説明

3Dアイウェアのためのレンズ

【解決手段】三次元(3D)画像を鑑賞するためのアイウェアが開示される。一部の実施形態では、アイウェアは、円偏光フィルタを含むレンズを含むことができる。右レンズは、第1の方向に円偏光された光をブロックすることができ、左レンズは、逆の第2の方向に円偏光された光をブロックすることができる。円偏光フィルタは、接着剤の使用によって、又は積層によって、レンズボディの表面(例えば前面)に付けることができる。レンズは、球、円柱、又は別の幾何学的形状に適合する1つ又は2つ以上の表面を有することができる。一部の実施形態では、円偏光フィルタを適用されるレンズの表面は、円柱形である。一部の実施形態では、レンズは、レンズの光学的矯正を提供するために、先細った厚さを有することができる。

【発明の詳細な説明】
【関連出願への相互参照】
【0001】
本出願は、米国特許法第119条(e)に基づいて、2010年1月22日に出願され「OPTICALLY CORRECTED 3D LENS FOR EYEGLASSES(メガネのための光学的に矯正された3Dレンズ)」と題された米国仮特許出願第61/297,597号(代理人整理番号第OAKLY1.329PR)の優先権を主張する。該出願は、参照によってその全体を本明細書に組み込まれ、本明細書の一部を成している。
<技術分野>
【0002】
本発明は、総じて、アイウェアに使用される3Dレンズに関し、特に、円偏光をブロックするように構成されたフィルタを含む湾曲3Dレンズに関する。
<背景技術>
【0003】
特殊なレンズを伴ったアイウェアは、着用者に三次元(3D)画像を見せるために、特殊な二次元画像と併せて使用することができる。現行の3Dアイウェアは、安い材料で作成されるのが一般的である。従来の3Dアイウェアフレームは、紙又は薄いプラスチックで作成されることが多く、従来の3Dレンズは、概ね平面状である。比較的安価であることに加えて、平面レンズは、真っ直ぐ見ているときの着用者の視線が、レンズ表面を直交してレンズの後方表面を突っ切るのが一般的であり、それゆえに、歪みがほとんどないという利点を有する。
【0004】
しかしながら、平面レンズは、幾つかの不利点を有する。平面レンズを使用したメガネは、着用者の周辺視野のかなりの部分を覆われないままにし、周辺光を着用者の眼に直接到達させてしまう。平面レンズを有する3Dメガネは、着用者の頭部の形状に上手く適合することができず、それゆえに、(例えば映画中など)短時間着用されるときですら不快感をもたらすことが多い。平面レンズは、また、美観上の理由でも望ましくない。
【0005】
したがって、光学的歪みを最小限に抑えられるような、3Dアイウェアに使用するための湾曲レンズが必要とされている。
<実施例の概要>
【0006】
非限定的な例として、3Dアイウェアのためのレンズブランクを形成する方法が開示される。該方法は、実質的に水平な軸に沿って湾曲し尚且つ実質的に垂直な軸に沿って実質的に直線状である表面を有するレンズブランクボディを提供することと、該レンズブランクボディにハードコートを施すことと、該ハードコートを熱硬化させることと、レンズブランクボディの表面にコロナ処理を施すことと、4分の1波長板及び直線偏光子を含む円偏光膜を提供することとを含むことができる。直線偏光子は、透過軸を含むことができる。方法は、更に、直線偏光子の偏光効率がレンズブランクボディの湾曲によって大幅に低下されることがないように、透過軸がレンズブランクボディの実質的に垂直な軸に実質的に平行に方向付けられるように、レンズブランクボディの表面に円偏光膜を積層させることを含むことができる。レンズブランクボディは、射出成形によって形成することができる。
【0007】
方法は、更に、円偏光膜を上に積層されたレンズブランクボディを圧力ポットに入れることと、該圧力ポットからレンズブランクボディ及び円偏光膜に圧力を加えることとを含む。
【0008】
方法は、更に、レンズブランクボディ及びその上に積層された円偏光膜をカットして、
