説明

静電気対策素子及びその複合電子部品

【課題】繰り返しの使用の耐久性が高められた、静電気対策素子等を提供すること。
【解決手段】絶縁性表面2aを有する基体2と、該絶縁性表面2a上において相互に離間して対向配置された電極3a,3bと、少なくとも該電極3a,3b間に配置された機能層4とを備える静電気対策素子において、前記基体2に向かって該電極3a,3b間のギャップが狭くなる多段構造を有する電極3a,3bを用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、静電気対策素子及びその複合電子部品に関し、特に、高速伝送系での使用やコモンモードフィルタとの複合化において有用な静電気対策素子に関する。
【背景技術】
【0002】
近年、電子機器の小型化及び高性能化が急速に進展している。また、USB2.0やS−ATA2、HDMI等の高速伝送系に代表されるように、伝送速度の高速化(1GHzを超える高周波数化)並びに低駆動電圧化の進展が著しい。その反面、電子機器の小型化や低駆動電圧化にともなって、電子機器に用いられる電子部品の耐電圧は低下する。したがって、人体と電子機器の端子が接触した際に発生する静電気パルスに代表される過電圧からの電子部品の保護が、重要な技術課題となっている。
【0003】
従来、このような静電気パルスから電子部品を保護するために、一般に、静電気が入るラインとグランドとの間にバリスタ等を設ける方法が採られており、また、電極を長寿命化したサージアブソーバを採用する方法も提案されている(特許文献1乃至3参照)。しかしながら、これらの静電容量が大きなバリスタ等を高速伝送系に用いると、放電開始電圧が高くなるのみならず、信号品質を低下させる要因となる。
【0004】
一方、低静電容量の静電気対策部品としては、対向する電極の間に静電気保護材料を充填したものが提案されている。例えば、特許文献4には、導電粒子を含有するポリマー材料を電極間のギャップ領域にステンシル印刷で塗布し、これを熱処理して固化させることにより、電極間に電圧可変ポリマー材料を配設した電気回路保護デバイス(静電気対策部品)が開示されている。また、特許文献5には、静電気の抑制効果を高めるために、表面に不動態層を形成した金属粒子とシリコーン系樹脂と有機溶剤とを混練した静電気保護材料ペースト、及び、これを対向する電極の間にスクリーン印刷で塗布した後に乾燥させることにより、一対の電極間に静電気保護材料層を形成した静電気対策部品が開示されている。さらに、特許文献6には、金属酸化物と樹脂成分及び溶剤成分とを含有するセラミックペースト、及び、これを電極ペースト膜の間を埋めるようにスクリーン印刷した後に高温焼成することにより、酸化亜鉛を主成分とする電圧依存性抵抗体層を形成した電気回路保護デバイス(静電気対策部品)が開示されている。
【0005】
【特許文献1】特開2007−242404号公報
【特許文献2】特開2002−015831号公報
【特許文献3】特開2007−048759号公報
【特許文献4】特表2002−538601号公報
【特許文献5】特開2007−265713号公報
【特許文献6】特開2004−006594号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献4〜6に記載の静電気対策部品は、放電時に生ずる電極の破損により、電極間で短絡したり、電極間のギャップ距離が変動して放電開始電圧が大きく変動したりする等、繰り返しの使用に耐え得るものではなかった。
【0007】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、繰り返しの使用の耐久性が高められた静電気対策素子、及び、それを複合化した複合電子部品を提供することにある。また、本発明の他の目的は、静電容量が小さく、放電開始電圧が低く、且つ、耐熱性及び耐候性に優れ、さらなる薄膜化が達成可能で生産性及び経済性に優れる静電気対策素子及びその複合電子部品を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、対向する電極の間に静電気保護材料を充填した所謂ギャップ型静電気対策素子において、ギャップを介して対面する電極端面を多段構造とすることにより、繰り返し使用の耐久性の向上が図れることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明による静電気対策素子は、絶縁性表面を有する基体と、該絶縁性表面上において相互に離間して対向配置された電極と、少なくとも該電極間に配置された機能層とを備え、前記電極は、前記基体に向かって該電極間のギャップが狭くなる多段構造を有するものである。
【0010】
ここで、本明細書において、「耐久性」とは、後述する実施例における静電気放電試験を繰り返し実施した際の放電回数により評価される性能を意味する。
【0011】
本発明者らが、上記構成の静電気対策素子の特性を測定したところ、その静電気対策素子は、上記従来のものに比して、耐久性が高められていることが判明した。かかる効果が奏される作用機構の詳細は、未だ明らかではないものの、例えば、以下のとおり推定される。
【0012】
従来、この種のギャップ型静電気対策素子においては、通常、対向配置された電極間の最も抵抗値が低い導電経路で放電が発生し、本発明者らの知見によれば、高電圧放電の際、局所的に発生する熱によって電極の一部が溶融する等して、電極のギャップ側の端面が破損することがある。これに対し、上記構成の静電気対策素子では、基体に向かって電極間のギャップ(つまり、幅)が(徐々に)狭くなる多段構造を有するように構成されているので、基体側の(下側)段部間での放電が促進されるとともに、その基体側の段部の上に形成された(上側)段部により放電の際に発生する熱が高効率で拡散される。その結果、放電の際の電極の破損が抑制され、これにより、耐久性が高められる。但し、作用は、これに限定されない。
