説明

車両用空調装置

【課題】乗員の快適性を極力損なうことなく、空調の省エネルギー化を図る。
【解決手段】車室内へ空気を送風する送風手段32と、送風手段32にて送風される送風空気と熱媒体とを熱交換する熱交換手段36、15と、乗員の空調感を補う補助空調手段90、91と、送風手段32の送風能力を制御する送風能力制御手段50aとを備え、送風能力制御手段50aは、補助空調手段90、91が作動中の場合、補助空調手段90、91が停止中の場合に比べて、送風手段32の送風能力を小さくする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車室内へ送風する送風空気と熱媒体とを熱交換する車両用空調装置に関する。
【背景技術】
【0002】
従来、走行用電動モータおよびエンジン(内燃機関)から走行用の駆動力を得るハイブリッド車両に適用される車両用空調装置として、車室内の暖房を行う際に、エンジンの冷却水を熱源として車室内へ送風する送風空気を加熱するものが知られている(例えば、特許文献1参照)。
【0003】
この種のハイブリッド車両では、車両燃費向上のために、車両の停車時、或いは、走行時であってもエンジンの作動を停止させることがあり、車両用空調装置にて車室内の暖房を行う際に、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していない場合がある。
【0004】
そこで、特許文献1の車両用空調装置では、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していない場合は、走行用の駆動力を出力させるためにエンジンを作動させる必要がない走行条件であっても、エンジンの駆動力を制御する駆動力制御装置に対してエンジンの作動を要求する信号(作動要求信号)を出力して、冷却水の温度を暖房用の熱源として充分な温度となるまで上昇させるようにしている。
【0005】
しかしながら、車室内の空調のためにエンジンを作動させることは、車両燃費の低下を招く。そこで、特許文献1の車両用空調装置では、車両燃費を向上させるため、車両のシートを加熱するシートヒータが作動している場合、車室内の空調のためのエンジンの作動を抑制してエンジン停止時間を長くしている。
【0006】
すなわち、シートヒータが作動している場合、乗員の温感は実際の車室内温度よりも高くなるので、冷却水の温度が暖房用の熱源として充分な温度となるまで上昇していなくても、結果として暖房能力を維持することができる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−308133号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、車室内の暖房時においてシートヒータが作動していても、冷却水の温度が下がりすぎると車室内へ低い温度の空気が吹き出されることで、乗員の快適性が悪化してしまう虞がある。そのため、エンジンの作動の抑制に限界があり、十分な省エネルギー効果が得られない可能性がある。
【0009】
上記点に鑑みて、本発明は、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するため、請求項1に記載の発明では、車室内へ空気を送風する送風手段(32)と、
送風手段(32)にて送風される送風空気と熱媒体とを熱交換する熱交換手段(36、15)と、
乗員の空調感を補う補助空調手段(90、91)と、
送風手段(32)の送風能力を制御する送風能力制御手段(50a)とを備え、
送風能力制御手段(50a)は、補助空調手段(90、91)が作動中の場合、補助空調手段(90、91)が停止中の場合に比べて、送風手段(32)の送風能力を小さくすることを特徴とする。
【0011】
これによると、補助空調手段(90、91)が作動中の場合、送風手段(32)の送風能力を小さくするので、送風手段(32)の消費エネルギーを低減できる。また、送風手段(32)の送風能力を小さくすることで送風空気と熱媒体との熱交換量が低減されるので、熱交換のための消費エネルギーを低減することができる。
【0012】
さらに、補助空調手段(90、91)が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適感を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。
【0013】
なお、本発明における熱交換手段とは、例えば送風空気とエンジン冷却水とを熱交換するヒータコア(36)や、送風空気と冷凍サイクルの冷媒とを熱交換する蒸発器(15)等である。
【0014】
また、本発明における補助空調手段とは、例えば座席を加熱して乗員の暖房感を補うシートヒータ(90)や、座席から空気を吹き出して乗員の冷房感を補うシートファン(91)等である。
【0015】
好ましくは、請求項2に記載の発明のように、請求項1に記載の発明において、補助空調手段(90、91)は、その作動能力を調節可能になっており、
送風能力制御手段(50a)は、補助空調手段(90、91)の作動能力が高い程、送風手段(32)の送風能力を小さくするのがよい。
【0016】
請求項3に記載の発明では、車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
内燃機関(EG)の冷却水を熱源として、車室内へ送風される送風空気を加熱する加熱手段(36)と、
乗員の暖房感を補う補助空調手段(90)と、
車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
要求信号出力手段(50f)は、補助空調手段(90)が作動を開始してから所定時間が経過するまでの間、駆動力制御手段(70)に対して内燃機関(EG)を停止させる要求信号を出力することを特徴とする。
【0017】
これによると、補助空調手段(90)が作動を開始してから所定時間が経過するまでの間、内燃機関(EG)を停止させることができるので、空調のための内燃機関(EG)の作動頻度を低減することができ、ひいては空調の省エネルギー化を図ることができる。
【0018】
さらに、補助空調手段(90)が作動していれば、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していなくても、乗員に快適な温感を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。
【0019】
請求項4に記載の発明では、請求項3に記載の発明において、乗員の操作により、車室内目標温度(Tset)を設定するための目標温度設定手段(60a)と、
乗員の操作により、作動モードを省動力優先モードに設定するための省動力優先モード設定手段(60b)とを備え、
要求信号出力手段(50f)は、
省動力優先モードが設定されている場合、車室内目標温度(Tset)とは無関係に、駆動力制御手段(70)に対して要求信号を出力し、
省動力優先モードが設定されている場合、車室内目標温度(Tset)に基づいて、駆動力制御手段(70)に対して要求信号を出力することを特徴とする。
【0020】
これによると、省動力優先モードが設定されている場合、乗員の操作により設定された車室内目標温度(Tset)に基づいて駆動力制御手段(70)に対して要求信号を出力するので、乗員の意思を反映して空調の省エネルギー化を図ることができる。
【0021】
請求項5に記載の発明では、車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
車室内へ空気を送風する送風手段(32)と、
内燃機関(EG)の冷却水を熱源として、送風手段(32)にて送風される送風空気を加熱する加熱手段(36)と、
加熱手段(36)で加熱された送風空気を車室内に吹き出す複数の吹出口(25、26)と、
複数の吹出口(25、26)から吹き出される風量の割合を変化させて吹出口モードを切り替える吹出口モード切替手段(25a、26a、50b)と、
乗員の暖房感を補う補助空調手段(90)と、
車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
複数の吹出口(25、26)は、加熱手段(36)で加熱された送風空気を窓に向けて吹き出すデフロスタ吹出口(26)を含み、
要求信号出力手段(50f)は、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べて加熱手段(36)に導入される冷却水の温度が低下するように駆動力制御手段(70)に対して要求信号を出力し、
吹出口モード切替手段(25a、26a、50b)は、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べてデフロスタ吹出口(26)から吹き出される風量の割合を増加させることを特徴とする。
【0022】
これによると、補助空調手段(90)が作動中の場合、補助空調手段(90)が停止中の場合に比べて加熱手段(36)に導入される冷却水の温度が低下するように内燃機関(EG)の作動が制御されるので、空調のための内燃機関(EG)の作動頻度を低減することができ、ひいては空調の省エネルギー化を図ることができる。
【0023】
また、補助空調手段(90)が作動中の場合、デフロスタ吹出口(26)から吹き出される風量の割合が増加するので、窓曇りの発生を抑制することができる。従って、乗員の快適性が損なわれることを抑制しつつ、空調の省エネルギー化を図ることができる。
【0024】
具体的には、請求項6に記載の発明のように、請求項5に記載の発明において、車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)と、
下限温度(Twon)および上限温度(Twoff)を決定する温度決定手段(S1122)とを備え、
温度決定手段(S1122)は、補助空調手段(90、91)が作動中の場合、補助空調手段(90、91)が停止中の場合に比べて下限温度(Twon)および上限温度(Twoff)を低くすればよい。
【0025】
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【図面の簡単な説明】
【0026】
【図1】第1実施形態の車両用空調装置の全体構成図である。
【図2】第1実施形態の車両用空調装置の電気制御部を示すブロック図である。
【図3】第1実施形態のPTCヒータの回路図である。
【図4】第1実施形態の車両用空調装置の制御処理を示すフローチャートである。
【図5】第1実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。
