一般的に、金の結合接続(電極112)を引き離さずに堆積することができるいかなるIR-透明な重合体も使われることができる。
【0027】
[0034] 図2にて例示したように、そして、すでに言及したように、IR透明な被覆材114は、光源/LED半導体チップ102上の蛍光体材料104の層の上に塗布されることができる。別の実施形態では、図3にて図示したように、そして、すでに言及されるように、IR-透明な被覆材114は任意に蛍光体材料104のためのバインダとして役立つことができ、IR-透明な被覆材114は予め蛍光体材料104に混ざり、光源/LED半導体チップ102の上に続いて印加された。各々の実施形態では、蛍光体粒子は、一般にランダムに正しい位置に置かれ、硬化したバインダ材料の全体にわたって散在する。図3において例示される実施形態では、蛍光体104は、IR-透明な被覆材の全体にわたって散在し、好ましくは均質的にその中で混合される。さらに別の態様では、レセスカップは、部分的に蛍光体材料を含んでいないIR-透明な被覆材114で満たされることができ、更に上述した蛍光体104/IR-透明被覆材114の混合で部分的に満たされることができる。いくつかの例では、蛍光体材料104は、バインダを混ぜ合わせられ、図2にて例示したように、光源/LEDチップ102上に直接的なコーティング/層として堆積する。
【0028】
[0035] 蛍光体-バインダ混合のバインダは、倹約して好ましくは使われることができ、一緒に材料を保ち、適切にそれを有するのに十分なだけを利用して混合される。例えば、あるならば、バインダは、蛍光体-バインダ混合の重量で少なくとも約0.1%を有し、または、蛍光体-バインダ混合の重量で少なくとも約10%未満を有することができる。
【0029】
[0036] 上記したように、蛍光体被覆発光ダイオードダイは、生成されたストークス放射の角度発散を減らす際に援助するレセスハウジング構造に載置されるのが好ましい。前記角度縮小を成し遂げるために、レセスカップ106のジオメトリは、レセス(またはくぼみ)のダイオードから、光の抽出を最大にする形状を有しなければならない。特に、図にて例示したように、レセスカップ106は、好ましくは截頭円錐形状を有し、内部の傾斜した側壁および平坦、丸いまたは矩形のフロアーを有する円錐形状によって画定される。最も好ましくは、側壁は、フロアーに対して約45度乃至約60度の角度で方位付けされるが、変化することができる。この種のレセスハウジング構造は、一般に公知技術で、また従来技術において窪んだカップ(dimpled cup)または窪んだコーン(dimpled cone)と称される。別の実施形態では、レセスカップ106は、側壁をカーブさせることができ、米国特許第6,494,597号および第6,495,860号に開示され、ここにリファレンスとして組み入れられる。レセスカップ106の形成の技術は、従来公知であり、前記レセスカップ106は、前記光源/LED半導体チップ102および/または前記蛍光体材料104によって発生する熱の効果的な除去を考慮に入れている金属または適切な他のヒートシンク材料から作られるのが好ましい。その上、更に光放射効率を改善するために、レセスカップ106は、好ましくはLED放射および蛍光体放射波長(赤外線に紫外線を反射することができる)を反映することができる反射する金属から作られ、または別におおわれ、または、反射するこの種の材料(例えば銀、金、ロジウムまたはレセスカップ106に反射面を提供する他の高効率金属的反射材料)によってメッキされる。
【0030】