【0013】
ここで、前記機能層は、絶縁性無機材料のマトリックス中に導電性無機材料が不連続に分散したコンポジットであることが好ましい。上記従来の有機−無機複合膜とは異なり、このように静電気保護材料として絶縁性無機材料と導電性無機材料とのコンポジットを採用することで、耐熱性が格段に高められるとともに、温度や湿度等の外部環境への耐候性が格段に高められる。しかも、そのようなコンポジットは、スパッタリング法や蒸着法等の無機材料の薄膜形成法を採用して形成可能なので、ステンシル印刷やスクリーン印刷等により塗布した後に乾燥などして数十μm程度の有機−無機複合膜を形成する場合に比して、薄膜化が容易になるとともに、生産性及び経済性が高められる。
【0014】
なお、本明細書において、「コンポジット」とは、絶縁性無機材料のマトリックス中に導電性無機材料が分散した状態を意味し、絶縁性無機材料のマトリックス中に導電性無機材料が一様に或いはランダムに分散した状態のみならず、絶縁性無機材料のマトリックス中に導電性無機材料の集合体が分散した状態、すなわち一般に海島構造と呼ばれる状態を含む概念である。また、「絶縁性」とは、0.1Ωcm以上を、「導電性」とは、0.1Ωcm未満を意味し、所謂「半導電性」は、その比抵抗が0.1Ωcm以上である限り、前者の絶縁性に含まれる。
【0015】
また、前記絶縁性無機材料は、Al23、TiO2、SiO2、ZnO、In23、NiO、CoO、SnO2、V25、CuO、MgO、ZrO2、AlN、BN及びSiCよりなる群から選択される少なくとも1種であることが好ましい。これらの金属酸化物は、絶縁性、耐熱性及び耐候性に優れるので、コンポジットの絶縁性マトリックスを構成する素材として有効に機能し、その結果、放電特性、耐熱性及び耐候性に優れる高性能な静電気対策素子を実現することができる。その上さらに、これらの金属酸化物は、低コストで入手可能であり、しかも、スパッタリング法の適用が可能なので、生産性及び経済性も高められる。
【0016】
さらに、前記導電性無機材料は、C、Ni、Cu、Au、Ti、Cr、Ag、Pd及びPtよりなる群から選択される少なくとも1種の金属又はこれらの金属化合物であることが好ましい。絶縁性無機材料のマトリックス中にこれらの金属又は金属化合物を不連続に分散した状態で配合することにより、放電特性、耐熱性及び耐候性に優れる高性能な静電気対策素子を実現することができる。
【0017】
また、本発明の他の態様は、本発明の静電気対策素子を有効に複合化した複合電子部品であって、2つの磁性基体の間にインダクタ素子と静電気対策素子とを有する複合電子部品であって、前記インダクタ素子は、樹脂からなる絶縁層と、前記絶縁層上に形成された導体パターンとを備え、前記静電気対策素子は、前記磁性基体上に形成された下地絶縁層と、該下地絶縁層上において相互に離間して対向配置された電極と、少なくとも該電極間に配置された機能層とを備え、前記電極は、前記磁性基体に向かって該電極間のギャップが狭くなる多段構造を有するものである。
【0018】
さらに、本発明の別の他の態様は、本発明の静電気対策素子を有効に複合化した複合電子部品であって、2つの磁性基体の間に設けられたコモンモードフィルタ層及び静電気対策素子層とを備え、前記コモンモードフィルタ層は、樹脂からなる第1及び第2の絶縁層と、前記第1の絶縁層上に形成された第1のスパイラル導体と、前記第2の絶縁層上に形成された第2のスパイラル導体とを備え、前記静電気対策素子層は、前記第1のスパイラル導体の一端に接続された第1の静電気対策素子と、前記第2のスパイラル導体の一端に接続された第2の静電気対策素子とを備え、前記第1及び第2のスパイラル導体は、積層方向と垂直な平面にそれぞれ形成され、互いに磁気結合するように配置され、前記第1及び第2の静電気対策素子は、前記磁性基体上に形成された下地絶縁層と、該下地絶縁層上において相互に離間して対向配置された電極と、少なくとも該電極間に配置された機能層と備え、前記電極は、前記磁性基体に向かって該電極間のギャップが狭くなる多段構造を有するものである。
【発明の効果】
【0019】
本発明によれば、耐久性が高められた静電気対策素子及びその複合電子部品を実現でき、その上さらに、従来に比して、耐熱性及び耐候性の向上並びにさらなる薄膜化が達成可能であり、生産性及び経済性をも高めることができる。
【発明を実施するための最良の形態】
【0020】
以下、本発明の実施の形態について説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は、図示の比率に限定されるものではない。また、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されるものではない。
【0021】
(第1実施形態)
図1は、本発明による静電気対策素子の好ましい実施形態を概略的に示す模式断面図である。この静電気対策素子1は、絶縁性表面2aを有する基体2と、この絶縁性表面2a上に配設された一対の電極3a,3bと、これら電極3a,3bの間に配設された機能層4と、電極3a,3bと電気的に接続された端子電極5(図示せず)と、を備える。この静電気対策素子1において、機能層4は低電圧放電タイプの静電気保護材料として機能し、静電気などの過電圧が印加された際に、この機能層4を介して電極3a,3b間で初期放電が確保されるように設計されている。
【0022】
基体2は、絶縁性表面2aを有する。ここで、絶縁性表面2aを有する基体2とは、絶縁性材料からなる基板の他、基板上の一部に又は全面に絶縁膜が製膜されたものを含む概念である。なお、基体2は、少なくとも電極3a,3b及び機能層4を支持可能なものであれば、その寸法形状は特に制限されない。
【0023】