【図6】第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。
【図7】第1実施形態の吹出口モードの決定状態を示す図である。
【図8】第1実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。
【図9】第1実施形態の運転モードの決定状態を示す図表である。
【図10】第2実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。
【図11】第3実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。
【図12】第3実施形態の車両用空調装置の制御処理の別の要部を示すフローチャートである。
【発明を実施するための形態】
【0027】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
【0028】
(第1実施形態)
以下、図面を用いて本発明の第1実施形態を説明する。図1は、本実施形態の車両用空調装置1の全体構成図であり、図2は、車両用空調装置1の電気制御部の構成を示すブロック図である。本実施形態では、この車両用空調装置1を、内燃機関(エンジン)EGおよび走行用電動モータから車両走行用の駆動力を得るハイブリッド車両に適用している。
【0029】
本実施形態のハイブリッド車両は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載されたバッテリ(車載バッテリ)81に充電可能なプラグインハイブリッド車両として構成されている。
【0030】
このプラグインハイブリッド車両は、車両走行開始前の車両停車時に外部電源から供給された電力をバッテリ81に充電しておくことによって、走行開始時のようにバッテリ81の蓄電残量SOCが予め定めた走行用基準残量以上になっているときには、主に走行用電動モータの駆動力によって走行する運転モードとなる。以下、この運転モードをEV運転モードという。
【0031】
一方、車両走行中にバッテリ81の蓄電残量SOCが走行用基準残量よりも低くなっているときには、主にエンジンEGの駆動力によって走行する運転モードとなる。以下、この運転モードをHV運転モードという。
【0032】
より詳細には、EV運転モードは、主に走行用電動モータが出力する駆動力によって車両を走行させる運転モードであるが、車両走行負荷が高負荷となった際にはエンジンEGを作動させて走行用電動モータを補助する。つまり、走行用電動モータから出力される走行用の駆動力(モータ側駆動力)がエンジンEGから出力される走行用の駆動力(内燃機関側駆動力)よりも大きくなる運転モードである。
【0033】
換言すると、内燃機関側駆動力に対するモータ側駆動力の駆動力比(モータ側駆動力/内燃機関側駆動力)が、少なくとも0.5より大きくなっている運転モードであると表現することもできる。
【0034】
一方、HV運転モードは、主にエンジンEGが出力する駆動力によって車両を走行させる運転モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジンEGを補助する。つまり、内燃機関側駆動力がモータ側駆動力よりも大きくなる運転モードである。換言すると、駆動力比(モータ側駆動力/内燃機関側駆動力)が、少なくとも0.5より小さくなっている運転モードであると表現することもできる。
【0035】
本実施形態のプラグインハイブリッド車両では、このようにEV運転モードとHV運転モードとを切り替えることによって、車両走行用の駆動力をエンジンEGのみから得る通常の車両に対してエンジンEGの燃料消費量を抑制して、車両燃費を向上させている。また、このようなEV運転モードとHV運転モードとの切り替え、および、駆動力比の制御は、後述する駆動力制御装置70によって制御される。
【0036】
さらに、エンジンEGから出力される駆動力は、車両走行用として用いられるのみならず、発電機80を作動させるためにも用いられる。そして、発電機80にて発電された電力および外部電源から供給された電力は、バッテリ81に蓄えることができ、バッテリ81に蓄えられた電力は、走行用電動モータのみならず、車両用空調装置1を構成する電動式構成機器をはじめとする各種車載機器に供給できる。
【0037】
次に、本実施形態の車両用空調装置1の詳細構成を説明する。この車両用空調装置1は、バッテリ81から供給される電力による車室内の空調に加えて、車両走行前の車両停車時に外部電源から供給される電力によって車室内の空調(例えば、プレ空調)を実行可能に構成されている。
【0038】
本実施形態の車両用空調装置1は、図1に示す冷凍サイクル10、室内空調ユニット30、図2に示す空調制御装置50等を備えている。
【0039】
まず、室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング31内に送風機32、蒸発器15、ヒータコア36、PTCヒータ37等を収容したものである。
【0040】
ケーシング31は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31内の送風空気流れ最上流側には、内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替箱20が配置されている。
【0041】
より具体的には、内外気切替箱20には、ケーシング31内に内気を導入させる内気導入口21および外気を導入させる外気導入口22が形成されている。さらに、内外気切替箱20の内部には、内気導入口21および外気導入口22の開口面積を連続的に調整して、ケーシング31内へ導入させる内気の風量と外気の風量との風量割合を変化させる内外気切替ドア23が配置されている。
【0042】
従って、内外気切替ドア23は、ケーシング31内に導入される内気の風量と外気の風量との風量割合を変化させる吸込口モードを切り替える風量割合変更手段を構成する。より具体的には、内外気切替ドア23は、内外気切替ドア23用の電動アクチュエータ62によって駆動され、この電動アクチュエータ62は、後述する空調制御装置50から出力される制御信号によって、その作動が制御される。
【0043】
また、吸込口モードとしては、内気導入口21を全開とするとともに外気導入口22を全閉としてケーシング31内へ内気を導入する内気モード、内気導入口21を全閉とするとともに外気導入口22を全開としてケーシング31内へ外気を導入する外気モード、さらに、内気モードと外気モードとの間で、内気導入口21および外気導入口22の開口面積を連続的に調整することにより、内気と外気の導入比率を連続的に変化させる内外気混入モードがある。
【0044】
内外気切替箱20の空気流れ下流側には、内外気切替箱20を介して吸入した空気を車室内へ向けて送風する送風手段である送風機32(ブロア)が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置50から出力される制御電圧によって回転数(送風能力)が制御される。従って、この電動モータは、送風機32の送風能力変更手段を構成している。
【0045】
送風機32の空気流れ下流側には、蒸発器15が配置されている。蒸発器15は、その内部を流通する冷媒(熱媒体)と送風機32から送風された送風空気とを熱交換させて、送風空気を冷却する冷却手段(熱交換手段)として機能する。具体的には、蒸発器15は、圧縮機11、凝縮器12、気液分離器13および膨張弁14等とともに、蒸気圧縮式の冷凍サイクル10を構成している。
【0046】
ここで、本実施形態に係る冷凍サイクル10の主要な構成について説明すると、圧縮機11は、エンジンルーム内に配置され、冷凍サイクル10において冷媒を吸入し、圧縮して吐出するものであり、吐出容量が固定された固定容量型圧縮機構11aを電動モータ11bにて駆動する電動圧縮機として構成されている。電動モータ11bは、インバータ61から出力される交流電圧によって、その作動(回転数)が制御される交流モータである。
【0047】
また、インバータ61は、後述する空調制御装置50から出力される制御信号に応じた周波数の交流電圧を出力する。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、電動モータ11bは、圧縮機11の吐出能力変更手段を構成している。
【0048】
凝縮器12は、エンジンルーム内に配置されて、内部を流通する冷媒と、室外送風機としての送風ファン12aから送風された車室外空気(外気)とを熱交換させることにより、圧縮機11吐出冷媒を凝縮させる室外熱交換器である。送風ファン12aは、空調制御装置50から出力される制御電圧によって稼働率、すなわち、回転数(送風空気量)が制御される電動式送風機である。
【0049】
気液分離器13は、凝縮器12にて凝縮された冷媒を気液分離して余剰冷媒を蓄えるとともに、液相冷媒のみを下流側に流すレシーバである。膨張弁14は、気液分離器13から流出した液相冷媒を減圧膨張させる減圧手段である。蒸発器15は、膨張弁14にて減圧膨張された冷媒を蒸発させて、冷媒に吸熱作用を発揮させる室内熱交換器である。これにより、蒸発器15は、送風空気を冷却する冷却用熱交換器として機能する。
【0050】
以上が本実施形態に係る冷凍サイクル10の主要構成の説明であり、以下、室内空調ユニット30の説明に戻る。ケーシング31内において、蒸発器15の空気流れ下流側には、蒸発器15通過後の空気を流す加熱用冷風通路33、冷風バイパス通路34といった空気通路、並びに、加熱用冷風通路33および冷風バイパス通路34から流出した空気を混合させる混合空間35が形成されている。
【0051】
加熱用冷風通路33には、蒸発器15通過後の空気を加熱するためのヒータコア36およびPTCヒータ37が、送風空気流れ方向に向かってこの順に配置されている。ヒータコア36は、エンジンEGを冷却するエンジン冷却水(以下、単に冷却水という。)を熱媒体として蒸発器15通過後の送風空気を加熱する加熱手段(熱交換手段)として機能する。換言すると、ヒータコア36は、冷却水と蒸発器15通過後の送風空気とを熱交換させる加熱用熱交換器として機能する。
【0052】
具体的には、ヒータコア36とエンジンEGは、冷却水配管によって接続されて、ヒータコア36とエンジンEGとの間を冷却水が循環する冷却水回路40が構成されている。そして、この冷却水回路40には、冷却水を循環させるための冷却水ポンプ40aが配置されている。この冷却水ポンプ40aは、空調制御装置50から出力される制御電圧によって回転数(冷却水循環流量)が制御される電動式の水ポンプである。