[0037] 図4に示すように、光源/LED半導体チップ102によって発される第1の光の一部が、蛍光体粒子と接触することなくIR透明な被覆材114を通過し、その結果、ストークス放射発光ダイオードアセンブリは、光源/LED半導体チップ102および蛍光体材料104の両方に隣接して配置される光学フィルタ118を組み込むのが好ましい。光学フィルタ118は、赤外線を透過するが、光源/LED半導体チップ102から発される光の伝達を妨げることができる。この種の光学フィルタ118は、公知技術である。図4において更に例示するように、ストークス放射発光ダイオード・アセンブリはまた、前記蛍光体材料104から発される赤外線放射の角度発散を更に減らすことができる光源/LED半導体チップ102に隣接して配置される光コリメータレンズ120を組み込むのが好ましい。コリメータレンズは、また、公知技術である。コリメータレンズ120は、米国特許第5,865,529号にて説明したように、凹円錐形のレンズであってよい。別の有用な実施形態は、LEDランプのためのコリメータレンズを教示する米国特許第7,370,994号において見つかる。
【0031】
[0038] ある例では、ストークス放射発光ダイオード・アセンブリは、光源/LED半導体チップ102の両方に隣接して配置される光学フィルタ118と、蛍光体材料から放射される赤外線の角度発散を減らすことができる光源/LED半導体チップ102に隣接して配置されるコリメータレンズ120との両方を有することができる。光学フィルタおよびコリメータレンズの両方を含む有用な構造の例は、米国特許第7,286,296号に開示され、リファレンスとしてここに組み入れられる。
【0032】
[0039] 図1および4にて図示したように、LED半導体チップ102、電極112、および、リード108および110のトップは、エポキシ、シリコーン、または、赤外線放射波長を透過する他の一般のポリマーのような封入材116によって封入されるのが好ましい。封入材116はまた、あるとき、任意の光学フィルタ118および任意のコリメータレンズ120を封入するのが好ましい。封入材116は、LED半導体チップ102をカプセル化する赤外線-透明な被覆材114と同じ、および、任意に等価である材料から成ってよく、または、材料114とは独立して異なってもよい。好ましくは、材料114および116は全く同一である。従来の鋳造している技術を使用して、蛍光体材料104から放射線排出の方向のカスタマイズされた制御を考慮に入れて、封入材116は様々な形状に加工品に仕上げられることができる。例えば、図1に示すように、封入材116は、半球状の形状に仕上げられることができ、かなりの光放射角度で光の放射を許容する。エポキシで製作されるとき、この種の構造は、従来技術において一般的で、従来技術においてしばしばドームとしてまたはエポキシ・ドームと称される。従来のLEDチップでは、ドームの高さは、2mm乃至10mmの範囲であることができる。図4に示すように、封入材116はまた、平坦な上面を有するように加工仕上げされることができる。放射された光または放射線の角度発散を減らすのを要求されるとき、平坦表面はドームより一般的である。コリメータレンズを組み込んでいる実施形態では、平坦なカプセルの材料面が好ましい。蛍光体材料104から発される赤外線は、空気のような伝送媒体を通過する前に被覆材114および/または封入材116を通過する。封入材116は、蛍光体材料104の屈折率と空気の屈折率と間の屈折率を有する材料からなるのが好ましく、蛍光体材料104と空気と間の光伝送の効率を増やすことように構成されている。蛍光体104被覆LED 102が、封入材/ドーム116、光学フィルタ118および/またはコリメータレンズ120のようなものでモールドされるこのタイプの構造はまた、従来技術において「LEDパッケージ」と称されることができる。
【0033】
[0040] 蛍光体ベース赤外線発光ダイオードが、テレビ遠隔制御装置から短波赤外線(SWIR)カメラのような夜間ビジョン装置まで変動する様々なアプリケーションのために使われることができる。例えば、それらが光電センサ(例えば光電スイッチ、並びに、テレビゲーム・ジョイスティックのような送信エレメント)の光源として使われることができる。要求されるにつれて、装置は、光源として1つのIR-LEDだけを含むことができ、または、多数のIR-LEDが光源として使われることができる。ここにリファレンスとして組み入れられる米国特許第6,495,860号を参照すると、各々がLED自身を保つように設計されている複数の部分がパンチされるブランクを有する発光ダイオードを製造する方法を教示する。特定のアプリケーションのために要求されることができので、このプロセスはIR-発光ダイオードの配列を生成するために用いることができる。