基体2の具体例としては、例えば、NiZnフェライトやアルミナ、シリカ、マグネシア、窒化アルミ等の誘電率が50以下、好ましくは20以下の低誘電率材料を用いたセラミック基板や単結晶基板等が挙げられる。また、各種公知の基板の表面に、NiZnフェライトやアルミナ、シリカ、マグネシア、窒化アルミ等の誘電率が50以下、好ましくは20以下の低誘電率材料からなる絶縁膜を形成したものも、好適に用いることができる。なお、絶縁膜の形成方法は、特に限定されず、真空蒸着法、反応性蒸着法、スパッタリング法、イオンプレーティング法、CVDやPVD等の気相法等の公知の手法を適用できる。また、基板及び絶縁膜の膜厚は、適宜設定可能である。
【0024】
基体2の絶縁性表面2a上には、一対の電極3a,3bが相互に離間して配設されている。本実施形態では、一対の電極3a,3bは、基体2の平面略中央位置にギャップ距離△Gを置いて、対向配置されている。
【0025】
本実施形態の電極3a,3bは、下層3al,3blと上層3au,3buとの積層構造体であり、上層3au,3buのギャップ側端面が下層3al,3blのギャップ側端面よりもギャップ方向へ延出するように積層されることにより、電極3a,3b間のギャップが基体2に向かって狭くなる多段構造が形成されている。
【0026】
電極3a,3bを構成する素材としては、例えば、Ni、Cr、Al、Pd、Ti、Cu、Ag、Au及びPtなどから選ばれた少なくとも一種類の金属、或いはこれらの合金等が挙げられるが、これらに特に限定されない。なお、本実施形態では、電極3a,3bは、平面視で矩形状に形成されているが、その形状は特に制限されず、例えば、櫛歯状、或いは、鋸状に形成されていてもよい。
【0027】
電極3a,3bの形成方法は、特に限定されず、公知の手法を適宜選択することができる。具体的には、例えば、塗布、転写、電解めっき、無電解めっき蒸着或いはスパッタリング等により、下層3al,3bl及び上層3au,3buを順次形成し、電極3a,3bを作成する方法が挙げられる。なお、電極3a,3bは、下層3al,3bl及び上層3au,3buが一体形成されていてもよく、この場合は、基体2の略全面に形成した金属層又は合金層から、レーザ或いはイオンビーム又はフォトリソグラフィー等により、電極3a,3b(及びギャップ)をパターン形成する方法も適用可能である。
【0028】
電極3a,3b間のギャップ距離△Gは、特に限定されず、目的に応じて適宜設定することができる。低電圧初期放電を確保するとともに、ギャップ形成時の加工容易性を保ちつつ電極3a,3b間の短絡を抑制する観点から、ギャップ距離△Gは、0.5〜10μmの範囲内で設定することが好ましく、より好ましくは0.5〜8μmである。なお、本明細書において、「ギャップ距離△G」とは、電極3a,3b間の最短距離を意味する。
【0029】
電極3a,3bの多段構造は、電極3a,3b間のギャップが基体2に向かって狭くなるように構成されていれば、特に限定されない。基体2に向かって電極3a,3b間のギャップが狭くなる態様は、電極3a,3の形成が容易なので、生産性及び経済性が高められる。なお、本実施形態では下層3al,3bl及び上層3au,3buの2段構造の電極3a,3bが採用されているが、例えば、2段以上の多段(例えば、3段や4段)構造としても、多段構造がテーパー状に形成されていてもよい。
【0030】
電極3a,3bの厚みは、特に限定されず、目的に応じて適宜設定することができるが、0.1〜1μmの範囲内で設定することが好ましい。下層3al,3blの厚み△Tlは、後述する機能層4の形成を損なわない観点から、電極3a,3b間のギャップ距離△Gの等倍以下にすることが好ましい。また、上層3au,3buの厚み△Tuは、熱伝導の効率を高める観点から、下層3al,3blの厚み△Tlの倍以上にすることが好ましい。なお、上層3au,3buから延出する下層3al,3blの延出寸法(段差の奥行き:踏みづら寸法ともいう。)△Lは、下層3al,3bl間の放電を促進して上層3au,3buの放電破損を抑制するとともに上層3au,3buによる熱の拡散効率を高める観点から、1〜30μmが好ましい。
【0031】
上記の電極3a,3b間には、機能層4が配設されている。本実施形態では、上述した基体2の絶縁性表面2a上及び電極3a,3b上に、機能層4が積層された構成となっている。この機能層4の寸法形状及びその配設位置は、過電圧が印加された際に自身を介して電極3a,3b間で初期放電が確保されるように設計されている限り、特に限定されない。
【0032】
図2は、機能層4の模式平面図である。
機能層4は、絶縁性無機材料4aのマトリックス中に島状の導電性無機材料4bの集合体が不連続に点在した海島構造のコンポジットから構成されている。本実施形態では、機能層4は、逐次スパッタリングを行うことにより形成されている。より具体的には、基体2の絶縁性表面2a上及び/又は電極3a,3b上に、導電性無機材料4bをスパッタリングして部分的に(不完全に)成膜した後、引き続き絶縁性無機材料4aをスパッタリングすることにより、謂わば、島状に点在した導電性無機材料4bの層とこれを覆う絶縁性無機材料4aの層との積層構造のコンポジットが形成されている。
【0033】
マトリックスを構成する絶縁性無機材料4aの具体例としては、例えば、金属酸化物、金属窒化物等が挙げられるが、これらに特に限定されない。絶縁性やコスト面を考慮すると、Al23、TiO2、SiO2、ZnO、In23、NiO、CoO、SnO2、V25、CuO、MgO、ZrO2、AlN、BN及びSiCが好ましい。これらは、1種を単独で用いても、2種以上を併用してもよい。これらの中でも、絶縁性マトリックスに高度の絶縁性を付与する観点からは、Al23やSiO2等を用いることがより好ましい。一方、絶縁性マトリックスに半導体性を付与する観点からは、TiO2やZnOを用いることがより好ましい。絶縁性マトリックスに半導体性を付与することで、より低い電圧より放電を開始する静電気対策素子を得ることができる。絶縁性マトリックスに半導体性を付与する方法は、特に限定されないが、例えば、これらTiO2やZnOを単独で用いたり、これらを他の絶縁性無機材料4aと併用すればよい。特に、TiO2は、アルゴン雰囲気中でスパッタリングする際に酸素が欠損し易く、電気伝導度が高くなる傾向にあるので、絶縁性マトリックスに半導体性を付与するにはTiO2を用いることが特に好ましい。