【0053】
PTCヒータ37は、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力が供給されることによって発熱して、ヒータコア36通過後の空気を加熱する補助加熱手段としての電気ヒータである。なお、本実施形態のPTCヒータ37を作動させるために必要な消費電力は、冷凍サイクル10の圧縮機11を作動させるために必要な消費電力よりも少ない。
【0054】
より具体的には、このPTCヒータ37は、図3に示すように、複数(本実施形態では、3本)のPTCヒータ37a、37b、37cから構成されている。なお、図3は、本実施形態のPTCヒータ37の電気的接続態様を示す回路図である。
【0055】
図3に示すように、各PTCヒータ37a、37b、37cの正極側はバッテリ81側に接続され、負極側は各PTCヒータ37a、37b、37cが有する各スイッチ素子SW1、SW2、SW3を介して、グランド側へ接続されている。各スイッチ素子SW1、SW2、SW3は、各PTCヒータ37a、37b、37cが有する各PTC素子h1、h2、h3の通電状態(ON状態)と非通電状態(OFF状態)とを切り替えるものである。
【0056】
さらに、各スイッチ素子SW1、SW2、SW3の作動は、空調制御装置50から出力される制御信号によって、独立して制御される。従って、空調制御装置50は、各スイッチ素子SW1、SW2、SW3の通電状態と非通電状態とを独立に切り替えることによって、各PTCヒータ37a、37b、37cのうち、通電状態となり加熱能力を発揮するものを切り替えて、PTCヒータ37全体としての加熱能力を変化させることができる。
【0057】
一方、冷風バイパス通路34は、蒸発器15通過後の空気を、ヒータコア36およびPTCヒータ37を通過させることなく、混合空間35に導くための空気通路である。従って、混合空間35にて混合された送風空気の温度は、加熱用冷風通路33を通過する空気および冷風バイパス通路34を通過する空気の風量割合によって変化する。
【0058】
そこで、本実施形態では、蒸発器15の空気流れ下流側であって、加熱用冷風通路33および冷風バイパス通路34の入口側に、加熱用冷風通路33および冷風バイパス通路34へ流入させる冷風の風量割合を連続的に変化させるエアミックスドア39を配置している。従って、エアミックスドア39は、混合空間35内の空気温度(車室内へ送風される送風空気の温度)を調整する温度調整手段を構成する。
【0059】
より具体的には、エアミックスドア39は、エアミックスドア用の電動アクチュエータ63によって駆動される回転軸と、その一端側に回転軸が連結された板状のドア本体部を有して構成される、いわゆる片持ちドアで構成されている。また、エアミックスドア用の電動アクチュエータ63は、空調制御装置50から出力される制御信号によって、その作動が制御される。
【0060】
さらに、ケーシング31の送風空気流れ最下流部には、混合空間35から空調対象空間である車室内へ温度調整された送風空気を吹き出す吹出口24〜26が配置されている。この吹出口24〜26としては、具体的に、車室内の乗員の上半身に向けて空調風を吹き出すフェイス吹出口24、乗員の足元に向けて空調風を吹き出すフット吹出口25、および、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ吹出口26が設けられている。
【0061】
また、フェイス吹出口24、フット吹出口25、およびデフロスタ吹出口26の空気流れ上流側には、それぞれ、フェイス吹出口24の開口面積を調整するフェイスドア24a、フット吹出口25の開口面積を調整するフットドア25a、デフロスタ吹出口26の開口面積を調整するデフロスタドア26aが配置されている。
【0062】
これらのフェイスドア24a、フットドア25a、デフロスタドア26aは、吹出口モードを切り替える吹出口モード切替手段を構成するものであって、図示しないリンク機構を介して、吹出口モードドア駆動用の電動アクチュエータ64に連結されて連動して回転操作される。なお、この電動アクチュエータ64も、空調制御装置50から出力される制御信号によってその作動が制御される。
【0063】
また、吹出口モードとしては、フェイス吹出口24を全開してフェイス吹出口24から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口24とフット吹出口25の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口25を全開するとともにデフロスタ吹出口26を小開度だけ開口して、フット吹出口25から主に空気を吹き出すフットモード、およびフット吹出口25およびデフロスタ吹出口26を同程度開口して、フット吹出口25およびデフロスタ吹出口26の双方から空気を吹き出すフットデフロスタモードがある。
【0064】
さらに、乗員が後述する操作パネル60のスイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。
【0065】
また、本実施形態の車両用空調装置1では、図示しない電熱デフォッガを備えている。電熱デフォッガは、車室内窓ガラスの内部あるいは表面に配置された電熱線であって、窓ガラスを加熱することで防曇あるいは窓曇り解消を行う窓ガラス加熱手段である。この電熱デフォッガについても空調制御装置50から出力される制御信号によって、その作動を制御できるようになっている。
【0066】
さらに、本実施形態の車両用空調装置1は、乗員が着座する座席に設けられた補助空調装置90、91(補助空調手段)を備えている。補助空調装置90、91は、乗員が着座する座席の表面温度を上昇させる補助加熱手段としてのシートヒータ90、および座席の内部から乗員へ向けて空気を送風する補助送風手段としてのシートファン91で構成されている。
【0067】
具体的には、シートヒータ90は、座席表面に埋め込まれた電熱線で構成され、電力を供給されることによって発熱する座席加熱手段である。
【0068】
そして、室内空調ユニット10の各吹出口24〜26から吹き出される空調風によって車室内の暖房が不十分となり得る際に作動させて乗員の暖房感(空調感)を補う機能を果たす。なお、このシートヒータ90は、空調制御装置50から出力される制御信号によって作動が制御される。
【0069】
また、シートファン91は、座席近傍に設けられた電動送風機で構成され、電力を供給されることによって送風するシート送風手段である。シートファン91の送風空気は、座席内部に形成された空気通路を流れたのち、座席表面に形成された吹出穴から乗員へ向けて吹き出される。
【0070】
そして、室内空調ユニット10の各吹出口24〜26から吹き出される空調風によって車室内の冷房が不十分となり得る際に作動させて乗員の冷房感(空調感)を補う機能を果たす。なお、このシートファン91は、空調制御装置50から出力される制御信号によって作動が制御される。
【0071】
シートファン91は、内気をそのまま乗員へ向けて送風するようになっていてもよいし、冷却用熱交換器やペルチェ素子等の冷却手段によって冷却された冷風を乗員へ向けて送風するようになっていてもよい。
【0072】
なお、補助空調装置は、必ずしもシートヒータ90およびシートファン91の両方を備えている必要はなく、シートヒータ90およびシートファン91のいずれか一方を備える構成であってもよい。また、補助空調装置は、乗員の空調感を補うことができるものであればよく、例えば、補助空調装置は、座席近傍に設けられた輻射式ヒータや、座席近傍に設けられたスポットファン等であってもよい。
【0073】
次に、図2により、本実施形態の電気制御部について説明する。空調制御装置50(空調制御手段)および駆動力制御装置70(駆動力制御手段)は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種機器の作動を制御する。
【0074】
駆動力制御装置70の出力側には、エンジンEGを構成する各種エンジン構成機器および走行用電動モータへ交流電流を供給する走行用インバータ等が接続されている。各種エンジン構成機器としては、具体的に、エンジンEGを始動させるスタータ、エンジンEGに燃料を供給する燃料噴射弁(インジェクタ)の駆動回路(いずれも図示せず)等が接続されている。
【0075】
また、駆動力制御装置70の入力側には、バッテリ81の端子間電圧VBを検出する電圧計、バッテリ81へ流れ込む電流ABinあるいはバッテリ81から流れる電流ABioutを検出する電流計、アクセル開度Accを検出するアクセル開度センサ、エンジン回転数Neを検出するエンジン回転数センサ、車速Vvを検出する車速センサ(いずれも図示せず)等の種々のエンジン制御用のセンサ群が接続されている。
【0076】
空調制御装置50の出力側には、送風機32、圧縮機11の電動モータ11b用のインバータ61、送風ファン12a、各種電動アクチュエータ62、63、64、第1〜第3PTCヒータ37a、37b、37c、冷却水ポンプ40a、シートヒータ90等が接続されている。
【0077】
また、空調制御装置50の入力側には、車室内温度Trを検出する内気センサ51、外気温Tamを検出する外気センサ52(外気温検出手段)、車室内の日射量Tsを検出する日射センサ53、圧縮機11吐出冷媒温度Tdを検出する吐出温度センサ54(吐出温度検出手段)、圧縮機11吐出冷媒圧力Pdを検出する吐出圧力センサ55(吐出圧力検出手段)、蒸発器15からの吹出空気温度(蒸発器温度)TEを検出する蒸発器温度センサ56(蒸発器温度検出手段)、エンジンEGから流出した冷却水の冷却水温度Twを検出する冷却水温度センサ58、車室内の窓ガラス近傍の車室内空気の相対湿度を検出する湿度検出手段としての湿度センサ、窓ガラス近傍の車室内空気の温度を検出する窓ガラス近傍温度センサ、および窓ガラス表面温度を検出する窓ガラス表面温度センサ等の種々の空調制御用のセンサ群が接続されている。
【0078】
なお、本実施形態の蒸発器温度センサ56は、具体的に蒸発器15の熱交換フィン温度を検出している。もちろん、蒸発器温度センサ56として、蒸発器15のその他の部位の温度を検出する温度検出手段を採用してもよいし、蒸発器15を流通する冷媒自体の温度を直接検出する温度検出手段を採用してもよい。また、湿度センサ、窓ガラス近傍温度センサ、および窓ガラス表面温度センサの検出値は、窓ガラス表面の相対湿度RHWを算出するために用いられる。
【0079】