【0034】

[0041] 本技術に従ったIRダイオードの3つのサンプルは、(Ce:YAGのような)黄色の蛍光体を有する青いLEDチップから、白色光LEDを作るために一般に用いられるのと類似した製作技術を使用して近赤外LEDチップ(ダイ)に希土酸化物を含有する蛍光体を赤く適用することによって生成される。蛍光体は、透明なシリコーン接着剤に溶け込み、ポンプLEDチップに適用された。LEDハウジングユニットは、反射ウェルに結合されるポンプLEDチップを有する(改良された熱除去のための)金属カンから成り、蛍光体は総量を節約してチップに塗布された。LEDは、それから、LED発散を制限するためにレンズ構造で完了する金属カントップを使用する標準技術を使用して封止される。
【0035】
[0043] 生成される各々のIR-LEDサンプルは、蛍光体の代表的な光放射用にテストされる。ポンプ光の量が使用する蛍光体のタイプの高い吸収のために強く減らされるので、放射は蛍光体の代表例である。各々の実施形態において、蛍光体はLEDチップ出力のほぼ全てを吸収し、IRのLEDの出力を最大にした。
【0036】
[0045] 例1-3は、テストされる蛍光体のタイプの一覧を示し、結果は図5-7において視覚的に例示される。
例1
[0046] 660ナノメートルのLEDチップ・ポンプを有するネオジム(Nd)ベースの蛍光体
蛍光体は、660ナノメートルのLEDチップ・ポンプ放射を吸収するクロミウム感光剤を含むイットリウム・ガリウム・ガーネットのホスト格子の材料から成り、次いで、ネオジム・イオンに対する高い量子効率で、そのエネルギを変換する。発光スペクトルは、図5において視覚的に例示される。
【0037】
例2
[0047] 660ナノメートルのLEDチップ・ポンプを有するイッテルビウム(Yb)ベース蛍光体
蛍光体は、660ナノメートルのLEDチップ・ポンプ放射を吸収するクロミウム感光剤を含むイットリウム・ガリウム・ガーネットのホスト格子の材料から成り、次いで、高い量子効率で、エネルギをイッテルビウム・イオンに変換する。発光スペクトルは、図6において視覚的に例示される。
【0038】
例3
[0048] 660ナノメートルのLEDチップポンプを有するエルビウム(Er)ベース蛍光体
蛍光体は、660ナノメートルのLEDチップ・ポンプ放射を吸収するクロミウム感光剤を含むイットリウム・ガリウム・ガーネットのホスト格子の材料から成り、次いで、高い量子効率でエネルギをエルビウム・イオンに変換する。発光スペクトルは、図7において視覚的に例示される。
【0039】
[0049] 上記のことから、具体例が説明のために本願明細書において記載されていたにもかかわらず、さまざまな変更態様が趣旨またはこの開示の範囲から逸脱することなくなされることができると認められる。したがって、制限するというよりはむしろ図示する様に、前述の詳細な説明が注意されることを意図し、それが理解され、特に特許請求の範囲の内容を指し示して、明確に請求することを目的とする全ての均等の範囲を含む。

【特許請求の範囲】
【請求項1】
a)光源と、
b)前記光源に蛍光体材料をダウンコンバートするエネルギと、
を有し、
前記蛍光体材料が、前記光源から放射された光エネルギを吸収し、前記吸収された光エネルギに応じて赤外線放射を放出する少なくとも1つの赤外線放射蛍光体からなることを特徴とするストークス放射発光デバイス。
【請求項2】
前記光源が、紫外線から近赤外線領域の電磁スペクトルの波長を備えた光エネルギを放射することを特徴とする請求項1に記載のストークス放射発光デバイス。
【請求項3】
前記光源が、1以上の紫外線乃至赤外線放射発光ダイオードからなることを特徴とする請求項1に記載のストークス放射発光デバイス。
【請求項4】