【0034】
導電性無機材料4bの具体例としては、例えば、金属、合金、金属酸化物、金属窒化物、金属炭化物、金属ホウ化物等が挙げられるが、これらに特に限定されない。導電性を考慮すると、C、Ni、Cu、Au、Ti、Cr、Ag、Pd及びPt、或いは、これらの合金が好ましい。
【0035】
絶縁性無機材料4a及び導電性無機材料4bの好ましい組み合わせとしては、特に限定されないが、例えば、CuとSiO2の組み合わせ、及び、AuとSiO2の組み合わせが挙げられる。これらの材料で構成された静電気対策素子は、電気的特性に優れるだけでなく、島状の導電性無機材料4bの集合体が不連続に点在した海島構造のコンポジットを高精度且つ容易に形成することができ、加工性やコスト面でも極めて有利である。
【0036】
機能層4の総厚みは、特に限定されるものではなく、適宜設定することができるが、より一層の薄膜化を達成し、この静電気対策素子1を用いた電子機器のより一層の小型化及び高性能化を実現する観点から、10nm〜10μmであることが好ましく、15nm〜1μmであることがより好ましく、15〜500nmであることがより好ましい。しかも、無機材料からなる厚みが10nm〜1μmの極めて薄いコンポジットは、スパッタリング法や蒸着法等の公知の薄膜形成方法を適用して形成することができるので、これにより、静電気対策素子1の生産性及び経済性が高められる。本実施形態の如く、謂わば、不連続に点在した島状の導電性無機材料4bの層と絶縁性無機材料4aのマトリックスの層とを形成する場合、導電性無機材料4bの層の厚みは、1〜10nmであることが好ましく、絶縁性無機材料4aの層の厚みは、10nm〜10μmであることが好ましく、より好ましくは10nm〜1μmであり、さらに好ましくは10〜500nmである。
【0037】
機能層4の形成方法は、上述したスパッタリング法に限定されるものではない。基体2の絶縁性表面2a上及び/又は電極3a,3b上に、公知の薄膜形成方法を適用して、上述した絶縁性無機材料4a及び導電性無機材料4bを付与することにより、機能層4を形成することができる。すなわち、この静電気対策素子1は、上記従来の印刷法により形成する有機−無機複合膜とは異なり、スパッタリング法や蒸着法等による層形成が適用可能な絶縁性無機材料4aと導電性無機材料4bとのコンポジットを機能層4として採用した点に、格別の優位性を有する。なお、本実施形態の静電気対策素子1は、電極3a,3b間に電圧を印加することにより機能層4中へ電極3a,3bの一部が飛散した結果、機能層4が、電極3a,3bを構成する素材を含む構成であってもよい。
【0038】
本実施形態の静電気対策素子1においては、絶縁性無機材料4aのマトリックス中に不連続に点在した島状の導電性無機材料4bを含む機能層4が、低電圧放電タイプの静電気保護材料として機能する。具体的には、一対の電極3a,3b間に静電気による電圧が印加されたとき、絶縁性無機材料4aのマトリックス中に不連続に点在した島状の導電性無機材料4bによって構成される任意の経路、つまり電極3a,3b間においてエネルギー集中が大きい地点間で放電が発生し、静電気の放電エネルギーは吸収される。高電圧放電を行った場合、放電後の電極や機能層の一部が破壊されることもあるが、不連続に点在した島状に導電性無機材料4bによって多数の電流経路が形成されているため、複数回の静電気吸収が可能である。
【0039】
とりわけ、本実施形態の静電気対策素子1は、電極3a,3bが幅広の下層3al,3blと幅狭の上層3au,3buとの積層構造体からなる多段構造を有し、下層3al,3bl間での放電が促進されるとともに、放電時に発生した熱の拡散が容易となり、繰り返し使用時の耐久性が高められたものとなる。
【0040】
しかも、本実施形態においては、低電圧放電タイプの静電気保護材料として機能する機能層4として、少なくとも絶縁性無機材料4aと導電性無機材料4bとから構成されるコンポジットが採用されている。そのため、この静電気対策素子1は、上記従来の有機−無機複合膜のものに比して、静電容量が小さく、放電開始電圧が低く、且つ、耐熱性及び耐候性に格別優れたものとなる。その上さらに、スパッタリング法により機能層4が形成されているので、生産性及び経済性に優れたものとなる。
【0041】
なお、上記の第1実施形態の静電気対策素子1においては、絶縁性無機材料4aのマトリックス中に導電性無機材料4bが不連続に分散したコンポジットを機能層4として採用しているが、機能層4として、シリコーン樹脂やエポキシ樹脂等の絶縁性の高い樹脂中に、一例としてAg、Cu、Ni、Al、Feのような金属粒子或いは導電性を有する金属化合物の粒子を分散させたコンポジットを採用することもできる。
【0042】
(第2実施形態)
図3は、本発明による静電気対策素子の他の好ましい実施形態を概略的に示す模式断面図である。この静電気対策素子6は、機能層4に代えて機能層7を有する他は、上述した第1実施形態の静電気対策素子1と同じ構成を有する。
【0043】
機能層7は、絶縁性無機材料4a(図示せず)のマトリックス中に導電性無機材料4b(図示せず)が不連続に分散したコンポジットである。本実施形態では、機能層7は、基体2の絶縁性表面2a上及び/又は電極3a,3b上に、絶縁性無機材料4aを含むターゲット(又は、絶縁性無機材料4a及び導電性無機材料4bを含むターゲット)を用いてスパッタリング(又は、同時スパッタリング)した後、電極3a,3b間に電圧を印加して電極3a,3bの一部を絶縁性無機材料4a中へランダムに飛散させることにより、形成されている。したがって、本実施形態の機能層7は、導電性無機材料4bとして電極3a,3bを構成する素材を少なくとも含むものとなっている。