さらに、空調制御装置50の入力側には、車室内前部の計器盤付近に配置された操作パネル60に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル60に設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、オートスイッチ、運転モードの切替スイッチ、吹出口モードの切替スイッチ、送風機32の風量設定スイッチ、車室内温度設定スイッチ60a、現在の車両用空調装置1の作動状態等を表示する表示部等が設けられている。
【0080】
オートスイッチは、乗員の操作によって車両用空調装置1の自動制御を設定あるいは解除する自動制御設定手段である。車室内温度設定スイッチ60aは、乗員の操作によって車室内目標温度Tsetを設定する目標温度設定手段である。
【0081】
さらに、操作パネル60に設けられた各種空調操作スイッチとしては、エコノミースイッチ60b、シートヒータスイッチ60c、およびシートファンスイッチ60dが設けられている。
【0082】
エコノミースイッチ60bは、環境への負荷の低減を優先させるスイッチである。エコノミースイッチ60bを投入することにより、車両用空調装置1の作動モードが、空調の省動力化を優先させるエコノミーモード(略してエコモード)に設定される。したがって、エコノミースイッチ60bを省動力優先モード設定手段と表現することもできる。
【0083】
また、エコノミースイッチ60bを投入することにより、EV運転モード時に、走行用電動モータを補助するために作動させるエンジンEGの作動頻度を低下させる信号がエンジン制御装置に出力される。
【0084】
シートヒータスイッチ60cは、シートヒータ90の作動、停止および作動時の加熱能力(作動能力)を設定するスイッチであり、本例では、シートヒータスイッチ60cによって、シートヒータ90の加熱能力をロー(Lo)、ハイ(Hi)の2段階に調節可能になっている。
【0085】
シートファンスイッチ60dは、シートファン91の作動、停止および作動時の送風能力(作動能力)を設定するスイッチであり、本例では、シートファンスイッチ60dによって、シートファン91の送風能力をロー(Lo)、ハイ(Hi)の2段階に調節可能になっている。
【0086】
また、空調制御装置50および駆動力制御装置70は、電気的に接続されて通信可能に構成されている。これにより、一方の制御装置に入力された検出信号あるいは操作信号に基づいて、他方の制御装置が出力側に接続された各種機器の作動を制御することもできる。例えば、空調制御装置50が駆動力制御装置70へエンジンEGの要求信号を出力することによって、エンジンEGの作動を要求することが可能となっている。なお、駆動力制御装置70では、空調制御装置50からのエンジンEGの作動を要求する要求信号(作動要求信号)を受信すると、エンジンEGの作動の要否を判定し、その判定結果に応じてエンジンEGの作動を制御する。
【0087】
ここで、空調制御装置50および駆動力制御装置70は、その出力側に接続された各種制御対象機器を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
【0088】
例えば、空調制御装置50のうち、送風手段である送風機32の作動を制御して、送風機32の送風能力を制御する構成が送風能力制御手段50aを構成し、圧縮機11の電動モータ11bに接続されたインバータ61から出力される交流電圧の周波数を制御して、圧縮機11の冷媒吐出能力を制御する構成が圧縮機制御手段を構成し、吹出口モードの切り替えを制御する構成が吹出口モード切替手段50bを構成している。
【0089】
また、冷却手段である蒸発器15の冷却能力を制御する構成が冷却能力制御手段50cを構成し、加熱手段であるヒータコア36の加熱能力を制御する構成が加熱能力制御手段を構成している。
【0090】
また、補助加熱手段であるPTCヒータ37の加熱能力を制御する構成が補助加熱制御手段を構成し、さらに、シートヒータ90の加熱能力やシートファン91の送風能力を制御する構成が補助空調制御手段50dを構成している。
【0091】
また、空調制御装置50における駆動力制御装置70と制御信号の送受信を行う構成が、要求信号出力手段50fを構成している。また、駆動力制御装置70における空調制御装置50と制御信号の送受信を行うと共に、要求信号出力手段50f等からの出力信号に応じてエンジンEGの作動の要否を決定する構成(作動要否決定手段)が、信号通信手段70aを構成している。
【0092】
なお、本実施形態における空調制御装置50の要求信号出力手段50f、および駆動力制御装置70の信号通信手段70aは、加熱手段であるヒータコア36の加熱能力を調整するためにエンジンEGの作動を制御する作動制御手段を構成している。
【0093】
次に、図4〜図9により、上記構成における本実施形態の車両用空調装置1の作動を説明する。図4は、本実施形態の車両用空調装置1のメインルーチンとしての制御処理を示すフローチャートである。この制御処理は、車両用空調装置1を構成する電動式構成機器をはじめとする各種車載機器にバッテリ81や外部電源等から電力が供給された状態で、車両用空調装置1の作動スイッチが投入されるとスタートする。なお、図4〜図9中の各制御ステップは、空調制御装置50が有する各種の機能実現手段を構成している。
【0094】
まず、ステップS1では、フラグ、タイマ等の初期化、および上述した電動アクチュエータを構成するステッピングモータの初期位置合わせ等のイニシャライズが行われる。なお、このイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置1の作動終了時に記憶された値が維持されるものもある。
【0095】
次に、ステップS2では、操作パネル60の操作信号等を読み込んでステップS3へ進む。具体的な操作信号としては、車室内温度設定スイッチによって設定される車室内目標温度Tset、吸込口モードスイッチの設定信号等がある。
【0096】
次に、ステップS3では、空調制御に用いられる車両環境状態の信号、すなわち上述のセンサ群51〜58の検出信号や、外部電源からの電力の供給状態を示す電力状態信号等を読み込む。なお、電力状態信号が、外部電源から車両に電力を供給可能な状態(プラグイン状態)を示す場合には、外部電源フラグがONされ、外部電源から車両に電力を供給できない状態(プラグアウト状態)を示す場合には、外部電源フラグがOFFされる。
【0097】
また、このステップS3では、駆動力制御装置70の入力側に接続されたセンサ群の検出信号、および駆動力制御装置70から出力される制御信号等の一部も、駆動力制御装置70から読み込んでいる。
【0098】
次に、ステップS4では、車室内吹出空気の目標吹出温度TAOを算出する。目標吹出温度TAOは、以下の数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C…(F1)
ここで、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気センサ51によって検出された車室内温度(内気温)、Tamは外気センサ52によって検出された外気温、Tsは日射センサ53によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
【0099】
なお、目標吹出温度TAOは、車室内を所望の温度に保つために車両用空調装置1が生じさせる必要のある熱量に相当するもので、車両用空調装置1に要求される空調熱負荷として捉えることができる。
【0100】
続くステップS5〜S13では、空調制御装置50に接続された各種機器の制御状態が決定される。まず、ステップS5では、エアミックスドア39の目標開度SWを目標吹出温度TAO、蒸発器温度センサ56によって検出された吹出空気温度TE、冷却水温度Twに基づいて算出する。
【0101】
ステップS5の詳細については、図5のフローチャートを用いて説明する。まず、ステップS51では、以下数式F2により仮のエアミックス開度SWddを算出して、ステップS52へ進む。
SWdd=[{TAO−(TE+2)}/{MAX(10、Tw−(TE+2))}]×100(%)…(F2)
なお、数式F2の{MAX(10、Tw−(TE+2))}とは、10およびTw−(TE+2)のうち大きい方の値を意味している。
【0102】
続く、ステップS52では、ステップS51にて算出された仮のエアミックス開度SWddに基づいて、予め空調制御装置50に記憶された制御マップを参照して、エアミックス開度SWを決定して、ステップS6へ進む。なお、この制御マップでは、図5のステップS52に示すように、仮のエアミックス開度SWddに対するエアミックス開度SWの値を非線形的に決定している。
【0103】
これは、前述の如く、本実施形態では、エアミックスドア39として片持ちドアを採用しているために、エアミックス開度SWの変化に対する実際の送風空気の流れ方向から見た冷風バイパス通路34の開口面積および加熱用冷風通路33の開口面積の変化が非線形的な関係となるからである。
【0104】
次のステップS6では、送風機32の送風能力(具体的には、電動モータに印加するブロワモータ電圧)を決定する。
【0105】
このステップS6の詳細については、図6のフローチャートを用いて説明する。図6に示すように、まず、ステップS61では、操作パネル60のオートスイッチが投入(ON)されているか否かを判定する。この結果、オートスイッチが投入されていないと判定された場合は、ステップS62で、操作パネル60の風量設定スイッチによってマニュアル設定された乗員の所望の風量となるブロワモータ電圧が決定されて、ステップS7に進む。
【0106】
具体的には、本実施形態の風量設定スイッチは、Lo→M1→M2→M3→Hiの5段階の風量を設定することができ、それぞれ4V→6V→8V→10V→12Vの順にブロワモータ電圧が高くなるように決定される。
【0107】
一方、ステップS61にて、オートスイッチが投入されていると判定された場合は、ステップS63で、ステップS4にて決定されたTAOに基づいて予め空調制御装置50に記憶された制御マップを参照して第1仮ブロワレベルf(TAO)を決定する。
【0108】
本実施形態における第1仮ブロワレベルf(TAO)を決定する制御マップは、TAOに対する第1仮ブロワレベルf(TAO)の値がバスタブ状の曲線を描くように構成されている。
【0109】
すなわち、図6のステップS63に示すように、TAOの極低温域(本実施形態では、−30℃以下)および極高温域(本実施形態では、80℃以上)では、送風機32の風量が最大風量付近となるように第1仮ブロワレベルf(TAO)を高レベルに上昇させる。
【0110】
