説明

配管の断層撮影装置およびその制御方法

【課題】大口径の配管を現地で非破壊検査ができる配管の断層撮影装置およびその制御方法を提供する。
【解決手段】配管検査装置本体100は、放射線源1と2次元放射線検出器2を対向配置する支持装置3と、軸方向駆動機構19と、支持装置3を介して、放射線源1と2次元放射線検出器2を、配管横方向に並進移動させる横方向駆動機構17,18を備えている。制御コンソール23において、軸方向駆動機構19による並進走査の距離を設定するとともに、横方向駆動機構17,18の並進移動の横方向最大移動距離を設定する。また、横方向駆動機構17,18による配管横方向の並進移動の間隔を、2次元放射線検出器2の配管横方向の幅と、放射線源1と2次元放射線検出器2間の距離と、放射線源1と配管15の放射線源1側表面までの所定距離とにもとづいて決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非破壊検査を実施するための放射線断層撮影装置を用いた配管の断層撮影装置およびその制御方法に関わり、特に、検査対象の配管径が大きく、放射線源からの放射線の広がりの範囲(視野内)にその配管の外径の全体が収まらない場合において用いる配管の断層撮影装置およびその制御方法に関する。
【背景技術】
【0002】
原子力発電プラントや火力発電プラント等や、化学プラント、石油プラントに設置された配管の健全性を確保するために、放射線を利用して配管内部の様子を画像化し、非破壊で検査する放射線透過試験方法がある。この方法を利用した検査装置の一例に特許文献1に開示された技術がある。特許文献1に開示された技術は、配管を挟んで対抗配置した携帯型X線発生装置(本発明における「放射線源」に対応)と一次元のアレイセンサ(放射線検出器)を配管の軸方向に移動し、透過X線の強度の差異にもとづき配管の腐食状況を連続的に画像化するものである。
この特許文献1に開示された技術では、X線の照射方向に重なった欠陥を識別するために、配管の軸方向と直角な方向(本発明における「配管横方向」)にX線発生装置を移動し測定するための機構を設けている。しかしながら放射線透過試験では、放射線の照射方向の位置情報が得られないため、特許文献1に記載の技術であっても、腐食や欠陥の領域が広い場合にはそれらを識別することは困難である。
【0003】
また、配管を断層撮影する技術として、特許文献2に開示された技術が知られている。特許文献2に開示の技術では、産業用のX線CT装置がX線発生装置から放射されるある開き角を持ったファンビームを検査対象物の周囲を180°旋回、一般的には360°旋回させて取得した複数の透過データにもとづいて断層画像または立体画像を構築するものである。以下、検査対象物の周囲を180°旋回、一般的には360°旋回させて取得した複数の透過データを「完全投影データ」と称する。
ただし、前記各種プラントの配管は狭隘な場所に設置されていることが多く、産業用に用いられている特許文献2に開示のような産業用のX線CT装置を適用することは困難である。
【0004】
更に、特許文献3に開示された技術では、産業用のX線CT装置で必要とする検査対象物回りの角度よりも小さい角度範囲で取得された複数の透過データにより断層画像または立体画像を構築することが可能である。以下、検査対象物回りの180°よりも小さい角度範囲で取得された複数の透過データを「不完全投影データ」と称する。
ちなみに、特許文献3に開示された技術では、配管の軸方向に放射線源と2次元放射線検出器を並進走査させて透過データを取得している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−4562号公報
【特許文献2】特開平2−88950号公報
【特許文献3】特開2008−275352号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、放射線源から放射される放射線は、通常、円錐状に放出される場合が多く、その広がり角度は一般的に40°程度である。また、一般的な2次元放射線検出器の検出面のサイズが20cm×40cm四方程度である。このとき、検出面の長手方向(40cmの方向)は配管の軸方向に対応させ、検出面の20cmの方向は、配管の軸方向に対して水平面内で直角方向である配管横方向に対応させることが従来例であり、このような場合、大口径の配管に特許文献3の技術を適用すると、配管の外径の範囲が視野に収まらないという課題がある。また、2次元放射線検出器の検出面のサイズが十分広いものを適用可能である場合でも、断層撮影装置本体の全体の重量が増大し、断層撮影装置本体の運搬や搬入、設置が困難になる等の課題がある。
【0007】
本発明の目的は、配管の外径の範囲を包含した撮影を可能とし、プラントに設置された大口径の配管を現地で断層撮影により非破壊検査する場合であっても、十分な精度が得られる非破壊検査ができる配管の断層撮影装置およびその制御方法を提供することにある。
【課題を解決するための手段】
【0008】
前記課題を解決するために、本発明は、配管を挟んで、放射線源と2次元放射線検出器を対向配置する支持装置と、支持装置を介して、放射線源と2次元放射線検出器を配管の軸方向の所定距離を並進走査させる軸方向駆動機構と、支持装置を介して、放射線源と2次元放射線検出器を、配管の軸方向に対して水平面内で直角な配管横方向に並進移動させる横方向駆動機構と、横方向駆動機構の並進移動の横方向最大移動距離を設定する横方向最大移動距離設定手段と、軸方向駆動機構および横方向駆動機構を制御する駆動制御手段と、を備え、
横方向最大移動距離設定手段は、横方向駆動機構による放射線源および2次元放射線検出器の配管横方向の並進移動の間隔を、2次元放射線検出器の配管横方向の幅と、放射線源と2次元放射線検出器間の距離と、放射線源と配管の放射線源側表面までの所定距離とにもとづいて決定する横方向移動間隔決定手段を有することを特徴とする。
【0009】
本発明によれば、横方向移動間隔決定手段により配管横方向における配管の外径の両端を含む領域全体を、配管横方向に透過データの欠落もなく撮影できる。その結果、大口径の配管の場合でも、配管横方向における配管の外径の両端を含む断層画像または立体画像を再構成することができる。
本発明は、配管検査用の断層撮影装置の制御方法を含む。
【発明の効果】
【0010】
本発明によれば、配管の外径の範囲を包含した撮影を可能とし、プラントに設置された大口径の配管を現地で断層撮影により非破壊検査する場合であっても、十分な精度が得られる非破壊検査ができる配管の断層撮影装置およびその制御方法を提供することができる。
【図面の簡単な説明】
【0011】
【図1】配管の断層撮影装置を構成する配管検査装置本体の概要図である。
【図2】図1における配管検査装置本体のA−A矢視図と、配管の断層撮影装置を構成する制御装置、制御コンソールの概要図である。
【図3】制御装置および制御コンソールの機能構成ブロック図である。
【図4】制御コンソールにおける全体制御の流れを示すフローチャートである。
【図5】画像構築領域を設定する操作画面の説明図である。
【図6】放射線源および2次元放射線検出器の配管軸方向の並進走査と、配管横方向の並進移動を説明する平面図である。
【図7】放射線源および2次元放射線検出器の配管横方向の並進移動を説明する図11におけるB−B矢視図であり、画像構築領域の高さ方向の設定と横方向の設定の説明図である。
【図8】画像構築領域の設定の制御の流れを示すフローチャートである。
【図9】画像構築領域の設定の制御の流れを示すフローチャートである。
【図10】画像構築領域の設定の制御の流れを示すフローチャートである。
【図11】画像構築領域の設定の制御の流れを示すフローチャートである。
【図12】画像構築領域の配管高さ方向の領域データの第2の設定方法の説明図であり、(a)は、断面説明図、(b)は、透過画像の説明図である。
【図13】配管横方向に移動して配管軸方向に走査した場合の透過画像と立体画像の説明図であり、(a)は、透過画像の説明図、(b)は、再構成された配管の立体画像の説明図である。
【図14】画像構築領域の配管高さ方向の領域データの第3の決定方法の説明図であり、(a)は、断面説明図、(b)は、透過画像の説明図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施形態に係わる配管の断層撮影装置について、発電プラント等に設置された配管を例として、図1、図2を参照しながら説明する。
図1は、配管の断層撮影装置を構成する配管検査装置本体の概要図であり、図2は、図1における配管検査装置本体のA−A矢視図と、配管の断層撮影装置を構成する制御装置、制御コンソールの概要図である。
本実施形態の配管の断層撮影装置は、図2に示すように制御装置21、制御コンソール23、配管検査装置本体100を含んで構成されている。
図1では配管15の直管部に対して配管検査装置本体100を設置した場合を示している。配管検査装置本体100は、放射線源1、2次元放射線検出器2、支持装置3、支持装置3を配管15に沿って移動可能にする支持脚13に保持されたラック8、案内バー11等を含んで構成されている。
放射線源1および2次元放射線検出器2は、配管15を図1において上下方向に挟むように対向させてコの字型の枠形状の支持装置3に取り付けられている。