【0044】
機能層7の総厚みは、特に限定されるものではなく、適宜設定することができるが、より一層の薄膜化を達成する観点から、10nm〜10μmであることが好ましく、より好ましくは10nm〜1μmであり、さらに好ましくは10〜500nmである。
【0045】
本実施形態の静電気対策素子6においては、低電圧放電タイプの静電気保護材料として機能する機能層7として、絶縁性無機材料4aのマトリックス中に粒子状の導電性無機材料4bが不連続に分散したコンポジットが採用されている。このように構成しても、上記第1実施形態と同様の作用効果が奏される。
【0046】
(第3実施形態)
図4は、本発明による複合電子部品の好ましい実施形態の外観構成を概略的に示す斜視図である。
【0047】
図4に示すように、本実施形態による複合電子部品100は、静電気保護機能を備えた薄膜コモンモードフィルタであって、第1及び第2の磁性基体11a、11bと、第1の磁性基体11aと第2の磁性基体11bに挟まれた複合機能層12とを備えている。また、第1の磁性基体11a、複合機能層12及び第2の磁性基体11bからなる積層体の外周面には、第1〜第6の端子電極13a〜13fが形成されている。このうち、第1及び第2の端子電極13a,13bは第1の側面10aに形成され、第3及び第4の端子電極13c、13dは第1の側面10aと対向する第2の側面10bに形成され、第5の端子電極13eは第1及び第2の側面10a,10bと直交する第3の側面10cに形成され、第6の端子電極13fは第3の側面と対向する第4の側面10dに形成されている。
【0048】
第1及び第2の磁性基体11a,11bは、複合機能層12を物理的に保護すると共に、コモンモードフィルタの閉磁路としての役割を果たすものである。第1及び第2の磁性基体11a,11bの材料としては、焼結フェライト、複合フェライト(粉状のフェライトを含有した樹脂)等を用いることができる。
【0049】
図5は、複合電子部品100の構成を示す回路図である。
【0050】
図5に示すように、複合電子部品100は、コモンモードチョークコイルとして機能するインダクタ素子14a、14bと、静電気対策素子15a、15bとを備えており、インダクタ素子14a、14bの一端は第1及び第2の端子電極13a,13bにそれぞれ接続され、他端は第3及び第4の端子電極13c、13dにそれぞれ接続されている。また、静電気対策素子15a,15bの一端は第1及び第2の端子電極13a,13bにそれぞれ接続され、他端は第5及び第6の端子電極13e,13fにそれぞれ接続されている。この複合電子部品100は、一対の信号ライン上に実装される際、第1及び第2の端子電極13a,13bは信号ラインの入力側に接続され、第3及び第4の端子電極13c,13dは信号ラインの出力側に接続される。また、第5及び第6の端子電極13e,13fはグランドラインに接続される。
【0051】
図6は、複合電子部品100の層構造の一例を示す分解斜視図である。
【0052】
図6に示すように、複合電子部品100は、第1及び第2の磁性基体11a、11bと、第1及び第2の磁性基体11a、11bに挟まれた複合機能層12とを備えており、複合機能層12はコモンモードフィルタ層12aと静電気対策素子層12bによって構成されている。
【0053】
コモンモードフィルタ層12aは、絶縁層16a〜16eと、磁性層16fと、接着層16gと、絶縁層16b上に形成された第1のスパイラル導体17と、絶縁層16c上に形成された第2のスパイラル導体18と、絶縁層16a上に形成された第1の引き出し導体19と、絶縁層16d上に形成された第2の引き出し導体20とを備えている。
【0054】
絶縁層16a〜16eは、各導体パターン間、或いは導体パターンと磁性層16fとを絶縁すると共に、導体パターンが形成される下地面の平坦性を確保する役割を果たす。絶縁層16a〜16eの材料としては、電気的及び磁気的な絶縁性に優れ、加工性のよい樹脂を用いることが好ましく、ポリイミド樹脂やエポキシ樹脂を用いることが好ましい。導体パターンとしては、導電性及び加工性に優れたCu、Al等を用いることが好ましい。導体パターンの形成は、フォトリソグラフィーを用いたエッチング法やアディティブ法(めっき)により行うことができる。
【0055】
絶縁層16a〜16eの中央領域であって第1及び第2のスパイラル導体17,18の内側には、絶縁層16a〜16eを貫通する開口25が設けられており、開口25の内部には、第1の磁性基体11aと第2の磁性基体11bとの間に閉磁路を形成するための磁性体26が充填されている。磁性体26としては、複合フェライト等を用いることが好ましい。
【0056】
さらに、絶縁層16eの表面には磁性層16fが形成されている。開口25内の磁性体26は、複合フェライト(磁性粉含有樹脂)のペーストを硬化させて形成しているが、硬化時に樹脂の収縮が発生し、開口部分に凹凸が生じる。この凹凸をできるだけ少なくするためには、開口25の内部のみならず絶縁層16eの表面全体にもペーストを塗布することが好ましく、磁性層16fはそのような平坦性の確保を目的として形成される。
【0057】
接着層16gは磁性基体11bを磁性層16f上に貼り付けるために必要な層である。また、磁性基体11b及び磁性層16fの表面の凹凸を緩和し、密着性を高める役割を果たす。特に限定されるものではないが、接着層16gの材料としては、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂等を用いることができる。
【0058】
第1のスパイラル導体17は、図5に示したインダクタ素子14aに対応するものである。第1のスパイラル導体17の内周端は、絶縁層16bを貫通する第1のコンタクトホール導体21及び第1の引き出し導体19を介して、第1の端子電極13aに接続されている。また、第1のスパイラル導体17の外周端は、第3の引き出し導体23を介して第3の端子電極13cに接続されている。