前記光源が、ガリウム砒素、アルミニウム・ガリウム砒素、窒化ガリウム、インジウム窒化ガリウム、アルミニウム窒化ガリウム、アルミニウム・ガリウム・リン化物、ヒ化ガリウム・リン化物、ガリウム・リン化物、窒化アルミニウム・ガリウム・インジウムまたはそれらの組合せからなる半導体から各々成る一つ以上の発光ダイオードから成ることを特徴とする請求項1に記載のストークス放射発光デバイス。
【請求項5】
前記蛍光体材料が、感光剤、ドーパント、または、感光剤およびドーパントの両方からなり、
前記感光剤が、光源から前記光エネルギを吸収することができ、前記光エネルギをドーパントに非放射的に伝達することができる物質からなり、ドーパントが、前記光源、感光剤、又は、光源および感光剤の両方から光エネルギを吸収し、前記吸収された光エネルギに応じて放射を放出する物質からなることを特徴とする請求項1に記載のストークス放射発光デバイス。
【請求項6】
前記蛍光体材料が、一つ以上の希土類元素ドーピングガーネット、一つ以上の希土類元素ドーピング鉄ガーネット、一つ以上の希土類元素でドープされた一つ以上の混合ガーネット、一つ以上の希土類元素ドーピング酸硫化物、一つ以上の希土類元素ドーピングフッ化物、一つ以上の希土類元素ドーピングcolquiriites、希土類放射元素でドープされた少なくとも一つのガーネット・ホスト蛍光体、クロミウムおよび任意に一つ以上の光子放射希土類元素でドープされた少なくとも一つのガーネット・ホスト蛍光体、鉄および任意に一つ以上の光子放射希土類元素、イットリウム・ガリウム・ガーネット、イットリウム・アルミニウム・ガーネットでドープされ少なくとも一つのガーネット・ホスト蛍光体、または、それらの組み合わせからなることを特徴とする請求項1に記載のストークス放射発光デバイス。
【請求項7】
前記ストークス放射発光デバイスが、発光ダイオードアセンブリであり、
a)レセスカップおよびリードを有するマウントリードであって、前記レセスカップが、紫外線を赤外線放射に反射することができる反射金属を任意に有することを特徴とするマウントリードと、
b)光源と
を有し、
前記光源が、紫外線から近赤外線領域の電磁スペクトルに変化する波長を備えた光を放射する材料を包含する発光ダイオード半導体チップを有し、電気エネルギによって励起されるとき、前記発光ダイオード半導体チップが、前記マウントリードのレセスカップに取り付けられ、前記マウントリードに電気的に接続される電極を有する、ことを特徴とする請求項1に記載のストークス放射発光デバイス。
【請求項8】
前記レセスカップを満たし、前記発光ダイオード半導体チップを変換する赤外線放射透明材料を更に有する、ことを特徴とする請求項7に記載のストークス放射発光デバイス。
【請求項9】
発光ダイオード半導体チップと蛍光体材料との両方に隣接して配置される光ファイバーを更に有し、
前記光ファイバーが、赤外線放射に対して透明であり、発光ダイオード半導体チップから放射された光の伝送をブロックすることができることを特徴とする請求項7に記載のストークス放射発光デバイス。
【請求項10】
前記蛍光体材料から放射された赤外線放射の角度発散を低下させることができる発光ダイオード半導体チップに隣接して配置されたコリメータレンズを更に有することを特徴とする請求項7に記載のストークス放射発光デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2012−531043(P2012−531043A)
【公表日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2012−516181(P2012−516181)
【出願日】平成22年6月15日(2010.6.15)
【国際出願番号】PCT/US2010/038587
【国際公開番号】WO2010/147925
【国際公開日】平成22年12月23日(2010.12.23)
【出願人】(500575824)ハネウェル・インターナショナル・インコーポレーテッド (1,504)
【Fターム(参考)】