【0013】
支持装置3は、後記するモータ4A,4B,4C、ピニオンギア7A、駆動ギア7B、押圧車9、案内車10A,10B,10B等を取り付ける基部である支持枠基部3aと、支持枠基部3aの上方側から矢印Zで示した配管横方向に延伸する支持枠腕部3b1と、支持枠基部3aの下方側から配管横方向延伸する支持枠腕部3b2と、放射線源1を配管横方向に移動する横方向駆動機構17と、2次元放射線検出器2を配管横方向に移動する横方向駆動機構18と、を含んで構成されている。
ここで、横方向駆動機構17、18が、特許請求の範囲に記載の「横方向駆動機構」を構成する。また、モータ4C、ピニオンギア7A、駆動ギア7B、押圧車9、案内車10A,10B,10Bは後記する軸方向駆動機構19の一部を構成する。
【0014】
(放射線源)
そして、放射線源1は、支持枠腕部3b1に沿った駆動軸6Aに取り付けられた可動架台3c(図2参照)に、固定バンド3dで固定されている。
放射線源1は、例えば、携帯型のX線発生装置である。当然ながら放射線源1としてガンマ線源を用いることも可能である。放射線源1で発生したX線は、放射線射出口1aから下方に向けてコーンビーム状に放射される。
放射線源1への高圧電源は制御装置21から供給されるとともに、そのX線放射と停止の動作を制御される。
【0015】
(2次元放射線検出器)
また、2次元放射線検出器2は、支持枠腕部3b2に沿った駆動軸6Bに取り付けられた可動架台3e(図2参照)に固定されている。
2次元放射線検出器2としては、放射線の入射面に設けられた入力蛍光面からの発光を光電子に変換し、光電子を集束させて光学像を出力する検出器の他に、フラットパネルディテクタ(Flat Panel Detector、以下「FPD」)がある。FPDは、例えば、20cm×40cmの平面サイズの例えば、プラスチック・シンチレータの背面に0.1〜0.3mm角のフォトダイオードを格子状に密に配列し、プラスチック・シンチレータで発生した光を検出するタイプの平面放射線検出器である。一般的に、FPDは前記光電子を集束させて光学像を出力する検出器よりも装置の奥行きが短いため、狭隘な場所にも適用しやすい。そのため本実施形態では、2次元放射線検出器2をFPDとした場合で説明するが、前記光電子を集束させて光学像を出力する検出器を利用した装置構成とすることも可能である。
2次元放射線検出器2からの検出信号(透過データ)は、制御装置21を介して制御コンソール23に入力される。
【0016】
(横方向駆動機構)
次に、放射線源1を配管横方向に移動する横方向駆動機構17、および2次元放射線検出器2を配管横方向に移動する横方向駆動機構18について説明する。
図2に示すように横方向駆動機構17は、支持枠基部3aの上方側に設けられたモータ4A,支持枠腕部3b1に沿って配置された駆動軸6A、可動架台3c、案内軸(図示せず)等から構成されている。
駆動軸6Aは、スクリューネジを切ってあり、その両端は、モータ4Aの出力軸と支持枠腕部3b1端部に設けられた軸受け部により支持されている。そして、モータ4Aにより正転または逆転駆動されることにより可動架台3cを配管横方向に移動可能となっている。ちなみに、可動架台3cを配管横方向に貫通し、可動架台3cが摺動可能な2本の前記した案内軸(図示せず)が、矢印Xで示した配管15の軸方向において、駆動軸6Aの前後に配されている。以下、配管15の軸方向を「配管軸方向X」と称する。
モータ4Aには、回転角センサ(横方向位置検出センサ)5Aが設けられている。回転角センサ5Aからの信号は制御装置21に入力される。モータ4Aへの電力は、制御装置21から供給されるとともに、可動架台3cの配管横方向の位置制御も制御装置21を介してなされる。
【0017】
図2に示すように横方向駆動機構18は、支持枠基部3aの下方側に設けられたモータ4B,支持枠腕部3b2に沿って配置された駆動軸6B、可動架台3e、案内軸(図示せず)等から構成されている。
駆動軸6Bは、スクリューネジを切ってあり、その両端は、モータ4Bの出力軸と支持枠腕部3b2端部に設けられた軸受け部により支持されている。そして、モータ4Bにより正転または逆転駆動されることにより可動架台3eを配管横方向に移動可能となっている。ちなみに、可動架台3eを配管横方向に貫通し、可動架台3eが摺動可能な2本の前記した案内軸(図示せず)が、配管軸方向Xにおいて、駆動軸6Bの前後に配されている。
モータ4Bには、回転角センサ(横方向位置検出センサ)5Bが設けられている。回転角センサ5Bからの信号は制御装置21に入力される。モータ4Bへの電力も制御装置21から供給されるとともに、可動架台3eの配管横方向の位置制御も制御装置21を介してなされる。
【0018】
ところで、図2に一点鎖線で示すように、放射線源1の放射線射出口1aの配管横方向の中心線と、2次元放射線検出器2の平面形状の検出面2aの配管横方向の中心線とが一致するように、可動架台3c,3eの配管横方向の位置は、制御装置21により制御されて、配管横方向に並進移動される。
また、図示してないが放射線源1の放射線射出口1aの配管軸方向Xにおける中心線は、2次元放射線検出器2の平面形状の検出面2aの配管軸方向Xの中心線と一致するように可動架台3c,3eに設定されている。
【0019】
(軸方向駆動機構)
次に、支持装置3を配管軸方向Xに移動する軸方向駆動機構19について説明する。軸方向駆動機構19は、モータ4C、ピニオンギア7A、駆動ギア7B、押圧車9、案内車10A,10B,10B、支持脚13に保持されたラック8、案内バー11等を含んで構成されている。ここで、ラック8、案内バー11は、配管15に沿って配置されている。
支持枠基部3aには、図1に示すようにモータ4Cが設けられ、その出力軸でピニオンギア7Aを駆動し、その回転軸が支持枠基部3aに支承されたピニオンギア7Aに噛み合わされた駆動ギア7Bが回転される。駆動ギア7Bは、ラック8の上面側に設けられたラック歯8aと噛み合って、支持装置3をラック8に沿って、移動させる。また、支持枠基部3aに回転軸が取り付けられた押圧車9が、ラック8の下面側に配置され、図2における上方向に押圧車9の回転軸を付勢してラック歯8aと駆動ギア7Bの噛み合いを適切に維持するスプリング(図示せず)が支持枠基部3aに設けられている。
ここで、ピニオンギア7Aと駆動ギア7Bとは、減速機構を構成している。また、モータ4Cには回転角センサ5Cが設けられている。回転角センサ5Cからの信号は制御装置21に入力される。モータ4Cへの電力も制御装置21から供給されるとともに、支持装置3の配管軸方向Xの位置制御も制御装置21を介してなされる。
【0020】
また、図1に示すようにラック8に上下方向平行に案内バー11が、支持脚13に保持されており、案内バー11の上面に、支持枠基部3aに回転軸が取り付けられた案内車10Aが乗ることで、支持装置3の荷重の一部を案内バー11に掛ける。更に、支持枠基部3aに回転軸が取り付けられた案内車10B、10Bが、案内バー11の下面側に配置されている。そして、図2における下方向に案内車10Aの回転軸を付勢して案内バー11に適切に荷重を掛け、図2における上方向に案内車10B、10Bの回転軸を付勢して案内バー11に適切に荷重を掛ける2個のスプリング(図示せず)が支持枠基部3aに設けられている。
【0021】
このように案内車10A,10B,10Bを設けることにより、支持装置3の荷重が適切にラック8と案内バー11に分散され、モータ4Cによる配管軸方向Xの駆動が滑らかに行なわれるとともに、モータ4Cによる配管軸方向Xの駆動時に、支持装置3の支持枠基部3aが、配管軸方向Xに対して垂直に維持される。
【0022】
なお、横方向駆動機構17,18の構成については、前記した構成に限定されるものではない。
また、配管15は、外周に保温材を取り付けられていることが多いが、本実施形態の図では、保温材を省略して示してある。
【0023】
次に、図3を参照しながら制御装置21と制御コンソールについて説明する。図3は、制御装置および制御コンソールの機能構成ブロック図である。
《制御装置》
図3に示すように、制御装置21は、走査制御部(駆動制御手段)22A、放射線源制御部22B、検出器制御部22Cを含んで構成され、走査制御部22A、放射線源制御部22B、検出器制御部22Cは、制御コンソール23の制御入出力インタフェース24fと通信接続している。
走査制御部22Aは、モータ4Aの回転を制御する横方向駆動制御部22a、モータ4Bの回転を制御する横方向駆動制御部22b、モータ4Cの回転を制御する軸方向駆動制御部22cを含んでいる。
横方向駆動制御部22a,22b,22cは、後記する走査制御プログラム28からの指令により制御され、それぞれモータ4A,4B,4Cの回転を制御する。
【0024】
放射線源制御部22Bは、放射線源1に供給する高圧電源を含んでおり、放射線源1のオン、オフ制御と、放射線源がオン状態のとき、所定の強度のX線を放射するように電流制御を行う。ちなみに、オン状態の最初において、放射線源1が安定に所定の強度のX線を放射できる状態となったとき、制御コンソール23に放射線源1の「照射可」の信号を出力する。
【0025】