【0059】
第2のスパイラル導体18は、図5に示したインダクタ素子14bに対応するものである。第2のスパイラル導体18の内周端は、絶縁層16dを貫通する第2のコンタクトホール導体22及び第2の引き出し導体20を介して、第2の端子電極13bに接続されている。また、第2のスパイラル導体18の外周端は、第4の引き出し導体24を介して第4の端子電極13dに接続されている。
【0060】
第1及び第2のスパイラル導体17,18は共に同一の平面形状を有しており、しかも平面視で同じ位置に設けられている。第1及び第2のスパイラル導体17,18は完全に重なり合っていることから、両者の間には強い磁気結合が生じている。以上の構成により、コモンモードフィルタ層12a内の導体パターンはコモンモードフィルタを構成している。
【0061】
静電気対策素子層12bは、下地絶縁層27と、下地絶縁層27の表面に形成された第1及び第2のギャップ電極28,29と、第1及び第2のギャップ電極28,29を覆う静電気吸収層30とを備えている。第1のギャップ電極28付近の層構造は、図5に示した第1の静電気対策素子15aとして機能する部分であり、第2のギャップ電極29付近の層構造は、第2の静電気対策素子15bとして機能する部分である。第1のギャップ電極28の一端は第1の端子電極13aに接続されており、他端は第5の端子電極13eに接続されている。また、第2のギャップ電極29の一端は第2の端子電極13bに接続されており、他端は第6の端子電極13fに接続されている。
【0062】
図7は、ギャップ電極28,29と他の導体パターンとの位置関係を示す略平面図である。
【0063】
図7に示すように、ギャップ電極28,29が有するギャップ28G,29Gは、コモンモードフィルタを構成する第1及び第2のスパイラル導体17,18及び第1及び第2の引き出し導体19,20と平面的に重ならない位置に設けられている。特に限定されるものではないが、本実施形態においては、スパイラル導体17,18の内側であって、スパイラル導体17,18と開口25との間の空き領域にギャップ28G,29Gが設けられている。詳細は後述するが、静電気対策素子は静電気の吸収によって部分的に破損、変形するため、静電気対策素子と重なる位置に導体パターンが配置されている場合にはそれらも一緒に破損するおそれがある。しかし、静電気対策素子のギャップ28G,29Gが導体パターンを避けた位置に設けられていることから、静電気によって破壊されたときの上下層の影響を抑えることができ、より信頼性の高い複合電子部品を実現することができる。
【0064】
図8(a)及び(b)は、静電気対策素子層12bにおける第1のギャップ電極28付近の層構造の一例を示す図であって、(a)は略平面図、(b)は略断面図である。なお、第2のギャップ電極29の構成は第1のギャップ電極28と同一であるため、重複する説明を省略する。
【0065】
静電気対策素子層12bは、磁性基体11aの表面に形成された下地絶縁層27と、第1のギャップ電極28を構成する一対の電極28a,28bと、これらの電極28a,28bの間に配設された静電気吸収層30とを備えている。
【0066】
下地絶縁層27は、上述した第1実施形態における絶縁性表面2aとして機能するものである。下地絶縁層27は絶縁性材料からなり、本実施形態においては製造上の容易さから磁性基体11aの全面を覆っているが、少なくとも電極28a,28b及び静電気吸収層30の下地となっていればよく、必ずしも全面を覆う必要はない。下地絶縁層27の具体例としては、NiZnフェライトやアルミナ、シリカ、マグネシア、窒化アルミ等の誘電率が50以下、好ましくは20以下の低誘電率材料を製膜したものの他、各種公知の基板の表面にこれらの低誘電率材料からなる絶縁膜を製膜したものも、好適に用いることができる。なお、下地絶縁層27の製膜方法は、特に限定されず、真空蒸着法、反応性蒸着法、スパッタリング法、イオンプレーティング法、CVDやPVD等の気相法等の公知の手法を適用できる。また、下地絶縁層27の膜厚は、適宜設定可能である。
【0067】
電極28a,28bは、上述した第1実施形態における電極3a,3bに相当するものであり、重複する説明は省略する。
【0068】
静電気吸収層30は、絶縁性無機材料32のマトリックス中に島状の導電性無機材料33の集合体が不連続に点在した海島構造のコンポジットから構成されている。この静電気吸収層30は、上述した第1実施形態における機能層4に相当し、また、絶縁性無機材料32及び導電性無機材料33は、上述した第1実施形態における絶縁性無機材料4a及び導電性無機材料4bに相当するものであり、それらの重複する説明は省略する。
【0069】
この静電気対策素子層12bにおいて、静電気吸収層30は低電圧放電タイプの静電気保護材料として機能し、静電気などの過電圧が印加された際に、この静電気吸収層30を介して電極28a,28b間で初期放電が確保されるように設計されている。また、本実施形態の絶縁性無機材料32は、上層に位置する任意の層(例えば絶縁層16a)から一対の電極28a,28bや導電性無機材料33を保護する保護層としても機能する。
【0070】
以上説明したように、本実施形態による複合電子部品100は、静電容量が小さく、放電開始電圧が低く、且つ、繰り返し使用時の耐久性に優れた低電圧タイプの静電気対策素子を内蔵しているので、高性能な静電気保護機能を備えたコモンモードフィルタとして機能する複合電子部品を実現することができる。
【0071】