また、TAOが極低温域から中間温度域に向かって上昇すると、TAOの上昇に応じて送風機32の送風量が減少するように、第1仮ブロワレベルf(TAO)を減少させる。さらに、TAOが極高温域から中間温度域に向かって低下すると、TAOの低下に応じて、送風機32の風量が減少するように第1仮ブロワレベルf(TAO)を減少させる。そして、TAOが所定の中間温度域内(本実施形態では、10℃〜40℃)に入ると、送風機32の風量が最低風量となるように第1仮ブロワレベルf(TAO)を低レベルに低下させる。なお、上述の説明から明らかなように、この第1仮ブロワ電圧f(TAO)は、TAOに基づいて決定される値であるから、車室内設定温度Tset、内気温Tr、外気温Tam、日射量Tsに基づいて決定される値に基づいて決定されている。
【0111】
続くステップS64では、送風機32の送風能力を決定するために電動モータに印加する送風機電圧に対応するブロワレベルを決定する。このステップS64では、シートヒータ90およびシートファン91の作動状態に応じてブロワレベルを決定する。
【0112】
具体的には、シートヒータ90およびシートファン91の停止時は、第1仮ブロワレベルf(TAO)と同じ値をブロワレベルとして決定し、シートヒータ90およびシートファン91のうち少なくとも一方の作動時は、第1仮ブロワレベルf(TAO)よりも低い値をブロワレベルとして決定する。
【0113】
具体的には、図6のステップS64に示すように、シートヒータ90がOFFかつシートファン91がOFFの場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。
【0114】
シートヒータ90がOFF(停止)かつシートファン91の作動状態がLo(低風量)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。
【0115】
シートヒータ90がOFFかつシートファン91の作動状態がHi(高風量)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。このときのブロワレベルは、シートヒータ90がOFFかつシートファン91がLoの場合よりも低い値となる。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。
【0116】
シートヒータ90の作動状態がLo(低温)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。
【0117】
シートヒータ90の作動状態がHi(高温)の場合、ブロワレベルを第1仮ブロワレベルf(TAO)よりも低い値にする。このときのブロワレベルは、シートファン91がHiの場合よりも低い値となる。ただし、本例では第1仮ブロワレベルf(TAO)が4レベル以下の場合、ブロワレベルを第1仮ブロワレベルf(TAO)と同じ値にする。
【0118】
続くステップS67では、ステップS66にて決定したブロワレベルに基づいて、予め空調制御装置50に記憶された制御マップを参照して、送風機電圧(ブロワモータ電圧)を決定する。
【0119】
上述のステップS64で説明した通り、シートヒータ90およびシートファン91の停止時は、第1仮ブロワレベルf(TAO)と同じ値をブロワレベルとして決定し、シートヒータ90およびシートファン91のうち少なくとも一方の作動時は、第1仮ブロワレベルf(TAO)よりも低い値をブロワレベルとして決定する。
【0120】
このため、シートヒータ90およびシートファン91のうち少なくとも一方が作動している場合、シートヒータ90およびシートファン91が停止している場合に比べて送風機32の送風能力(送風量)が低減されるので、送風機32の消費電力(消費エネルギー)を低減できる。また、送風機32の送風能力を小さくすることで、暖房時にはヒータコア36における送風空気と冷却水との熱交換量が低減され、冷房時には蒸発器15における送風空気と冷媒との熱交換量が低減されるので、熱交換のための消費エネルギーを低減することができる。
【0121】
さらに、シートヒータ90が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な温感(暖房感)を与えることができる。また、シートファン91が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な冷感(冷房感)を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。
【0122】
次のステップS7では、吸込口モード、すなわち内外気切替箱の切替状態を決定する。この吸込口モードもTAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。本実施形態では、基本的に外気を導入する外気モードが優先されるが、TAOが極低温域となって高い冷房性能を得たい場合等に内気を導入する内気モードが選択される。さらに、外気の排ガス濃度を検出する排ガス濃度検出手段を設け、排ガス濃度が予め定めた基準濃度以上となったときに、内気モードを選択するようにしてもよい。
【0123】
次のステップS8では、吹出口モードを決定する。この吹出口モードも、TAOに基づいて、予め空調制御装置50に記憶された制御マップを参照して決定する。
【0124】
本実施形態では、図7に示すように、TAOが低温域から高温域へと上昇するにつれて吹出口モードをフェイスモード→バイレベルモード→フットモードへと順次切り替える。
【0125】
従って、夏季は主にフェイスモード、春秋季は主にバイレベルモード、そして冬季は主にフットモードが選択され易くなる。さらに、湿度センサの検出値から窓ガラスに曇りが発生する可能性が高い場合には、フットデフロスタモードあるいはデフロスタモードを選択するようにしてもよい。
【0126】
次のステップS9では、圧縮機11の冷媒吐出能力(具体的には、回転数(rpm))を決定する。このステップS9では、ステップS4で決定したTAO等に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、蒸発器15からの吹出空気温度TEの目標吹出温度TEOを決定する。
【0127】
そして、この目標吹出温度TEOと吹出空気温度TEの偏差En(TEO−TE)を算出し、今回算出された偏差Enから前回算出された偏差En−1を減算した偏差変化率Edot(En−(En−1))とを用いて、予め空調制御装置50に記憶されたメンバシップ関数とルールとに基づいたファジー推論に基づいて、前回の圧縮機回転数fCn−1に対する回転数変化量Δf_Cを求める。
【0128】
また、本実施形態の空調制御装置50に記憶されたメンバシップ関数とルールでは、上述の偏差Enと偏差変化率Edotに基づいて蒸発器15の着霜が防止されるようにΔf_Cが決定される。さらに、前回の圧縮機回転数fn−1に回転数変化量Δf_Cを加算した値を今回の圧縮機回転数fnとして更新する。なお、この圧縮機回転数fnの更新は、1秒毎の制御周期で実行される。
【0129】
次のステップS10では、PTCヒータ37の作動本数および電熱デフォッガの作動状態を決定する。まず、PTCヒータ37の作動本数の決定について説明すると、ステップS10では、外気温Tam、ステップS51にて決定した仮のエアミックス開度SWdd、冷却水温度Twに応じて、PTCヒータ37の作動本数を決定する。
【0130】
具体的には、まず、外気温に基づいてPTCヒータ37の作動の要否を判定する。なお、PTCヒータ37の作動の要否判定処理としては、外気センサ52が検出した外気温が所定温度(本実施形態では、26℃)よりも高いか否かを判定すればよい。
【0131】
そして、外気温が26℃よりも高いと判定された場合は、PTCヒータ37による吹出温アシストは必要無いと判断して、PTCヒータ37の作動本数を0本に決定する。
【0132】
一方、外気温が26℃よりも低いと判定された場合は、さらに仮のエアミックス開度SWddに基づいてPTCヒータ37作動の要否を決定する。
【0133】
ここで、仮のエアミックス開度SWddが小さくなることは、加熱用冷風通路33にて送風空気を加熱する必要性が少なくなることを意味していることから、PTCヒータ37を作動させる必要性も少ないと判断できる。
【0134】
このため、仮のエアミックス開度SWddを予め定めた基準開度と比較して、仮のエアミックス開度SWddが第1基準開度(本実施形態では、100%)以下であれば、PTCヒータ37を作動させる必要は無いものとして、PTCヒータ作動フラグf(SW)=OFFとする。
【0135】
一方、仮のエアミックス開度SWddが第2基準開度(本実施形態では、110%)以上であれば、PTCヒータ37を作動させる必要があるものとして、PTCヒータ作動フラグf(SW)=ONとする。なお、第1基準開度と第2基準開度との開度差は、制御ハンチング防止のためのヒステリシス幅として設定されている。
【0136】
そして、上述のように設定されたPTCヒータ作動フラグf(SW)がOFFであれば、PTCヒータ37の作動本数を0本に決定し、PTCヒータ作動フラグf(SW)がONであれば、PTCヒータ37の作動本数を決定する。
【0137】
なお、PTCヒータ37の作動本数は、冷却水温度Twに応じて決定する。具体的には、冷却水温度Twが上昇過程にあるときは、冷却水温度Twの上昇に伴って作動本数が減少するように決定し、冷却水温度が下降過程にあるときは、冷却水温度Twの下降に伴って作動本数が増加するように決定する。なお、上昇過程および下降過程における作動本数を決める冷却水温度Twの基準温度にヒステリシス幅を設けることで、制御ハンチングの防止を図るようにしてもよい。
【0138】
また、電熱デフォッガについては、車室内の湿度および温度から窓ガラスに曇りが発生する可能性が高い場合、あるいは窓ガラスに曇りが発生している場合は、電熱デフォッガを作動させる。
【0139】
次のステップS11では、空調制御装置50から駆動力制御装置70へ出力される要求信号を決定する。この要求信号としては、エンジンEGの作動要求信号(エンジンON要求信号)等がある。
【0140】
ここで、車両走行用の駆動力をエンジンEGのみから得る通常の車両では、走行時に常時エンジンを作動させているので冷却水も常時高温となる。従って、通常の車両では冷却水をヒータコア36に流通させることで十分な暖房能力を発揮することができる。
【0141】
これに対して、本実施形態のプラグインハイブリッド車両では、車両走行用の駆動力を走行用電動モータからも得ることができることから、エンジンEGの作動を停止させることがあり、車両用空調装置1にて車室内の暖房を行う際に、冷却水の温度が暖房用の熱源として充分な温度にまで上昇していない場合がある。