検出器制御部22Cは、放射線源1が安定にX線を放射している状態において、後記する走査制御プログラム28の機能によって制御され、放射線源1と2次元放射線検出器2が配管軸方向Xに一定速度で並進走査されているときに、後記する画像取込みプログラム29の機能によって所定の距離毎に2次元放射線検出器2からの個々のフォトダイオードからの検出信号(透過データ)を、検出器アドレス信号とともに取得して、制御コンソール23の制御入出力インタフェース24fに入力する。
【0026】
《制御コンソール》
次に、制御コンソール23について説明する。図2に示すように制御コンソール23は、本体24、表示装置25、入力装置26等から構成される、例えば、計算機であり、制御コンソール23を操作する操作者がX線の被爆をしないように配管検査装置本体100から少し離れた位置に配置してある。そのため、監視カメラ(図示せず)を配管検査の現場近くに設置して、そのカメラ画像を制御コンソール23の表示装置25の小画面に表示させ、配管検査装置本体100の動作状況を監視するようにすると都合が良い。
制御コンソール23の本体24は、図3に示すように、CPU24a、バス24b、ROM24c、RAM24d、VRAM(Video RAM)24e、制御入出力インタフェース24f、表示インタフェース24g、入力インタフェース24h、記憶装置24k等を有している。
VRAM24eは、表示装置25に表示するためのデータを一時記憶するメモリであり、表示インタフェース24gは、表示装置25に画像データやテキストデータを表示させるための出力インタフェースである。入力インタフェース24hは入力装置26からの入力のための入力インタフェースである。
【0027】
記憶装置24kは、例えば、ハードディスクを用いた記憶装置であり、予め格納された領域設定プログラム(軸方向走査距離設定手段、横方向最大移動距離設定手段)27、走査制御プログラム28、画像取込みプログラム(透過画像取得手段)29、画像再構成演算プログラム(画像再構成演算手段)30、および画像計測プログラム31と、ワーク作業用の記憶領域である透過画像格納部32、再構成演算結果格納部33、計測結果格納部34と、を有している。
【0028】
(領域設定プログラム)
領域設定プログラム27は、2次元放射線検出器2からの透過データにもとづき、断層画像や立体画像を生成させる3次元の領域(断層画像構築領域)50(図5参照、以下では「画像構築領域50」と称する)を設定するプログラムである。領域設定プログラム27は、CPU24aで実行される時に、表示装置25と、キーボード26a、マウス26b等の入力装置26を操作者が用いて、会話形式で操作するものである。操作者は、この画像構築領域50を設定するときには、具体的には、放射線源1と2次元放射線検出器2を並進走査する配管軸方向Xの範囲Xscan(以下では「配管軸方向走査範囲Xscan」と称する)と、配管軸方向Xの並進走査を繰り返すための放射線源1と2次元放射線検出器2の配管横方向の移動幅Ztransfer(以下では「横方向移動幅Ztransfer」と称する)を設定する。その詳細な機能や方法については、図5の操作画面の説明、および図8から図11のフローチャートの説明の中で後記する。
ここで、「横方向移動幅Ztransfer」が、特許請求の範囲に記載の「横行方向最大移動距離」に対応する。
【0029】
(走査制御プログラム)
走査制御プログラム28は、透過データを取得するための、放射線源1と2次元放射線検出器2の並進走査、つまり、支持装置3の配管軸方向Xの移動の制御と、放射線源1と2次元放射線検出器2の配管横方向の移動制御をするプログラムである。
走査制御プログラム28が起動されると、放射線源制御部22Bに指令を出し、X線を所定の強度で放射するように放射線源1を制御させる。走査制御プログラム28は、放射線源制御部22Bから「照射可」の信号を受信したとき、2次元放射線検出器2からの透過データの取得を行う一連の走査制御を開始する。
詳細な走査制御については、後記する。
(画像取込みプログラム)
画像取込みプログラム29は、2次元放射線検出器2から取得した透過データにもとづいて透過画像を生成するプログラムである。
【0030】
(画像再構成演算プログラム)
画像再構成演算プログラム30は、Limited Angle画像再構成手法により、領域設定プログラム27を用いて設定された画像構築領域50(図5参照)に対して断層画像や立体画像を生成し、その結果の断層画像や立体画像のデータを再構成演算結果格納部33に記憶させる機能のプログラムである。
【0031】
(画像計測プログラム)
画像計測プログラム31は、再構成演算結果格納部33に記憶された断層画像や立体画像のデータを読み出して、表示装置25に断層画像や立体画像として表示し、操作者の操作入力に従って、断層画像や立体画像の操作者が指定した部分の、例えば、長さや配管の肉厚や、配管の腐食部分の表面の大きさおよび深さ等を計測演算する機能を有するプログラムである。画像計測プログラム31は、計測演算した結果を、その部位を示す断層画像や立体画像における位置等の情報と関係付けて、計測結果格納部34に記憶させる機能も有している。
【0032】
次に、図4を参照しながら、制御コンソール23における全体制御の流れを説明する。図4は、制御コンソールにおける全体制御の流れを示すフローチャートである。
ステップS1では、操作者が領域設定プログラム27を用いて、画像構築領域50(図5参照)を設定する。ステップS2では、走査制御および画像取込みを行う。具体的には、ステップS1で設定された画像構築領域50にもとづいて、走査制御プログラム28による走査制御により、画像取込みプログラム29が、2次元放射線検出器2からの透過データを取得し、透過画像を生成して、そのデータを記憶装置24kの透過画像格納部32に記憶させる。ステップS3では、画像再構成演算プログラム30により、ステップS2で記憶された透過画像のデータにもとづいて断層画像と立体画像を生成する(「画像再構成演算」)。
ステップS4では、操作者が画像計測プログラム31を用いて、断層画像または立体画像を表示装置25に表示させる。
そして、ステップS5では、画像計測プログラム31により、操作者が操作入力した断層画像または立体画像の部位等の計測をする(「画像計測」)。
ここで、全体フローチャートのステップS1が、特許請求の範囲に記載の「断層画像構築領域入力工程」に対応する。
【0033】
(画像構築領域の設定方法)
次に、図5から図13を参照しながら画像構築領域の設定の制御の流れについて説明する。図5は、画像構築領域を設定する操作画面の説明図である。
図5に示す画像構築領域50を設定する操作画面(断層画像構築領域設定手段)500は、例えば、一般操作欄500a、座標軸表示欄500b、座標入力欄500c、手動移動操作入力モード欄500dを含んで構成されている。図6は、放射線源および2次元放射線検出器の配管軸方向の並進走査と、配管横方向の並進移動を説明する平面図である。図7は、放射線源および2次元放射線検出器の配管横方向の並進移動を説明する図6におけるB−B矢視図であり、画像構築領域の高さ方向の設定と横方向の設定の説明図である。
【0034】
一般操作欄500aには、操作画面500の最小化、最大化、閉じ操作用の3つのアイコンボタン501,501,501が表示されている。
座標軸表示欄500bには、左から配管軸方向X、配管高さ方向Y、配管横方向Zを示す座標軸と、それにもとづいた画像構築領域50を示す破線で示した直方体のモデルと、前記した横方向移動幅Ztransferを表示するための実線で示した直方体のモデルとが表示されている。実線で示した直方体のモデルに付された座標を示す符号Xs,Xc,Xf,Ys,Yc,Yf,Zs,Zc,Zf、並びに、破線で示した直方体のモデルに付された座標を示す符号Ds,Dfについては後記する。
なお、座標軸表示欄500bに破線で示した画像構築領域50を示す直方体のモデルの詳細、「D」の符号を付して示した画像構築領域50の横方向範囲D、矢印で示した横方向移動幅Ztransferの詳細な説明については、後記する。横方向範囲D、横方向移動幅Ztransferは、操作画面500に表示される必要はない。
【0035】
座標入力欄500cには、「配管軸方向(X)」と表示の下に配管軸方向Xのデータを入力可能とする開始位置Xsの入力欄511、終了位置Xfの入力欄512、基準位置Xcの表示欄513が配され、「配管高さ方向(Y)」と表示の下に配管高さ方向Yのデータを入力可能とする開始位置Ysの入力欄521、終了位置Yfの入力欄522、基準位置Ycの表示欄523が配され、「配管横方向(Z)」と表示の下に配管横方向Zのデータを入力可能とする開始位置Zsの入力欄525、終了位置Zfの入力欄526、基準位置Zcの表示欄527が配されている。座標入力欄500cには、更に、放射線源1と2次元放射線検出器2との距離、以下では「放射線源−検出器距離L」と称する表示欄515、「OK」と表示の領域設定終了ボタン503等が配されている。放射線源−検出器距離Lは、一定であり、予め領域設定プログラム27に書き込まれていても良いし、配管検査装置本体100に応じて、領域設定プログラム27の実行時に表示欄515を用いて手入力可能になっていても良い。
操作者がマウス26b(図3参照)を用いて、ポインタ502で入力欄511,512,521,522,525,526の一つを指定して、クリックすることにより、キーボード26aから数値の入力が可能となる。