また、本実施形態によれば、静電気対策素子層12bの材料として絶縁性無機材料32及び導電性無機材料33が使用され、静電気対策素子層12bを構成する各種材料に樹脂が含まれていないことから、磁性基体11a上に静電気対策素子層12bを形成し、さらにその上にコモンモードフィルタ層12aを形成することができる。コモンモードフィルタ層12aをいわゆる薄膜工法で形成する場合には350℃以上、導体パターンが形成されたセラミックシートを順次積層するいわゆる積層工法で形成する場合には800℃の熱処理工程が必要となるが、静電気対策素子層の材料として絶縁性無機材料32及び導電性無機材料33を使用した場合には、熱処理工程に耐えることができ、正常に機能する静電気対策素子を確実に形成することができる。さらに、磁性基体上の十分に平坦な面に静電気対策素子を形成することができ、ギャップ電極の微小なギャップを安定的に形成することができる。
【0072】
また、本実施形態によれば、ギャップ電極の形成位置がコモンモードフィルタを構成する第1及び第2のスパイラル導体等と平面的に重ならず、それらの導体パターンを避けた位置に設けられていることから、静電気対策素子が静電気によって部分的に破壊されたときの上下方向の影響を抑えることができ、より信頼性の高い複合電子部品を実現することができる。
【0073】
さらに、本実施形態によれば、図5に示したように、複合電子部品100は一対の信号ライン上に実装され、静電気対策素子15a,15bは、コモンモードフィルタよりも信号ラインの入力側に設けられていることから、静電気対策素子による過電圧の吸収効率を高めることができる。通常、静電気による過電圧は、インピーダンス整合のとれていない異常な電圧であるため、コモンモードフィルタの入力端で一回反射する。この反射信号は元の信号波形に重畳され、電圧が上昇した信号は、静電気対策素子で一気に吸収される。すなわち、静電気対策素子の後段にあるコモンモードフィルタが元波形よりも大きい波形にしてくれるので、電圧レベルが低い状態から吸収する場合よりも静電気対策素子で吸収されやすい状態を作り出すことができる。こうして、一回吸収した信号をコモンモードフィルタに入力することにより、細かいノイズを除去することができる。
【実施例】
【0074】
以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
【0075】
(実施例1)
図9に示すように、まず、絶縁性の基体2(NiZnフェライト基板、誘電率:13、TDK株式会社製、サイズ:1.6mm×0.8mm、厚み0.5mm)の一方の絶縁性表面2a上に、マスクを用いたスパッタリング法により、下地層(密着層)として長さ1.6mm×幅0.5mm、厚み10nmのクロム薄膜をパターン形成した。次いで、このクロム薄膜上に、マスクを用いたスパッタリング法により、下層3al,3blに相当する厚み0.1μmのCu薄膜と、上層3au,3buに相当する厚み0.3μmのCu薄膜とを順次形成し、その後、イオンビームによるミリング加工を施してギャップを形成することにより、相互に離間して対向配置された一対の帯状の電極3a,3b及びギャップをパターン形成した。この電極3a,3bのサイズは、各々長さ約0.8mm×幅0.5mmであり、下層3al,3blの延出寸法△Lは10μmであり、電極3a,3b間のギャップ距離△Gは1μmである。
【0076】
次いで、図10に示すように、上記の基体2の絶縁性表面2a上及び電極3a,3b上に、以下の手順で機能層4を形成した。
【0077】
まず、基体2の電極3a,3bが形成された面側に、スパッタリング法でAuを部分的に成膜することにより、厚み3nmの島状のAu薄膜が不連続に点在した導電性無機材料4bの層を形成した。このスパッタリングは、マルチターゲットスパッタ装置(商品名:ES350SU、株式会社エイコー・エンジニアリング製)を使用し、アルゴン圧力が10mTorr、投入電力が20W、スパッタ時間が40秒の条件下で実施した。
【0078】
次に、電極3a,3b及び導電性無機材料4bの層を厚み方向において完全に覆うように、基体2の電極3a,3b及び導電性無機材料4bの層が形成された面側に、スパッタリング法で二酸化ケイ素を略全面に成膜することにより、厚み600nmの絶縁性無機材料4aの層を形成した。このスパッタリングは、マルチターゲットスパッタ装置(商品名:ESU350、株式会社エイコー・エンジニアリング製)を使用し、アルゴン圧力が10mTorr、投入電力が400W、スパッタ時間が40分の条件下で実施した。
【0079】
以上の操作により、絶縁性無機材料4aのマトリックス中で不連続に点在した島状の導電性無機材料4bを有する機能層4が形成された。その後、図11に示すように、電極3a,3bの外周端部に接続するように、Cuを主成分とする端子電極5を形成することにより、実施例1の静電気対策素子1を得た。
【0080】
(実施例2)
電極3a,3b間のギャップ距離△Gを3μmに変更すること以外は、実施例1と同様に操作して、実施例2の静電気対策素子1を得た。
【0081】
(比較例1)
電極3a,3bに代えて、多段構造を有さない厚み0.1μmのCu薄膜からなる一対の単層電極(長さ約0.8mm×幅0.5mm)を形成すること以外は、実施例1と同様に操作して、比較例1の静電気対策素子1を得た。
【0082】
<静電気放電試験>
次に、上記のようにして得られた実施例1並びに比較例1の静電気対策素子について、図12に示す静電気試験回路を用いて、静電気放電試験を実施した。
【0083】
この静電気放電試験は、国際規格IEC61000−4−2の静電気放電イミュニティ試験及びノイズ試験に基づき、人体モデルに準拠(放電抵抗330ohm、放電容量150pF、印加電圧8kV、接触放電)して行った。具体的には、図12の静電気試験回路に示すように、評価対象の静電気対策素子の一方の端子電極をグランドに接地するとともに、他方の端子電極に静電気パルス印加部を接続した後、静電気パルス印加部に放電ガンを接触させて静電気パルスを印加した。ここで印加する静電気パルスは、放電開始電圧以上の電圧を印加した。
【0084】
なお、放電開始電圧は、静電気試験を0.4kVから0.2kV間隔で増加させながら行なった際に観測される静電気吸収波形において、静電気吸収効果が現れた電圧とする。また、ピーク電圧は、IEC61000−4−2に基づく静電気試験を充電電圧8kVの接触放電で行なった際における、静電気パルスの最大電圧値とする。さらに、クランプ電圧は、IEC61000−4−2に基づく静電気試験を充電電圧8kVの接触放電で行なった際における、静電気パルスの波頭値から30ナノ秒後の電圧値とする。