【0142】
そこで、本実施形態の車両用空調装置1は、走行用の駆動力を出力させるためにエンジンEGを作動させる必要がない走行条件であっても、所定条件を満たした場合には、エンジンEGの駆動力を制御する駆動力制御装置70に対してエンジンEGの作動を要求する要求信号(作動要求信号)を出力して、冷却水温度を暖房用の熱源として充分な温度となるまで上昇させるようにしている。
【0143】
ステップS11の詳細については、図8のフローチャートを用いて説明する。まず、ステップS1101では、冷却水温度Twに基づくエンジンEGの作動要求信号あるいは停止要求信号の出力を行うか否かの判定に用いる判定閾値としてのエンジンON水温TwonおよびエンジンOFF水温Twoffを決定する。なお、エンジンON水温Twonは、作動要求信号を出力することを決定する判定基準となる閾値であり、エンジンOFF水温Twoffは、エンジンEGの停止要求信号を出力することを決定する判定基準となる閾値である。
【0144】
つまり、エンジンON水温Twonは、駆動力制御装置70がエンジンEGを作動させて冷却水温度Twを昇温させる際の下限温度となる値である。つまり、駆動力制御装置70は、冷却水温度TwがエンジンON水温Twonを下回ったら冷却水温度Twを昇温させるためにエンジンEGを作動させることになる。従って、本実施形態の制御ステップS1101は、下限温度決定手段を構成している。
【0145】
つまり、エンジンOFF水温Twoffは、駆動力制御装置70がエンジンEGを作動させて冷却水温度Twを昇温させる際の上限温度となる値である。つまり、駆動力制御装置70は、冷却水温度Twを昇温させる際に、冷却水温度TwがエンジンOFF水温TwoffとなるまでエンジンEGを作動させることになる。従って、本実施形態の制御ステップS1101は、上限温度決定手段を構成している。
【0146】
換言すると、本実施形態の制御ステップS1101は、下限温度および上限温度を決定する温度決定手段を構成している。
【0147】
具体的には、エンジンOFF水温Twoffは、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Tw1と、予め定められた基準温度(本実施形態では70℃)のうち小さい方の値に決定する。
【0148】
ここで、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Tw1は、以下の数式F3を用いて算出する。
Tw1={(TAO−ΔTptc)−(TE×0.2)}/0.8…(F3)
なお、ΔTptcは、PTCヒータ37の作動による吹出温上昇量、すなわち、各吹出口24〜26から車室内へ吹き出される空気の温度(吹出温)のうち、PTCヒータ37の発熱分が寄与した温度上昇量である。このΔTptcは、PTCヒータ37の作動本数の増加に伴って高い値が設定される。例えば、PTCヒータ37の作動本数が0本であればΔTptc=0℃、作動本数が1本であればΔTptc=3℃、作動本数が2本であればΔTptc=6℃、作動本数が3本であればΔTptc=9℃となるように設定されている。
【0149】
ここで、冷却水目標温度f(TAO)から吹出温上昇量ΔTptcを減算した値は、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度TwからPTCヒータ37を作動させることによる温度上昇分を減算した値なので、この温度をエンジンOFF水温Twoffとすれば、車両用空調装置1に確実に充分な暖房能力を発揮させることができる。
【0150】
また、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Twと比較する基準温度は、確実にエンジンの停止要求信号を出力するための保護用の値として決定された値である。
【0151】
一方、エンジンON水温Twonは、頻繁にエンジンがON/OFFするのを防止するため、エンジンOFF水温Twoffよりも所定の値(本実施形態では、5℃)だけ低く決定されており、この所定の値は、制御ハンチング防止のためのヒステリシス幅として設定されている。
【0152】
続くステップS1102では、冷却水温度Twに応じて、エンジンEGの作動要求信号あるいは停止要求信号を出力するか否かの仮の要求信号フラグf(Tw)を決定する。具体的には、冷却水温度TwがステップS1101で決定されたエンジンON水温Twonより低ければ、仮の要求信号フラグf(Tw)=ONとしてエンジンEGの作動要求信号を出力することを仮決定し、冷却水温度TwがエンジンOFF水温Twoffより高ければ、仮の要求信号フラグf(Tw)=OFFとしてエンジンEGの停止要求信号を出力することを仮決定する。
【0153】
続くステップS1103では、エコノミースイッチ60bの投入状態(オンオフ状態)、目標吹出温度TAO、仮の要求信号フラグf(Tw)、および車室内設定温度Tsetに基づいて、予め空調制御装置50に記憶されている制御マップを参照して、駆動力制御装置70へ出力される要求信号を決定する。
【0154】
具体的には、ステップS1103では、図8の図表に示すように、車両用空調装置1の作動モードがエコモード以外(エコノミースイッチ60bがオフ)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。
【0155】
また、車両用空調装置1の作動モードがエコモード以外であって、且つTAOが基準温度以上である場合には、仮の要求信号フラグf(Tw)をそのまま要求信号に決定する。つまり、仮の要求信号フラグf(Tw)がONであれば、エンジンEGを作動させる要求信号に決定し、仮の要求信号フラグf(Tw)がOFFであれば、エンジンEGを停止させる要求信号に決定する。
【0156】
さらに、車両用空調装置1の作動モードがエコモード(エコノミースイッチ60bがオン)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。
【0157】
また、車両用空調装置1の作動モードがエコモードであって、且つTAOが基準温度以上である場合には、車室内設定温度Tsetが基準温度未満である場合を除いて、要求信号フラグf(Tw)をそのまま要求信号に決定する。つまり、仮の要求信号フラグf(Tw)がONであれば、エンジンEGを作動させる要求信号に決定し、仮の要求信号フラグf(Tw)がOFFであれば、エンジンEGを停止させる要求信号に決定する。なお、車室内設定温度Tsetの基準温度は、吹出口モードをバイレベルモードからフェイスモードに切り替える閾値(本実施形態では28℃:図7参照)と同じ温度が設定されている。
【0158】
そして、車両用空調装置1の作動モードがエコモードであって、且つTAOが基準温度以上であり、さらに車室内設定温度Tsetが基準温度未満である場合には、仮の要求信号フラグf(Tw)がONであっても、エンジンEGを停止させる要求信号に決定する。
【0159】
これによると、TAOが基準温度未満である場合、駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、暖房負荷が小さい場合に空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。
【0160】
さらに、車両用空調装置1の作動モードがエコモード以外の場合、車室内設定温度Tsetとは無関係に駆動力制御装置70へ出力する要求信号を決定しているのに対し、車両用空調装置1の作動モードがエコモードの場合、TAOが基準温度未満であっても車室内設定温度Tsetが基準温度未満であれば駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、エコモード時は乗員の省エネ要求に応じて空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下を一層抑制することができる。
【0161】
次に、ステップS12では、冷却水回路40にてヒータコア36とエンジンEGとの間で冷却水を循環させる冷却水ポンプ40aを作動させるか否かを決定する。このステップS12の詳細については、図9のフローチャートを用いて説明する。まず、ステップS121では、冷却水温度Twが吹出空気温度TEより高いか否かを判定する。
【0162】
ステップS121にて、冷却水温度Twが吹出空気温度TE以下となっている場合は、ステップS124へ進み、冷却水ポンプ40aを停止(OFF)させることを決定する。その理由は、冷却水温度Twが吹出空気温度TE以下となっている場合に冷却水をヒータコア36へ流すと、ヒータコア36を流れる冷却水が蒸発器15通過後の空気を冷却してしまうことになるため、かえって吹出口からの吹出空気温度を低くしてしまうからである。
【0163】
一方、ステップS121にて、冷却水温度Twが吹出空気温度TEより高い場合は、ステップS122へ進む。ステップS122では、送風機32が作動しているか否かが判定される。ステップS122にて、送風機32が作動していないと判定された場合は、ステップS124に進み、省動力化のために冷却水ポンプ40aを停止(OFF)させることを決定する。
【0164】
一方、ステップS122にて送風機32が作動していると判定された場合は、ステップS123へ進み、冷却水ポンプ40aを作動(ON)させることを決定する。これにより、冷却水ポンプ40aが作動して、冷却水が冷媒回路内を循環するので、ヒータコア36を流れる冷却水とヒータコア36を通過する空気とを熱交換させて送風空気を加熱することができる。
【0165】
次に、ステップS13では、上述のステップS5〜S12で決定された制御状態が得られるように、空調制御装置50より各種機器32、12a、61、62、63、64、12a、37、40a、80に対して制御信号および制御電圧が出力される。さらに、要求信号出力手段50cから駆動力制御装置70に対して、ステップS11にて決定された要求信号が送信される。
【0166】
次に、ステップS14では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2に戻るようになっている。なお、本実施形態は制御周期τを250msとしている。これは、車室内の空調制御は、エンジン制御等と比較して遅い制御周期であってもその制御性に悪影響を与えないからである。これにより、車両内における空調制御のための通信量を抑制して、エンジン制御等のように高速制御を行う必要のある制御系の通信量を十分に確保することができる。
【0167】