【0036】
開始位置Xsと終了位置Xfは、図6に示すように配管軸方向Xの配管軸方向走査範囲Xscanにおける左端側と右端側の位置、をそれぞれ意味し、走査の開始、終了の位置を意味するものではない。基準位置Xcは、配管軸方向走査範囲Xscanの中央位置を意味し、開始位置Xsと終了位置Xfの入力により次式(1A)のように自動的に算出されて表示される。また、配管軸方向走査範囲Xscanは、次式(1B)のように自動的に算出される。
Xc=(Xs+Xf)/2 ・・・・・・・・・・・・・(1A)
Xscan=Xf−Xs ・・・・・・・・・・・・・・(1B)
そして、開始位置Xsと終了位置Xfは、透過画像格納部32(図3参照)に記憶された透過画像のデータから断層画像や立体画像を生成するときの配管軸方向Xにおける左端側と右端側の位置、つまり画像構築領域50の左端側と右端側の位置の設定に対応している(図5参照)。
【0037】
開始位置Ysと終了位置Yfは、透過画像格納部32(図3参照)に記憶された透過画像のデータから断層画像や立体画像を生成するときの配管高さ方向Yにおける上端側と下端側の位置、つまり、画像構築領域50の上端側と下端側の位置をそれぞれ意味する。基準位置Ycは、画像構築領域50の配管高さ方向Yにおける中央位置を意味し、開始位置Ysと終了位置Yfの入力により式(2A)のように自動的に算出されて表示される。また、画像構築領域50の配管高さ方向の高さTは、式(2B)により自動的に算出される。
Yc=(Ys+Yf)/2 ・・・・・・・・・・・・・(2A)
T=Yf−Ys ・・・・・・・・・・・・・・・・・・(2B)
開始位置Ys、終了位置Yfの位置を決める際には、配管15の断熱材が施された状態における外径を測定し、配管15の断熱材を施された状態における配管高さ方向の外径全体が画像構築領域50に収まるように設定するのが望ましい。
開始位置Ysの入力欄521への数値入力により、後記する配管横方向Zの開始位置Zsおよび次式(3)に示す終了位置Zfが式(4A),(4B)により座標軸表示欄500bに示す画像構築領域50の配管横方向の開始位置Ds、終了位置Dfと関係付けられるので、操作者は入力する前に事前に手計算により開始位置Ds(手前側端)、終了位置Df(奥側端)を計算し確認しておく必要がある。画像構築領域50の横方向範囲Dは、次式(4C)に従って算出される。
Zf=n×ΔZ+Zs ・・・・・・・・・・・・・・・(3)
Ds=Zs−S・W1/(2・L) ・・・・・・・・・(4A)
Df=Zf+S・W1/(2・L) ・・・・・・・・・(4B)
D=Df−Ds ・・・・・・・・・・・・・・・・・・(4C)
式(3)において、nは0を含む自然数であり、ΔZは次式(5)で定義される放射線源1と2次元放射線検出器2を配管横方向Zに並進移動させる横方向移動ステップ幅である。W1は2次元放射線検出器2の配管横方向Zの幅をW1、Lは放射線源−検出器距離を、Sは放射線射出口1aから画像構築領域50の配管高さ方向Yの放射線源1側の端面までの距離である。2次元放射線検出器2の横方向幅W1は、配管検査装置本体100の仕様として明らかであり、放射線源−検出器距離Lは、配管検査装置本体100設置の際に設定条件として取得する量である。またSの値は、画像構築領域50の高さ方向の基準位置として放射線射出口1aの高さ方向の位置と配管15の断熱材が施された状態での該表面の上面側の位置がわかれば決定される。横方向移動幅Ztransferについては、配管横方向の配管15の直径の端から端までを撮影できるように設定する必要がある。具体的には、次式(5)、(6)により計算される。
ΔZ=K・W1・S/L ・・・・・・・・・・・・・・(5)
式(5)におけるKは定数であり、例えば、0.8〜1.0の値である。定数Kが1未満の場合は、横方向移動ステップ幅ΔZだけ放射線源1および2次元放射線検出器2を並進移動させた後に並進走査して透過画像を取得すると、その前の並進走査における透過画像との間で、開始位置Ysの位置における配管横方向Zに対して一部重複して透過画像を取得することを意味する。
ここで、横方向移動ステップ幅ΔZが、特許請求の範囲に記載の「並進移動の間隔」に対応する。また、距離Sは、特許請求の範囲に記載の「放射線源と配管の放射線源側表面までの所定距離」に対応する。
【0038】
図6、図7は配管横方向Zに放射線源1と2次元放射線検出器2を並進走査の後に並進移動する際の横方向移動ステップ幅ΔZ、移動総量を模式的に示したものである。ここでは、図6の平面図に示すように配管15の曲り部15bと直管部15aをカバーするように配管横方向Zに放射線源1および2次元放射線検出器2を配管横方向Zへ横方向移動ステップ幅ΔZずつ並進移動する例を示している。横方向移動ステップ幅ΔZを必要以上に大きく取る等、不適切に設定した場合、画像構築領域50の内部において、X線が入射しない領域が発生する。X線が入射しない領域が発生すると、その部分の透過データが欠落し、精度よく断層画像や立体画像を構築できない可能性が高くなる。したがって、画像構築領域50の内部の全ての点にX線が入射するように前記距離Sを考慮して横方向移動ステップ幅ΔZを設定しなければならない。
【0039】
前記した開始位置Zsと終了位置Zfは、配管横方向Zの前記した横方向移動幅Ztransferにおいて、支持枠基部3a側端(図1では手前側端)の位置と、支持枠基部3aから最も遠ざかる側端(図1では奥側端)の位置、をそれぞれ意味し、横方向移動幅Ztransferの開始、終了の位置を意味する。基準位置Zcは、横方向移動幅Ztransferの中央位置を意味し、開始位置Zsと終了位置Zfの入力により次式(6A)のように自動的に算出されて表示される。開始位置Zs、終了位置Zfの位置を決める際には、配管15の断熱材が施された状態における外径を測定し、配管15の断熱材を施された状態における配管横方向の外径全体が画像構築領域50の開始位置Dsから終了位置Dfの範囲に収まるように設定するのが望ましい。横方向移動幅Ztransferは次式(6B)のように算出される。
Zc=(Zs+Zf)/2 ・・・・・・・・・・・・・・(6A)
Ztransfer=Zf−Zs ・・・・・・・・・・・(6B)
ちなみに、透過画像格納部32(図3参照)に記憶された透過画像のデータから断層画像や立体画像を生成するときの画像構築領域50の配管横方向Zにおける開始位置Dsと終了位置Dfは、前記した式(4A),(4B)の演算により自動的に設定される。この演算された画像構築領域50の開始位置Dsと終了位置Dfの位置をも表示するようにしても良い。
このように、画像構築領域50の配管高さ方向Yの開始位置Ys、終了位置Yfを、入力前に配管検査装置本体100の仕様や設定条件として取得することによって決定する方法を「画像構築領域50の配管高さ方向Yの領域データの第1の決定方法」と称する。
【0040】
図5に示すように手動移動操作入力モード欄500dの左側には、「手動移動操作入力モード」と表示の入力モードボタン505、その下に「配管軸方向」と表示の入力オプションボタン531、更にその下に、左右方向に並べて「−(マイナス)」表示の移動ボタン532、「+(プラス)」表示の移動ボタン533、「入力」と表示の入力ボタン534が表示されている。
手動移動操作入力モード欄500dの左右中央に「X線」と表示の下方には、放射線源制御部22B(図3参照)を介して放射線源1であるX線発生装置をオン、オフ操作のための「ON/OFF」と表示の操作ボタン507が表示されている。この操作ボタン507はX線発生装置がオン状態の場合、赤色表示になり、オフ状態の場合、緑色表示になり、オン状態であるがX線発生装置が安定状態に移行して「照射可」になる前の状態の場合は、黄色表示になるようになっている。
【0041】
図5に示すように手動移動操作入力モード欄500dの右側の上段には、「配管横方向」と表示の入力オプションボタン541、その下に、左右方向に並べて「−(マイナス)」表示の移動ボタン542、「+(プラス)」表示の移動ボタン543、「入力」と表示の入力ボタン544が表示されている。
また、手動移動操作入力モード欄500dの右側の下段には、「配管高さ方向」と表示の入力オプションボタン551、その下に、左右方向に並べて「画像取得」と表示の画像取得ボタン552、「入力」と表示の入力ボタン553が表示されている。
各ボタン505、531〜534、541〜544、551〜553の機能については、以下の図8から図11のフローチャートの説明の中で後記する。
【0042】
図8から図11は画像構築領域の設定の制御の流れを示すフローチャートである。図12は、画像構築領域の配管高さ方向の領域データの第2の設定方法の説明図である。
前記した図4における全体フローチャートのステップS1において、ステップS11に進み、数値入力モードになる。この数値入力モードは、図5における座標入力欄500cの入力欄511、512,521,522,525,526への操作者による入力装置26を用いた数値入力が優先されるモードである。
【0043】