【0085】
なお、静電容量は、1MHzにおける静電容量(pF)を測定した。また、放電耐性は、IEC61000−4−2に基づく静電気試験を充電電圧8kVの接触放電で繰り返し実施して、静電気対策素子が機能しなくなる回数を測定し、その回数の大小により評価した。表1に、評価結果を示す。
【0086】
【表1】

【産業上の利用可能性】
【0087】
以上説明した通り、本発明の静電気対策素子及びその複合電子部品は、繰り返しの使用の耐久性が高められており、その上さらに、静電容量が小さく、放電開始電圧が低く、且つ、耐熱性及び耐候性の向上とさらなる薄膜化、並びに、生産性及び経済性の向上が可能なので、各種電子・電気デバイス及びそれらを備える各種機器、設備、システム等に広く且つ有効に利用可能であり、とりわけ、高速差動伝送ライン信号ラインや映像信号ラインにおけるノイズ対策として広く且つ有効に利用可能である。
【図面の簡単な説明】
【0088】
【図1】静電気対策素子1を概略的に示す模式断面図である。
【図2】静電気対策素子1の機能層4の模式平面図である。
【図3】静電気対策素子6を概略的に示す模式断面図である。
【図4】複合電子部品100の外観構成を示す略斜視図である。
【図5】複合電子部品100の構成を示す回路図である。
【図6】複合電子部品100の層構造の一例を示す略分解斜視図である。
【図7】ギャップ電極28,29と他の導体パターンとの位置関係を示す略平面図である。
【図8】静電気対策素子層12bにおける第1のギャップ電極28付近の層構造の一例を示す図であって、(a)は略平面図、(b)は略断面図である。
【図9】静電気対策素子1の製造工程を示す模式斜視図である。
【図10】静電気対策素子1の製造工程を示す模式斜視図である。
【図11】静電気対策素子1の製造工程を示す模式斜視図である。
【図12】静電気放電試験における回路図である。
【符号の説明】
【0089】
1…静電気対策素子、2…基体、2a…絶縁性表面、3a,3b・・・電極、3al,3bl…下層、3au,3bu…上層、4…機能層、4a…絶縁性無機材料、4b…導電性無機材料、6…静電気対策素子、7…機能層、△G…ギャップ距離、△T…電極の厚み、△Tl…下層の厚み、△Tu…上層の厚み、△L…ギャップ距離、11a,11b…磁性基体、12…複合機能層(機能層)、12a…コモンモードフィルタ層、12b…静電気対策素子層、14a,14b…インダクタ素子、15a,15b…静電気対策素子、17,18…スパイラル導体、16a〜16e…絶縁層、27…下地絶縁層、28a,28b,29a,29b…電極、30…静電気吸収層(機能層)、32…絶縁性無機材料、33…導電性無機材料、100…複合電子部品。

【特許請求の範囲】
【請求項1】
絶縁性表面を有する基体と、該絶縁性表面上において相互に離間して対向配置された電極と、少なくとも該電極間に配置された機能層とを備え、
前記電極は、前記基体に向かって該電極間のギャップが狭くなる多段構造を有する、
静電気対策素子。
【請求項2】
前記機能層は、絶縁性無機材料のマトリックス中に導電性無機材料が不連続に分散したコンポジットである、
請求項1に記載の静電気対策素子。
【請求項3】
前記絶縁性無機材料は、Al23、TiO2、SiO2、ZnO、In23、NiO、CoO、SnO2、V25、CuO、MgO、ZrO2、AlN、BN及びSiCよりなる群から選択される少なくとも1種である、
請求項2に記載の静電気対策素子。
【請求項4】
前記導電性無機材料は、C、Ni、Cu、Au、Ti、Cr、Ag、Pd及びPtよりなる群から選択される少なくとも1種の金属又はこれらの金属化合物である、
請求項2又は3に記載の静電気対策素子。
【請求項5】
2つの磁性基体の間にインダクタ素子と静電気対策素子とを有する複合電子部品であって、
前記インダクタ素子は、樹脂からなる絶縁層と、前記絶縁層上に形成された導体パターンとを備え、
前記静電気対策素子は、前記磁性基体上に形成された下地絶縁層と、該下地絶縁層上において相互に離間して対向配置された電極と、少なくとも該電極間に配置された機能層とを備え、
前記電極は、前記磁性基体に向かって該電極間のギャップが狭くなる多段構造を有する、
複合電子部品。
【請求項6】
2つの磁性基体の間に設けられたコモンモードフィルタ層及び静電気対策素子層とを備え、
前記コモンモードフィルタ層は、
樹脂からなる第1及び第2の絶縁層と、
前記第1の絶縁層上に形成された第1のスパイラル導体と、
前記第2の絶縁層上に形成された第2のスパイラル導体とを備え、
前記静電気対策素子層は、
前記第1のスパイラル導体の一端に接続された第1の静電気対策素子と、
前記第2のスパイラル導体の一端に接続された第2の静電気対策素子とを備え、
前記第1及び第2のスパイラル導体は、積層方向と垂直な平面にそれぞれ形成され、互いに磁気結合するように配置され、
前記第1及び第2の静電気対策素子は、前記磁性基体上に形成された下地絶縁層と、該下地絶縁層上において相互に離間して対向配置された電極と、少なくとも該電極間に配置された機能層と備え、
前記電極は、前記磁性基体に向かって該電極間のギャップが狭くなる多段構造を有する、
複合電子部品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2010−147229(P2010−147229A)
【公開日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2008−322435(P2008−322435)
【出願日】平成20年12月18日(2008.12.18)
【出願人】(000003067)TDK株式会社 (7,238)
【Fターム(参考)】