本実施形態の車両用空調装置1は、以上の如く作動するので、送風機32から送風された送風空気が、蒸発器15にて冷却される。そして蒸発器15にて冷却された冷風は、エアミックスドア39の開度に応じて、加熱用冷風通路33および冷風バイパス通路34へ流入する。
【0168】
加熱用冷風通路33へ流入した冷風は、ヒータコア36およびPTCヒータ37を通過する際に加熱されて、混合空間35にて冷風バイパス通路34を通過した冷風と混合される。そして、混合空間35にて温度調整された空調風が、混合空間35から各吹出口を介して車室内に吹き出される。
【0169】
この車室内に吹き出される空調風によって車室内の内気温Trが外気温Tamより低く冷やされる場合には、車室内の冷房が実現されており、一方、内気温Trが外気温Tamより高く加熱される場合には、車室内の暖房が実現されることになる。
【0170】
さらに、本実施形態の車両用空調装置1では、制御ステップS64で説明した通り、シートヒータ90およびシートファン91の停止時は、第1仮ブロワレベルf(TAO)と同じ値をブロワレベルとして決定し、シートヒータ90およびシートファン91のうち少なくとも一方の作動時は、第1仮ブロワレベルf(TAO)よりも低い値をブロワレベルとして決定する。
【0171】
このため、シートヒータ90およびシートファン91のうち少なくとも一方が作動している場合、シートヒータ90およびシートファン91が停止している場合に比べて送風機32の送風能力(送風量)が低減されるので、送風機32の消費電力(消費エネルギー)を低減できる。
【0172】
さらに、送風機32の送風能力を小さくすることで、暖房時にはヒータコア36における送風空気と冷却水との熱交換量が低減され、冷房時には蒸発器15における送風空気と冷媒との熱交換量が低減される。その結果、熱交換のための消費エネルギーを低減することができる。
【0173】
具体的には、暖房時には冷却水温度を上昇させるためのエンジンEGの稼動頻度を低減でき、ひいてはエンジンEGの消費燃料を低減できる。冷房時には圧縮機11の冷媒吐出能力を低減できるので、圧縮機11の消費動力を低減できる。
【0174】
さらに、シートヒータ90が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な温感(暖房感)を与えることができる。また、シートファン91が作動していれば、車室内へ送風される送風空気の風量が少なくても乗員に快適な冷感(冷房感)を与えることができる。従って、乗員の快適性を極力損なうことなく、空調の省エネルギー化を図ることができる。
【0175】
さらに、本実施形態の車両用空調装置1では、制御ステップS1103で説明した通り、TAOが基準温度未満である場合、駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、暖房負荷が小さい場合に空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。
【0176】
また、車両用空調装置1の作動モードがエコモード以外の場合、車室内設定温度Tsetとは無関係に駆動力制御装置70へ出力する要求信号を決定しているのに対し、車両用空調装置1の作動モードがエコモードの場合、TAOが基準温度未満であっても車室内設定温度Tsetが基準温度未満であれば駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、エコモード時は乗員の省エネ要求に応じて空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下を一層抑制することができる。
【0177】
(第2実施形態)
上記第1実施形態では、ステップS11のエンジンON要求信号決定処理において、エンジンEGを作動させる要求信号に決定する条件は(1)車両用空調装置1の作動モードがエコモード以外、TAOが基準温度以上、且つ仮の要求信号フラグf(Tw)がONになっていること、または(2)車両用空調装置1の作動モードがエコモード、TAOが基準温度以上、仮の要求信号フラグf(Tw)がON、且つ車室内設定温度Tsetが基準温度以上になっていることであるが、本第2実施形態では、上記(1)、(2)の条件を満足する場合であっても、シートヒータ90が作動を開始してから所定時間が経過するまでの間はエンジンEGを停止させる要求信号に決定する。
【0178】
ステップS11の詳細については、図10のフローチャートを用いて説明する。まず、ステップS1111では、上記第1実施形態のステップS1101と同様に、冷却水温度Twに基づくエンジンEGの作動要求信号あるいは停止要求信号の出力を行うか否かの判定に用いる判定閾値としてのエンジンON水温TwonおよびエンジンOFF水温Twoffを決定する。なお、本実施形態の制御ステップS1111は、上限温度決定手段を構成している。
【0179】
続くステップS1112では、上記第1実施形態のステップS1102と同様に、冷却水温度Twに応じて、エンジンEGの作動要求信号あるいは停止要求信号を出力するか否かの仮の要求信号フラグf(Tw)を決定する。
【0180】
続くステップS1113では、シートヒータ90が作動を開始してからの所定時間が経過したか否かの経過時間フラグf(シートヒータ)を決定する。
具体的には、シートヒータ90が作動を開始してからの経過時間が0秒以上30秒以下であれば、経過時間フラグf(シートヒータ)=1とし、それ以外の場合、経過時間フラグf(シートヒータ)=0とする。
【0181】
続くステップS1114では、エコノミースイッチ60bの投入状態(オンオフ状態)、目標吹出温度TAO、仮の要求信号フラグf(Tw)、車室内設定温度Tset、および経過時間フラグf(シートヒータ)に基づいて、予め空調制御装置50に記憶されている制御マップを参照して、駆動力制御装置70へ出力される要求信号を決定する。
【0182】
具体的には、ステップS1114では、図10の図表に示すように、車両用空調装置1の作動モードがエコモード以外(エコノミースイッチ60bがオフ)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。
【0183】
また、車両用空調装置1の作動モードがエコモード以外であって、且つTAOが基準温度以上である場合には、仮の要求信号フラグf(Tw)がON且つ経過時間フラグf(シートヒータ)=0であれば、エンジンEGを作動させる要求信号に決定し、仮の要求信号フラグf(Tw)がON且つ経過時間フラグf(シートヒータ)=1であれば、エンジンEGを停止させる要求信号に決定し、仮の要求信号フラグf(Tw)がOFFであれば、エンジンEGを停止させる要求信号に決定する。
【0184】
さらに、車両用空調装置1の作動モードがエコモード(エコノミースイッチ60bがオン)である場合には、TAOが予め定めた基準温度(本実施形態では20℃)未満であれば、仮の要求信号フラグf(Tw)によらず、エンジンEGを停止させる要求信号に決定する。
【0185】
また、車両用空調装置1の作動モードがエコモードであって、TAOが基準温度以上であって、且つ仮の要求信号フラグf(Tw)がONである場合には、車室内設定温度Tsetが基準温度未満であればエンジンEGを停止させる要求信号に決定し、車室内設定温度Tsetが基準温度以上且つ経過時間フラグf(シートヒータ)=0であれば、エンジンEGを作動させる要求信号に決定し、車室内設定温度Tsetが基準温度以上且つ経過時間フラグf(シートヒータ)=1であれば、エンジンEGを停止させる要求信号に決定する。なお、車室内設定温度Tsetの基準温度は、吹出口モードをバイレベルモードからフェイスモードに切り替える閾値(本実施形態では28℃:図7参照)と同じ温度が設定されている。
【0186】
そして、車両用空調装置1の作動モードがエコモードであって、TAOが基準温度以上であって、且つ仮の要求信号フラグf(Tw)がOFFである場合には、エンジンEGを停止させる要求信号に決定する。
【0187】
これによると、シートヒータ90が作動を開始してから所定時間が経過するまでの間は、駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。
【0188】
さらに、乗員が操作パネル60に設けられたシートヒータ用スイッチを操作してシートヒータ90が作動を開始したときに、乗員のスイッチ操作に連動してエンジンEGが停止するので、消費エネルギーが低減されていることを乗員に確実に認識させることができ、ひいては省エネルギーに対する意識の高い乗員の満足感を高めることができる。
【0189】
また、本実施形態においても、車両用空調装置1の作動モードがエコモードの場合、TAOが基準温度以上であっても車室内設定温度Tsetが基準温度未満であれば駆動力制御装置70へ出力する要求信号をエンジンEGの作動を停止する信号に決定するので、乗員の省エネ要求に応じて空調のためのエンジンEGの作動の頻度を低減して車両燃費の低下の抑制を図ることができる。
【0190】
(第3実施形態)
上記第1実施形態では、ステップS11のエンジンON要求信号決定処理において、エンジンOFF水温Twoffを、目標吹出温度TAO、PTCヒータ37の作動による吹出温上昇量ΔTptc、および蒸発器15からの吹出空気温度(蒸発器温度)TEに基づいて決定するが、本第3実施形態では、目標吹出温度TAO、PTCヒータ37の作動による吹出温上昇量ΔTptc、および蒸発器15からの吹出空気温度(蒸発器温度)TEに基づいて決定したエンジンOFF水温Twoffを、シートヒータ90の作動状態に基づいて補正する。
【0191】
ステップS11の詳細については、図11のフローチャートを用いて説明する。まず、ステップS1121では、エンジンOFF水温補正量f1(シートヒータ)を決定する。具体的には、シートヒータ90が作動している場合(ON時)、エンジンOFF水温補正量f1(シートヒータ)=5に決定し、シートヒータ90が停止している場合(OFF時)、エンジンOFF水温補正量f1(シートヒータ)=0に決定する。
【0192】
続くステップS1122では、エンジンON水温TwonおよびエンジンOFF水温Twoffを決定する。具体的には、エンジンOFF水温Twoffは、車両用空調装置1が充分な暖房能力を発揮するために望ましい冷却水温度Tw1をエンジンOFF水温補正量f1(シートヒータ)で補正した値TW2と、予め定められた基準温度(本実施形態では70℃)のうち小さい方の値に決定する。
【0193】
ここで、冷却水温度Tw1は、上述の数式F3を用いて算出し、冷却水温度Tw1をエンジンOFF水温補正量f1(シートヒータ)で補正した値TW2は、以下の数式F4を用いて算出する。
Tw2=Tw1−f1(シートヒータ)…(F4)