ステップS12では、領域設定終了ボタン503が押下されたか否かをチェックする。押下された場合(Yes)は、ステップS13へ進み、そうでない場合はステップS14へ進む。ステップS13では、画像構築領域設定に必要なデータ全てが入力完了か否かをチェックする。必要なデータ全てが入力完了の場合(Yes)は、全体フローチャートに戻り、次のステップS2へ進む。必要なデータ全てが入力完了していない場合(No)は、ステップS11に戻る。
【0044】
ステップS14では、入力モードボタン505が押下されたか否か、つまり、手動移動操作入力モードの選択か否かをチェックする。手動移動操作入力モード選択の場合(Yes)は、ステップS15へ進み、そうでない場合(No)はステップS11に戻る。
入力モードボタン505の押下による手動移動操作入力モードは、横方向駆動機構17,18、軸方向駆動機構19を制御しつつ、画像取込みプログラム29をも連動させ、放射線源1と2次元放射線検出器2の現在の位置における2次元放射線検出器2から出力される透過データを取得して、透過画像を表示装置25に連続的に透過画像を表示させ、操作者が透過画像を見ながら画像構築領域50の設定のために開始位置Xs、終了位置Xf、開始位置Ys、終了位置Yf、開始位置Zs,終了位置Zfを取得するモードである。
手動移動操作入力モードでは、入力ボタン534を押下することによって、入力欄511,512のいずれかの入力がなされ、位置座標が当該の入力欄に表示される。また、入力ボタン544を押下することによって、入力欄521,522のいずれかの入力がなされ、位置座標が当該の入力欄に表示される。更に、入力ボタン553を押下することによって、入力欄525,526のいずれかの入力がなされ、位置座標が当該の入力欄に表示される。
以下のステップS16〜S24が入力欄511,512の入力に対応し、ステップS28〜S37が入力欄521,522の入力に対応し、ステップS40〜S54が入力欄525,526の入力に対応する。
【0045】
ステップ15では、表示装置25に「X線発生装置をオン状態にして下さい」との表示を小画面で表示し、放射線源1からX線が放射されているか否かを操作ボタン507の表示色でチェックを促す。操作者は、放射線源1がオン状態になっていない場合には、操作ボタン507を押下して、放射線源制御部22B(図3参照)を介してオン操作をする。
ステップS16では、配管軸方向の入力オプションボタン531が押下されているか否か、つまり、配管軸方向の入力オプションか否かをチェックする。配管軸方向の入力オプションの場合(Yes)は、ステップS17へ進み、そうでない場合(No)は、結合子(B)に従って、図9のステップS26へ進む。
ステップS17では、表示装置25に「開始位置に移動させて下さい」とのメッセージの表示をし、ステップS18において配管軸方向Xの移動ボタン532,533(「移動ボタン−+」)の操作者の操作に合わせて、支持装置3を配管軸方向Xに移動の制御をする。それに合わせて透過画像が表示装置25に表示される。操作者は、表示装置25に表示された透過画像と、子画面の監視カメラの配管検査装置本体100の状態表示とを見ながら開始位置Xsが目的の開始位置Xsか否かを確認した後、入力ボタン534を押下する。
【0046】
ステップS19では、入力ボタン534が押下されたか否かをチェックする。入力ボタン534が押下された場合(Yes)は、ステップS20へ進み、そうでない場合(No)はステップS18を続ける。ステップS20では、配管軸方向Xの開始位置Xsを取得し、入力欄511(図5参照)に表示する。開始位置Xsは、回転角センサ5Cからの信号にもとづいて容易に取得することができる。次いで、ステップS21では、表示装置25に「終了位置に移動させて下さい」とのメッセージの表示をし、ステップS22において配管軸方向Xの移動ボタン532,533(「移動ボタン−+」)の操作者の操作に合わせて、支持装置3を配管軸方向Xに移動の制御をする。それに合わせて透過画像が表示装置25に表示される。操作者は、表示装置25に表示された透過画像と、子画面の監視カメラの配管検査装置本体100の状態表示とを見ながら終了位置Xfが目的の終了位置Xfか否かを確認した後、入力ボタン534を押下する。ステップS22の後、結合子(A)に従って、図9のステップS23へ進む。
ステップS23では、入力ボタン534が押下されたか否かをチェックする。入力ボタン534が押下された場合(Yes)は、ステップS24へ進み、そうでない場合(No)は、結合子(C)に従って、図8のステップS22を続ける。ステップS24では、配管軸方向Xの終了位置Xfを取得し、入力欄512(図5参照)に表示する。終了位置Xfは、回転角センサ5Cからの信号にもとづいて容易に取得することができる。
その後、ステップS25において、配管軸方向Xの基準位置Xcを式(1A)に従って算出して、表示欄513に表示する。配管軸方向走査範囲Xscanも、式(1B)に従って自動的に算出される。
【0047】
ステップS26では、領域設定終了ボタン503が押下されたか否かをチェックする。押下された場合(Yes)は、ステップS27へ進み、そうでない場合はステップS28へ進む。ステップS27では、画像構築領域設定に必要なデータ全てが入力完了か否かをチェックする。必要なデータ全てが入力完了の場合(Yes)は、全体フローチャートに戻り、次のステップS2へ進む。必要なデータ全てが入力完了していない場合(No)は、ステップS28に戻る。
ステップS28では、配管高さ方向の入力オプションボタン551が押下されているか否か、つまり、配管高さ方向の入力オプションか否かをチェックする。配管高さ方向の入力オプションの場合(Yes)は、ステップS29へ進み、そうでない場合(No)は、結合子(D)に従って、図10のステップS38へ進む。
ステップS29では、表示装置25に「配管高さ方向を設定する配管横方向位置に移動させて下さい」とのメッセージの表示をし、ステップS30において配管横方向の移動ボタン542,543(「移動ボタン−+」)の操作者の操作に合わせて、放射線源1と2次元放射線検出器2を配管横方向Zに並進移動の制御をする。この放射線源1と2次元放射線検出器2を配管横方向Zに並進移動の制御は、領域設定プログラム27が、配管横方向の移動ボタン542,543の操作により、横方向駆動機構17,18(図2参照)を、横方向駆動制御部22a、22bを介して同時制御することによりできる。
【0048】
ステップS31では、画像取得ボタン552が押下されたか否かをチェックする。押下された場合(Yes)は、ステップS32へ進み、そうでない場合(No)は、ステップS30を繰り返す。ステップS32では、領域設定プログラム27は、画像取込みプログラム29を動作させ、透過画像(図12の(b)参照)を表示装置25に表示させ、後記するマーカ601により、参照用部材40A,40Bに対する透過画像上の幅V1’,V2’の入力を受け付ける。
そしてステップS33では、入力用の小画面が開き、参照用部材40A,40Bの幅Vの入力を受け付ける。この小画面の具体例は省略する。
【0049】
ステップS34では、入力ボタン553が押下されたか否かをチェックする。押下された場合(Yes)は、結合子(E)に従って図10のステップS35へ進み、そうでない場合(No)は、ステップS30へ戻る。ステップS35では、放射線源−検出器距離Lと、参照用部材幅Vと、幅V1’,V2’にもとづいて配管高さ方向の仮の開始位置Ys、仮の終了位置Yf、仮の基準位置Ycを算出して入力欄521,522、表示欄523に表示する。ステップS36では、入力欄521,522にオーバーレイの数値入力が許可されており、入力装置26(図2参照)を用いて数値を手入力することにより、開始位置Ys、終了位置Yfの修正手入力を受け付ける。
【0050】
ここで、画像構築領域50における配管高さ方向の仮の開始位置Ys、終了位置Yf、基準位置Ycの算出方法について、図12を参照しながら説明する。図12は、画像構築領域の配管高さ方向の領域データの第2の設定方法の説明図であり、(a)は、断面説明図、(b)は、透過画像の説明図である。
図12の(a)では、配管15の曲り部15bに図において手前側に接続した直管部15aの図示しない断熱材の上部外表面に参照用部材40Aを、図示しない断熱材の下部外表面に参照用部材40Bを設定した状態を示す。参照用部材40A,40Bは同一部材、例えば、ステンレス部材であり、同一の矩形の平面形状、同一の矩形断面形状をしている。そして、参照用部材の幅V、以下参照用部材幅Vと称する。
【0051】
そして、参照用部材40A,40Bが、配管15の直管部15aとともに写りこむように透過画像51取得すると、表示装置25の小画面600には透過画像51中に参照用部材40A,40Bそれぞれの参照用部材幅Vが拡大投影されて幅V1’,V2’として表示される。
操作者が、マーカ601を用いて、幅V1’を示す線と幅V2’を示す線を指定入力することによって、領域設定プログラム27は、幅V1’、幅V2’を計測することができる。そして、放射線源−検出器距離L、参照用部材幅Vにもとづいて、次式(7A),(7B)により参照用部材40A、40Bの放射線射出口1aからの距離u1,u2を算出することができる。
u1=L・V/V1’ ・・・・・・・・・・・・・・・・・(7A)
u2=L・V/V2’ ・・・・・・・・・・・・・・・・・(7B)
算出されたu1,u2の値が仮の開始位置Ys,仮の終了位置Yfとして入力欄521,522に表示される。また、仮の基準位置Ycが式(2A)により算出され、表示欄523に表示される。
【0052】
前記したように、距離u1,u2は、必ずしも画像構築領域50として設定したい高さ幅を包含できているとは限らない。例えば、前記した断熱材の上部外表面に参照用部材40A、断熱材の下部外表面に参照用部材40Bを設定したときに、断熱部材の上方に突出した温度計の検出座、配管の下方に突出したドレイン配管を考慮してより上方側、または下方側に画像構築領域50の領域を拡大したい場合がある。その場合は、ステップS36の修正手入力を受け付けることにより、容易に画像構築領域50の高さ方向の開始位置Ys、終了位置Yfを修正でき、基準位置Ycはその修正に応じて自動的に変更計算できる。
開始位置Ys、終了位置Yfが決まれば、画像構築領域50の配管高さ方向の高さTは、式(2B)により自動的に算出される。
このように、画像構築領域50の配管高さ方向Yの開始位置Ys、終了位置Yfを、投影画像にもとづいて決定する方法を「画像構築領域50の配管高さ方向Yの領域データの第2の決定方法」と称する。
なお、入力欄521、522の選択は、ポインタ502(図5参照)で行われ、入力欄521、522への数値の手入力完了は、キーボード26aの「Enter」キーを押下することにより判定される。
【0053】
図10に戻って、ステップS37では、入力ボタン553が押下されたか否かをチェックする。入力ボタン553が押下された場合(Yes)は、ステップS38へ進み、そうでない場合(No)は、ステップS36を続ける。
ステップS38では、領域設定終了ボタン503が押下されたか否かをチェックする。押下された場合(Yes)は、ステップS39へ進み、そうでない場合はステップS40へ進む。ステップS39では、画像構築領域設定に必要なデータ全てが入力完了か否かをチェックする。必要なデータ全てが入力完了の場合(Yes)は、全体フローチャートに戻り、次のステップS2へ進む。必要なデータ全てが入力完了していない場合(No)は、ステップS40に進む。
【0054】
ステップS40では、配管横方向の入力オプションボタン541が押下されているか否か、つまり、配管横方向の入力オプションか否かをチェックする。配管横方向の入力オプションの場合(Yes)は、ステップS41へ進み、そうでない場合(No)は、結合子(F)に従って、図11のステップS55へ進む。
ステップS41では、表示装置25に「開始位置に移動させて下さい」とのメッセージの表示をし、ステップS42において配管横方向Zの移動ボタン542,543(「移動ボタン−+」)の操作者の操作に合わせて、横方向駆動機構17,18により、放射線源1と2次元放射線検出器2を配管横方向Zに並進移動の制御をする。それに合わせて透過画像が表示装置25に表示される。操作者は、表示装置25に表示された透過画像と、子画面の監視カメラの配管検査装置本体100の状態表示とを見ながら開始位置Zsが目的の開始位置Zsか否かを確認した後、入力ボタン544を押下する。
【0055】
ステップS43では、入力ボタン544が押下されたか否かをチェックする。入力ボタン544が押下された場合(Yes)は、ステップS44へ進み、そうでない場合(No)はステップS42を続ける。ステップS44では、配管横方向Zの開始位置(横方向移動開始位置)Zsを取得し、入力欄525(図5参照)に表示する。開始位置Zsは、回転角センサ5Aからの信号にもとづいて容易に取得することができる。
次いで、ステップS45では、表示装置25に「終了位置に移動させて下さい」とのメッセージの表示をし、結合子(G)に従って図11のステップS46において配管横方向の移動ボタン542,543(「移動ボタン−+」)の操作者の操作に合わせて、横方向駆動機構17,18により、放射線源1と2次元放射線検出器2を配管横方向Zに並進移動の制御をする。
ステップS47では、入力ボタン544が押下されたか否かをチェックする。入力ボタン544が押下された場合(Yes)は、ステップS48へ進み、そうでない場合(No)は、ステップS46を続ける。ステップS48では、配管横方向Zの仮の終了位置(仮の横方向最大移動位置)Zfを取得し、入力欄526(図5参照)に表示する。仮の終了位置Zfは、回転角センサ5Aからの信号にもとづいて容易に取得することができる。
【0056】
ここで、画像構築領域50における開始位置Ysと、ステップS44で取得される開始位置ZsおよびステップS48で取得される仮の終了位置Zfとの関係は、画像構築領域50の横方向範囲Dの図12の表示おける最も右寄り開始位置Ds、図12の表示おける最も左寄り終了位置Dfに対し、次式(8A),(8B)の条件を満たすようになされるべきである。
((W1)/2)/L=(Zs−Ds)/Ys ・・・・・(8A)
ここで、画像構築領域50の横方向範囲Dの開始位置Dsは、開始位置Zsを0(ゼロ)とした場合、負値である。
((W1)/2)/L=(Df−Zf)/Ys ・・・・・(8B)
従って、式(8A)から開始位置Zsは、式(9A)のように表わされ、式(8B)から開始位置Zsは、式(9B)のように表わされる。
Zs=Ys・W1/(2・L)+Ds ・・・・・・・・・(9A)
Zf=−Ys・W1/(2・L)+Df ・・・・・・・・(9B)
つまり、式(10A),(10B)の条件を満たす必要がある。
Ds≧Zs−Ys・W1/(2・L) ・・・・・・・・・(10A)
Df≦Zf+Ys・W1/(2・L) ・・・・・・・・・(10B)
そして、画像構築領域50の横方向範囲Dは、次式(11)により算出される。
D=Df−Ds≦Zf−Zs+Ys・W1/L ・・・・・(11)
そのためにフローチャートでは省略したが式(10A),(10B),(11)の条件が、操作者の画像構築領域50として設定したい横方向範囲Dを満たしているかどうかを、小画面を表示装置25に表示させ、確認させると都合が良い。
【0057】
ステップS49では、仮の終了位置Zfが、開始位置Zsと同じ値か否かをチェックする。同じ値の場合(Yes)はステップS50へ進み、異なる値の場合(No)は、ステップS51へ進む。ステップS50では、仮の終了位置をそのまま終了位置Zfとし、基準位置Zc=Zfとして、ステップS55へ進む。
ステップS51では、横方向移動ステップ幅ΔZ(=K・W1・Yf/L)を算出する。
【0058】
ステップS52では、Zmax=Zs+ΔZとしてステップS53へ進み、ZmaxがZf以上か否かをチェックする。ZmaxがZf以上の場合(Yes)はステップS54へ進み、そうでない場合(No)は、ステップS52を繰り返す。
ステップS54では、Zf以上の値となるZmaxを改めて配管横方向の終了位置(横方向最大移動位置)Zf(=Zmax)とし、基準位置Zc(=(Zs+Zf)/2)を算出して表示装置25に表示する。
図13は、配管横方向に移動して配管軸方向に走査した場合の透過画像と立体画像の説明図であり、(a)は、透過画像の説明図、(b)は、再構成された配管の立体画像の説明図である。
配管15の内周面に腐食部53が存在したとき、図13の(a)の透過画像51から図13の(b)に示すような立体画像が再構成される。そして、腐食部53の深さを立体画像や断層画像から計測することができる。また、配管15の立体画像中の任意の位置の肉厚52を計測することができる。
【0059】
ステップS54の後、ステップS55へ進み、画像構築領域設定に必要なデータ全てが入力完了か否かをチェックする。必要なデータ全てが入力完了の場合(Yes)は、全体フローチャートに戻り、次のステップS2へ進む。必要なデータ全てが入力完了していない場合(No)は、ステップS56へ進み、表示装置25に「未入力のデータがあります」と表示させ、結合子(H)に従って図8のステップS11に戻る。
以上により、手動移動操作入力モードにおける一連の画像構築領域50に係わるデータの入力制御の処理が終了する。
フローチャートにおけるステップS28〜S37が、特許請求の範囲に記載の「領域高さ方向決定手段」並びに「領域高さ方向決定工程」に対応し、ステップS51が、特許請求の範囲に記載の「横方向移動間隔決定手段」に対応する。
【0060】
そして、図4に示す全体フローチャートのステップS2へ進むと、走査制御および画像取込みの制御がなされる。
この走査の実行において走査制御プログラム28(図3参照)は、画像取込みプログラム29(図3参照)と並行してCPU24a(図3参照)で実行される。そして、領域設定プログラム27で設定された配管軸方向走査範囲Xscanと横方向移動幅Ztransfer(図6参照)にもとづいて、放射線源1と2次元放射線検出器2を配管横方向Zに対して開始位置Zs(図6参照)として、前記した配管軸方向走査範囲Xscanに対し支持装置3(図2参照)を一定速度で、配管軸方向Xに移動させる。つまり、放射線源1と2次元放射線検出器2を並進走査するように軸方向駆動制御部22cに指令を出し、回転角センサ5C(図3参照)からの信号にもとづいて所定の距離毎に画像取込みプログラム29に画像取込みタイミング信号を入力する。
【0061】