一方、エンジンON水温Twonは、頻繁にエンジンがON/OFFするのを防止するため、エンジンOFF水温Twoffよりも所定の値(本実施形態では、5℃)だけ低く決定されており、この所定の値は、制御ハンチング防止のためのヒステリシス幅として設定されている。
【0194】
続くステップS1123では、冷却水温度Twに応じて、エンジンEGの作動要求信号あるいは停止要求信号を出力するか否かの仮の要求信号フラグf(Tw)を決定し、続くステップS1124では、エコノミースイッチ60bの投入状態(オンオフ状態)、目標吹出温度TAO、仮の要求信号フラグf(Tw)、および車室内設定温度Tsetに基づいて、予め空調制御装置50に記憶されている制御マップを参照して、駆動力制御装置70へ出力される要求信号を決定する。
【0195】
このステップS1123、S1124は、上記第1実施形態(図8)のステップS1102、S1103と同じであるので説明を省略する。
【0196】
これによると、シートヒータ90が作動中の場合、シートヒータ90が停止中の場合に比べてエンジンON水温TwonおよびエンジンOFF水温Twoffを低下させるので、ヒータコア36に導入される冷却水の温度が低下するようにエンジンEGの作動を制御することができる。このため、空調のためのエンジンEGの作動頻度を低減することができ、ひいては空調の省エネルギー化を図ることができる。
【0197】
また、本実施形態では、ステップS8の吹出口モード決定処理において、シートヒータ90が作動中の場合、吹出口モードをフットモードからフットデフロスタモードに切り替えてデフロスタ吹出口26から吹き出される風量の割合を増加させることによって、窓曇りの発生を抑制できるようにしている。
【0198】
ステップS8の詳細については、図12のフローチャートを用いて説明する。まず、ステップS81では、目標吹出温度TAOに基づいて仮の吹出口モードf1(TAO)を決定する。具体的には、TAOが低温域から高温域へと上昇するにつれて吹出口モードをフェイスモード→バイレベルモード→フットモードへと順次切り替える。
【0199】
続くステップS82では、シートヒータ90が作動している(ON)か否かを判定する。シートヒータ90が作動していると判定した場合(YES判定)、ステップS83へ進み仮の吹出口モードf1(TAO)がフットモードか否かを判定する。仮の吹出口モードf1(TAO)がフットモードであると判定した場合(YES判定)、吹出口モードをフットデフロスタモード(F/D)に決定する。
【0200】
一方、ステップS83において仮の吹出口モードf1(TAO)がフットモードでないと判定した場合(NO判定)、ステップS85へ進み吹出口モードを仮の吹出口モードf1(TAO)と同じモードに決定する。
【0201】
また、ステップS82においてシートヒータ90が停止していると判定した場合(NO判定)もステップS85へ進み吹出口モードを仮の吹出口モードf1(TAO)と同じモードに決定する。
【0202】
これによると、シートヒータ90が作動中の場合、デフロスタ吹出口26からの吹き出し風量割合が増加するので、窓曇りの発生を抑制することができる。
【0203】
以上のことから、空調のためのエンジンEGの作動頻度を低減して空調の省エネルギー化を図ることと、窓曇りの発生を抑制して乗員の快適性をすることとを両立できる。
【0204】
(他の実施形態)
(1)上述の各実施形態では、シートヒータスイッチ60cによってシートヒータ90の加熱能力を調整し、シートファンスイッチ60dによってシートファン91の送風能力を調整する構成になっているが、これに限定されない。例えば、TAOに応じてシートヒータ90の加熱レベルを調整し、TAOに応じてシートファン91の送風能力を調整する構成になっていてもよい。
【0205】
(2)上述の各実施形態では、エコノミースイッチ60bによってエコモードを設定するようになっているが、これに限定されない。例えば、バッテリ81の蓄電残量SOCに応じてエコモードを設定するようになっていてもよい。
【0206】
(3)上述の実施形態では、本発明の車両用空調装置1を、プラグインハイブリッド車両の車両走行用の駆動力について詳細を述べていないが、本発明の車両用空調装置1は、エンジンEGおよび走行用電動モータの双方から直接駆動力を得て走行可能な、いわゆるパラレル型のハイブリッド車両に適用してもよい。
【0207】
また、エンジンEGを発電機80の駆動源として用い、発電された電力をバッテリ81に蓄え、さらに、バッテリ81に蓄えられた電力を供給されることによって作動する走行用電動モータから駆動力を得て走行する、いわゆるシリアル型のハイブリッド車両に適用してもよい。
【0208】
さらに、本発明の車両用空調装置1は、ハイブリッド車両に限定されるものではなく、内燃機関(エンジン)EGまたは走行用電動モータから車両走行用の駆動力を得る車両にも適用可能である。
【符号の説明】
【0209】
25 フット吹出口(吹出口)
26 デフロスタ吹出口(吹出口)
25a フットドア(吹出口モード切替手段)
26a デフロスタドア(吹出口モード切替手段)
32 送風機(送風手段)
36 ヒータコア(加熱手段)
50 空調制御装置
50a 送風能力制御手段
50b 吹出口モード切替手段
50f 要求信号出力手段
60a 車室内温度設定スイッチ(目標温度設定手段)
60b エコノミースイッチ(省動力優先モード設定手段)
70 駆動力制御装置(駆動力制御手段)
90 シートヒータ(補助空調手段)
91 シートファン(補助空調手段)
S1122 温度決定手段
EG エンジン(内燃機関)

【特許請求の範囲】
【請求項1】
車室内へ空気を送風する送風手段(32)と、
前記送風手段(32)にて送風される送風空気と熱媒体とを熱交換する熱交換手段(36、15)と、
座席の空調感を補う補助空調手段(90、91)と、
前記送風手段(32)の送風能力を制御する送風能力制御手段(50a)とを備え、
前記送風能力制御手段(50a)は、前記補助空調手段(90、91)が作動中の場合、前記補助空調手段(90、91)が停止中の場合に比べて、前記送風手段(32)の送風能力を小さくすることを特徴とする車両用空調装置。
【請求項2】
前記補助空調手段(90、91)は、その作動能力を調節可能になっており、
前記送風能力制御手段(50a)は、前記補助空調手段(90、91)の作動能力が高い程、前記送風手段(32)の送風能力を小さくすることを特徴とする請求項1に記載の車両用空調装置。
【請求項3】
車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
前記内燃機関(EG)の冷却水を熱源として、車室内へ送風される送風空気を加熱する加熱手段(36)と、
乗員の暖房感を補う補助空調手段(90)と、
前記車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
前記要求信号出力手段(50f)は、前記補助空調手段(90)が作動を開始してから所定時間が経過するまでの間、前記駆動力制御手段(70)に対して前記内燃機関(EG)を停止させる要求信号を出力することを特徴とする車両用空調装置。
【請求項4】
乗員の操作により、車室内目標温度(Tset)を設定するための目標温度設定手段(60a)と、
乗員の操作により、作動モードを省動力優先モードに設定するための省動力優先モード設定手段(60b)とを備え、
前記要求信号出力手段(50f)は、
前記省動力優先モードが設定されている場合、前記車室内目標温度(Tset)とは無関係に、前記駆動力制御手段(70)に対して前記要求信号を出力し、
前記省動力優先モードが設定されている場合、前記車室内目標温度(Tset)に基づいて、前記駆動力制御手段(70)に対して前記要求信号を出力することを特徴とする請求項3に記載の車両用空調装置。
【請求項5】
車両走行用の駆動力を出力する駆動源として、走行用電動モータおよび内燃機関(EG)を備える車両用空調装置であって、
車室内へ空気を送風する送風手段(32)と、
前記内燃機関(EG)の冷却水を熱源として、前記送風手段(32)にて送風される送風空気を加熱する加熱手段(36)と、
前記加熱手段(36)で加熱された前記送風空気を車室内に吹き出す複数の吹出口(25、26)と、
前記複数の吹出口(25、26)から吹き出される風量の割合を変化させて吹出口モードを切り替える吹出口モード切替手段(25a、26a、50b)と、
乗員の暖房感を補う補助空調手段(90)と、
前記車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)とを備え、
前記複数の吹出口(25、26)は、前記加熱手段(36)で加熱された前記送風空気を窓に向けて吹き出すデフロスタ吹出口(26)を含み、
前記要求信号出力手段(50f)は、前記補助空調手段(90)が作動中の場合、前記補助空調手段(90)が停止中の場合に比べて前記加熱手段(36)に導入される冷却水の温度が低下するように前記駆動力制御手段(70)に対して前記要求信号を出力し、
前記吹出口モード切替手段(25a、26a、50b)は、前記補助空調手段(90)が作動中の場合、前記補助空調手段(90)が停止中の場合に比べて前記デフロスタ吹出口(26)から吹き出される風量の割合を増加させることを特徴とする車両用空調装置。
【請求項6】
前記車室内の暖房を行う際に、内燃機関(EG)の作動を制御する駆動力制御手段(70)に対して、冷却水の温度が下限温度(Twon)となった際に内燃機関(EG)を作動させ、且つ冷却水の温度が上限温度(Twoff)となった際に内燃機関(EG)を停止させる要求信号を出力する要求信号出力手段(50f)と、
前記下限温度(Twon)および前記上限温度(Twoff)を決定する温度決定手段(S1122)とを備え、
前記温度決定手段(S1122)は、前記補助空調手段(90、91)が作動中の場合、前記補助空調手段(90、91)が停止中の場合に比べて前記下限温度(Twon)および前記上限温度(Twoff)を低くすることを特徴とする請求項5に記載の車両用空調装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−82398(P2013−82398A)
【公開日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2011−225061(P2011−225061)
【出願日】平成23年10月12日(2011.10.12)
【出願人】(000004260)株式会社デンソー (27,639)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】