画像取込みプログラム29は、この画像取込みタイミング信号を受けたとき、検出器制御部22C(図3参照)を介して、前記した個々のフォトダイオードが出力する検出信号とそのフォトダイオードの2次元放射線検出器2における2次元平面での位置情報である検出器アドレス信号とを透過データとして受信し、透過画像を生成する。そして、画像取込みプログラム29は、生成した透過画像を回転角センサ5Cからの信号にもとづいて算出した配管軸方向Xの位置座標、回転角センサ5A(図3参照)または回転角センサ5Bからの信号にもとづいて算出した配管横方向Zの位置座標とともに透過画像格納部32(図3参照)に記憶させる。
【0062】
この配管軸方向走査範囲Xscanの走査が終了すると走査制御プログラム28は、放射線源1と2次元放射線検出器2の前記した横方向移動幅Ztransferのデータにもとづいて、横方向駆動制御部22a,22bに配管横方向Zに横方向移動ステップ幅ΔZだけ放射線源1と2次元放射線検出器2を並進移動させる指令を出力する。その指令を受け、横方向駆動制御部22a,22bは、回転角センサ5A,5Bからの信号にもとづき横方向移動ステップ幅ΔZだけ放射線源1と2次元放射線検出器2を配管横方向Zに移動させる。
その後、前記した配管軸方向走査範囲Xscanに対し支持装置3を一定速度で、配管軸方向Xに移動させる。つまり、放射線源1と2次元放射線検出器2を並進走査するように軸方向駆動制御部22cに指令を出し、回転角センサ5Cからの信号にもとづいて所定の距離毎に画像取込みプログラム29に画像取込みタイミング信号を入力する。
画像取込みプログラム29は、前記したように透過データを受信し、透過画像を生成し、配管軸方向Xの位置座標、配管横方向Zの位置座標とともに透過画像格納部32に記憶させる。
【0063】
このように、領域設定プログラム27を用いて設定された横方向移動幅Ztransferの端である開始位置Zs,Zyに到るまで、放射線源1と2次元放射線検出器2を、配管軸方向走査範囲Xscanの間で並進走査による透過画像の生成と記憶を繰り返す。
なお、配管15の直径が細く、1回の並進走査で配管15の直径がカバーできる場合は、横方向移動幅Ztransferがゼロなので、横方向移動ステップ幅ΔZだけ放射線源1と2次元放射線検出器2を配管横方向Zに移動させて、並進操作を繰り返すことは必要ないのは当然である。
【0064】
本実施形態によれば、配管高さ方向Yの開始位置Ysの位置での配管横方向Zに対して、放射線源1から放射されるX線が画像構築領域50をカバーするように横方向移動ステップ幅ΔZが算出されて設定されるので、直径の大きい配管の断層画像や立体画像が精度良く得られる。
また、画像構築領域50の配管高さ方向Yの開始位置Ys、終了位置Yfを設定するときに、参照用部材40A,40Bを利用し、容易に設定できる。
また、横方向移動幅Ztransferの両端を設定する際に、透過画像を見ながら配管15の配管横方向Zの両端の外径を写しこんでいることを表示装置25で確認して横方向移動幅Ztransferを設定するので、画像構築領域50の横方向範囲Dを必要な範囲に確実に設定できる。
【0065】
なお、本実施形態において、2次元放射線検出器2のみを配管横方向Zに移動させ、放射線源1は配管横方向Zに移動させずに、一定位置において2次元放射線検出器2の検出面2aにX線、またはγ線の照射方向を設定できるような回転機構を設ける方法も可能である。ただし、放射線強度は距離の二乗に反比例して低下するため、放射線源1の照射範囲を回転機構により配管横方向Zに変化させるのでは、放射線源1と2次元放射線検出器2の距離が離れるに従い、画質の劣化が懸念される。本実施形態では鉄等の金属製配管が主な検査対象であり、金属のように密度が大きいものを透過した放射線の減衰は著しく、画質の劣化がより顕著になる。そのため、放射線源1と2次元放射線検出器2の距離が変化しない本実施形態の方がより望ましい。
【0066】
図12では、参照用部材40A、40Bを配管15の上下に取り付けた場合を示しているが、どちらか一方のみ、例えば、上側だけを取り付け、その高さ方向の位置、つまり、開始位置Ysを同定した後に、既知である配管15の直径の値にもとづいて画像構築領域50の終了位置Yf、高さ方向の高さTおよび基準位置Ycを決定することも可能である。
【0067】
《画像構築領域の配管高さ方向の領域データの第3の決定方法》
次に、図14を参照しながら画像構築領域の配管高さ方向の領域データの第3の決定方法について説明する。図14は、画像構築領域の配管高さ方向の領域データの第3の決定方法の説明図であり、(a)は、断面説明図、(b)は、透過画像の説明図である。
この配管高さ方向の領域データの決定方法では、参照用部材40A,40Bを使用せずに、既知である配管15の肉厚tを利用して決定するものである。図14に示すように、放射線源1および2次元放射線検出器2を配管横方向Zの配管15の直径における手前端側(開始位置Zs側)端面が投影される位置に配置し透過画像を取得する。そして、取得した透過画像から肉厚が既知の肉厚tが拡大投影されたサイズt’から拡大率を求める。
配管15の肉厚t、拡大投影された厚さt'から、配管15の高さ方向の中心位置、つまり基準位置Ycが次式(12A)で算出される。
【0068】
具体的には、領域設定プログラム27によって表示装置25の小画面605には透過画像51中に配管15の肉厚tが拡大投影されてt’として表示される。操作者が、マーカ601を用いて、肉厚t’を示す線を指定入力することによって、肉厚t’が計測される。そして、既知の肉厚tと配管15の半径に係わるデータとして、既知の半径Rpipeに対して、例えば、少し大きめに10%マージンΔRを加算した値を入力装置26により入力する。すると画像構築領域50の開始位置Ys、終了位置Yfは、式(12B),(2C)のように算出される。また、画像構築領域50の高さTは、式(12D)で算出される。
【0069】
ここで、既知の半径Rpipeに対して、例えば、少し大きめに10%マージンΔRを加算するのは、配管15の外表面に断熱材が施されていることを考慮し、また、投影された肉厚t’の計測誤差を考慮したものである。
Yc=L・t/t’ ・・・・・・・・・・・・・・・・・(12A)
Ys=Yc−(Rpipe+ΔR) ・・・・・・・・・・(12B)
Yf=Yc+(Rpipe+ΔR) ・・・・・・・・・・(12C)
T=Rpipe+ΔR ・・・・・・・・・・・・・・・・(12D)
このように画像構築領域50の配管高さ方向Yの領域データの第3の決定方法によっても容易に開始位置Ys,終了位置Yf、画像構築領域50の高さTが設定できる。
【0070】
本実施形態では、放射線源1からのコーンビーム状の放射線の配管横方向Zの広がりは、2次元放射線検出器2の幅W1をカバーするものとして説明したがそれに限定されるものではない。2次元放射線検出器2として、配管横方向Zの幅W1が配管15の直径よりも大きなサイズのものが得られる場合は、放射線源1から照射される放射線の配管横方向Zの広がりが検出面2a全体に及ばない。そこで、配管検査装置本体100は、放射線源1のみが配管横方向Zに移動可能とする横方向駆動機構17を有し、2次元放射線検出器2を配管横方向Zに移動させる横方向駆動機構18を有しない構成としても良い。
その場合の画像構築領域50の領域設定のデータ入力方法や横方向移動ステップ幅ΔZ、横方向移動幅Ztransferについても実施形態と同様の方法が適用可能である。
【産業上の利用可能性】
【0071】
本発明の配管の断層撮影装置およびその制御方法を用いることで、発電プラントに設置された配管だけでなく、航空機の翼等、2次元放射線検出器の視野に納まらないような大型構造物にたいして断層画像や立体像を構築することができ、これらの非破壊検査が製作工場や検査工場の現場で可能となる。
【符号の説明】
【0072】
1 放射線源
1a 放射線射出口
2 2次元放射線検出器
2a 検出面
3 支持装置
3a 支持枠基部
3b1,3b2 支持枠腕部
3c 可動架台
3e 可動架台
4A、4B,4C モータ
5A,5B 回転角センサ(横方向位置検出センサ)
5C 回転角センサ
6A,6B 駆動軸
7A ピニオンギア
7B 駆動ギア
8 ラック
8a ラック歯
9 押圧車
10A,10B 案内車
11 案内バー
13 支持脚
15 配管
15a 直管部
15b 部
17 横方向駆動機構
18 横方向駆動機構
19 軸方向駆動機構
21 制御装置
22A 走査制御部(駆動制御手段)
22a 横方向駆動制御部
22b 横方向駆動制御部
22c 軸方向駆動制御部
22B 放射線源制御部
22C 検出器制御部
23 制御コンソール
24 本体
27 領域設定プログラム(軸方向走査距離設定手段、横方向最大移動距離設定手段)
28 走査制御プログラム
29 画像取込みプログラム(透過画像取得手段)
30 画像再構成演算プログラム(画像再構成演算手段)
31 画像計測プログラム
32 透過画像格納部
33 再構成演算結果格納部
34 計測結果格納部
40A、40B 参照用部材
50 画像構築領域(断層画像構築領域)
51 透過画像
100 配管検査装置本体
500 操作画面(断層画像構築領域設定手段)
500a 一般操作欄
500b 座標軸表示欄
500c 座標入力欄
500d 手動移動操作入力モード欄
503 領域設定終了ボタン
505 入力モードボタン
511,512,521,522,525,526 入力欄
531 入力オプションボタン
532,533 移動ボタン
534 入力ボタン
541 入力オプションボタン
542,543 移動ボタン
544 入力ボタン
551 入力オプションボタン
552 画像取得ボタン
553 入力ボタン
D 横方向範囲
Ds 開始位置
Df 終了位置
L 放射線源−検出器距離
S 距離
T 高さ
V 参照用部材幅
W1 横方向幅
X 配管軸方向
Xs 開始位置
Xf 終了位置
Xc 基準位置
Xscan 配管軸方向走査範囲
Y 配管高さ方向
Ys 開始位置
Yc 基準位置
Yf 終了位置
Z 配管横方向
Zc 基準位置
Zs 開始位置
Zf 終了位置
Ztransfer 横方向移動幅

【特許請求の範囲】
【請求項1】
放射線を用いて配管の断層画像または立体画像を撮影する配管の断層撮影装置であって、
前記配管を挟んで、放射線源と2次元放射線検出器を対向配置する支持装置と、
該支持装置を介して、前記放射線源と前記2次元放射線検出器を前記配管の軸方向の所定距離を並進走査させる軸方向駆動機構と、
前記支持装置を介して、前記放射線源と前記2次元放射線検出器を、前記配管の軸方向に対して水平面内で直角な配管横方向に並進移動させる横方向駆動機構と、
前記軸方向駆動機構による前記並進走査の所定距離を設定する軸方向走査距離設定手段と、
前記横方向駆動機構の前記並進移動の横方向最大移動距離を設定する横方向最大移動距離設定手段と、
前記軸方向駆動機構および横方向駆動機構を制御する駆動制御手段と、
前記軸方向の所定の並進走査の距離範囲内で所定距離ごとに、前記2次元放射線検出器からの透過データを取込み、透過画像とする透過画像取得手段と、
前記透過画像取得手段により取得された透過画像にもとづき、前記配管の断層画像または立体画像を再構成する画像再構成演算手段と、を備え、
前記横方向最大移動距離設定手段は、
前記横方向駆動機構による前記放射線源および前記2次元放射線検出器の前記配管横方向の並進移動の間隔を、前記2次元放射線検出器の前記配管横方向の幅と、前記放射線源と前記2次元放射線検出器間の距離と、前記放射線源と前記配管の前記放射線源側表面までの所定距離とにもとづいて決定する横方向移動間隔決定手段を有することを特徴とする配管の断層撮影装置。
【請求項2】
前記横方向駆動機構は、前記配管横方向の位置を検出する横方向位置検出センサを有し、
前記横方向最大移動距離設定手段は、
操作者によって前記駆動制御手段を介して前記横方向駆動機構を操作され、前記放射線源と前記2次元放射線検出器とを前記配管横方向に並進移動させ、前記配管横方向における前記配管の外径の両端を含むように、少なくとも2箇所で前記透過画像を取得したとき、前記横方向位置検出センサで検出した前記2箇所の配管横方向の位置にもとづき、一方を横方向移動開始位置、他方を仮の横方向最大移動位置として設定し、
更に、前記横方向移動開始位置に、前記決定された横方向の並進移動の間隔を所定の整数倍して加算して前記設定された仮の横方向最大移動位置以上になるように横方向最大移動位置を決定することを特徴とする請求項1に記載の配管の断層撮影装置。
【請求項3】
更に、前記配管に対する断層画像または立体画像を構築する断層画像構築領域を操作者が入力可能な断層画像構築領域入力手段を備え、
該断層画像構築領域入力手段は、
前記横方向最大移動距離設定手段によって設定された前記横方向移動開始位置と横方向最大移動位置を前記配管横方向の領域設定のデータとし、
前記配管を挟んで前記対向配置された放射線源と2次元放射線検出器の対向方向を配管高さ方向とし、前記放射線源側と前記2次元放射線検出器側のそれぞれの前記配管の外径の両端を含むように前記配管高さ方向の領域設定のデータとし、
前記配管軸方向の並進走査の開始位置と終了位置を前記配管軸方向の領域設定のデータとし、
それぞれの領域設定のデータを入力可能なことを特徴とする請求項2に記載の配管の断層撮影装置。
【請求項4】
前記断層画像構築領域入力手段は、
前記放射線源側と前記2次元放射線検出器側のそれぞれの前記配管の外径の両端側に参照用部材が設置された場合、前記透過画像取得手段によって取得された前記透過画像に表示された前記参照用部材の撮像の大きさより求めた拡大率にもとづき前記配管高さ方向の領域設定のデータを決定する領域高さ方向決定手段を有することを特徴とする請求項3に記載の配管の断層撮影装置。
【請求項5】
前記断層画像構築領域入力手段は、
前記透過画像取得手段によって前記配管横方向における前記配管の外径の一方端を含む前記透過画像を取得し、操作者により入力された前記配管の肉厚の値と、前記透過画像に表示された前記配管の肉厚を示す撮像との間の拡大率を算出し、操作者により入力された前記配管の外径とにもとづいて前記配管高さ方向の領域設定のデータを決定する領域高さ方向決定手段を有することを特徴とする請求項3に記載の配管の断層撮影装置。
【請求項6】
配管を挟んで、放射線源と2次元放射線検出器を対向配置する支持装置と、
該支持装置を介して、前記放射線源と前記2次元放射線検出器を前記配管の軸方向の所定距離を並進走査させる軸方向駆動機構と、
前記支持装置を介して、前記放射線源と前記2次元放射線検出器を、前記配管の軸方向に対して水平面内で直角な配管横方向に並進移動させる横方向駆動機構と、
前記軸方向駆動機構による前記並進走査の所定距離を設定する軸方向走査距離設定手段と、
前記横方向駆動機構の前記並進移動の横方向最大移動距離を設定する横方向最大移動距離設定手段と、
前記軸方向駆動機構および横方向駆動機構を制御する駆動制御手段と、
前記軸方向の所定の並進走査の距離範囲内で所定距離ごとに、前記2次元放射線検出器からの透過データを取り込み、透過画像とする透過画像取得手段と、
前記透過画像取得手段により取得された透過画像にもとづき、前記配管の断層画像または立体画像を再構成する画像再構成演算手段と、を備える配管の断層撮影装置における制御方法であって、
前記横方向駆動機構による前記放射線源および前記2次元放射線検出器の前記配管横方向の並進移動の間隔を、前記2次元放射線検出器の前記直角方向の幅と、前記放射線源と前記2次元放射線検出器間の距離と、前記放射線源と前記配管の前記放射線源側表面までの所定距離とにもとづいて決定することを特徴とする配管の断層撮影装置における制御方法。
【請求項7】
前記横方向最大移動距離設定手段において、
操作者によって前記駆動制御手段を介して前記横方向駆動機構を操作され、前記放射線源と前記2次元放射線検出器とを前記配管横方向に並進移動させ、前記配管横方向における前記配管の外径の両端を含むように、少なくとも2箇所で前記透過画像を取得したとき、前記横方向位置検出センサで検出した前記2箇所の配管横方向の位置にもとづき、一方を横方向移動開始位置、他方を仮の横方向最大移動位置として設定し、
更に、前記横方向移動開始位置に、前記決定された横方向の並進移動の間隔を所定の整数倍して加算して前記設定された仮の横方向最大移動位置以上になるように横方向最大移動位置を決定することを特徴とする請求項6に記載の配管の断層撮影装置における制御方法。
【請求項8】
更に、前記配管に対する断層画像または立体画像を構築する断層画像構築領域を操作者が入力する断層画像構築領域入力工程を有し、
該断層画像構築領域入力工程において、
前記横方向最大移動距離設定手段によって設定された前記横方向移動開始位置と横方向最大移動位置を前記配管横方向の領域設定のデータとし、
前記配管を挟んで前記対向配置された放射線源と2次元放射線検出器の対向方向を配管高さ方向とし、前記放射線源側と前記2次元放射線検出器側のそれぞれの前記配管の外径の両端を含むように前記配管高さ方向の領域設定のデータとし、
前記配管軸方向の並進走査の開始位置と終了位置を前記配管軸方向の領域設定のデータとし、
それぞれの領域設定のデータを入力可能なことを特徴とする請求項7に記載の配管の断層撮影装置における制御方法。
【請求項9】
前記断層画像構築領域入力工程において、
前記放射線源側と前記2次元放射線検出器側のそれぞれの前記配管の外径の両端側に参照用部材が設置された場合、前記透過画像取得手段によって取得された前記透過画像に表示された前記参照用部材の撮像の大きさより求めた拡大率にもとづき前記配管高さ方向の領域設定のデータを決定する領域高さ方向決定工程を有することを特徴とする請求項8に記載の配管の断層撮影装置における制御方法。
【請求項10】
前記断層画像構築領域入力工程において、
前記透過画像取得手段によって前記配管横方向における前記配管の外径の一方端を含む前記透過画像を取得し、操作者により入力された前記配管の肉厚の値と、前記透過画像に表示された前記配管の肉厚を示す撮像との間の拡大率を算出し、操作者により入力された前記配管の外径とにもとづいて前記配管高さ方向の領域設定のデータを決定する領域高さ方向決定工程を有することを特徴とする請求項8に記載の配管の断層撮影装置における制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2011−52968(P2011−52968A)
【公開日】平成23年3月17日(2011.3.17)
【国際特許分類】
【出願番号】特願2009−199234(P2009−199234)
【出願日】平成21年8月31日(2009.8.31)
【出願人】(507250427)日立GEニュークリア・エナジー株式会社 (858)
【Fターム(参考)】