第1のレンズ及び第2のレンズを形成することを含むことができる。第1及び第2のレンズは、ともに、右レンズとして使用されるように構成することができ、第1及び第2のレンズがカットされるときに、第2のレンズの向きは、第1のレンズの向きから約180°ずらすことができる。レンズブランクボディは、非一様な厚さと、実質的に垂直な軸に実質的に平行な対称軸とを有することができる。第1のレンズの中心点は、対称軸の第1の側に位置決めすることができ、第2のレンズの中心点は、対称軸の第2の側に位置決めすることができ、第1及び第2のレンズの中心点は、第1及び第2のレンズが実質的に同じ先細った厚さを有するように、対称軸から実質的に等距離にあることができる。
【0009】
レンズブランクボディは、前面及び後面を含むことができ、円偏光膜は、レンズブランクボディの前面に積層させることができる。方法は、更に、レンズブランクボディ及び円偏光膜をカットして、レンズを形成することと、該レンズをアイウェアフレームに取り付けることと、を含むことができる。円偏光膜は、3D鑑賞中に画像の光がレンズのその他のどの層よりも先に円偏光膜にぶつかるように、レンズの最前方の層であることができる。
【0010】
レンズブランクボディは、前面及び後面を含むことができ、前面は、第1の中心を有する前方円柱の表面に適合することができ、後面は、第2の中心を有する後方円柱の表面に適合することができる。第2の中心は、レンズブランクボディの厚さが実質的に水平な軸に沿って先細るように、第1の中心からずらすことができる。方法は、更に、レンズブランクボディから少なくとも1枚のレンズをカットすることを含むことができる。第1の中心と第2の中心との間に引かれた線は、レンズのための光学的中心線を提供することができる。方法は、更に、着用者の視線が光学的中心線に実質的に平行になるように尚且つ着用者の視線が光学的中心線からずれるようにレンズが位置決めされるように、レンズをアイウェアフレームに取り付けることを含むことができる。
【0011】
3Dアイウェアに使用するためのレンズが開示される。レンズは、第1の軸に沿って湾曲し尚且つ第2の軸に沿って実質的に直線状である表面を有するレンズボディと、該レンズボディの表面に付けられた円偏光子とを含むことができる。円偏光子は、4分の1波長板と、直線偏光子とを含むことができる。直線偏光子は、透過軸を有することができ、該透過軸は、レンズボディの第2の軸に実質的に平行に方向付けられる。
【0012】
レンズを形成する方法が開示される。方法は、第1の軸に沿って湾曲し尚且つ第2の軸に沿って実質的に直線状であるレンズボディを提供することと、4分の1波長板と、直線偏光子とを含む円偏光膜を提供することと、該円偏光膜をレンズブランクボディの表面に積層させることとを含むことができる。直線偏光子は、直線偏光子がその透過軸に沿って実質的に湾曲されないようにレンズブランクボディの第2の軸に実質的に平行に方向付けられた透過軸を含むことができる。
【図面の簡単な説明】
【0013】
【図1】先細った矯正レンズを組み入れた3Dアイウェアの斜視図である。
【図2A】図1の3Dアイウェアを線2A−2Aに沿って見た断面図である。
【図2B】図1の3Dアイウェアの円柱形レンズの実装形態を線2B−2Bに沿って見た断面図である。
【図3】デュアルレンズ3Dアイウェアシステムのための先細っていないレンズを図解した水平断面図である。
【図4】デュアルレンズ3Dアイウェアシステムのための先細ったレンズを図解した水平断面図である。
【図5】図2のような断面図であり、より大きいベース曲率を有する先細った矯正円柱形レンズを示している。
【図6】球の表面の一部分に適合しているレンズブランクの斜視図であり、ブランクからカットされるべきレンズプロフィールを示している。
【図7A】図6の、中空で且つ壁が先細った球形、レンズブランク、及びレンズの切り取り斜視図である。
【図7B】中空で且つ壁が先細った円柱形の表面の一部分に適合しているレンズブランク、及び該ブランクからカットされるべきレンズプロフィールの切り取り斜視図である。
【図8A】垂直面内において湾曲している3Dアイウェアのためのレンズの垂直断面図である。
【図8B】3Dアイウェアのための先細ったレンズの水平断面図である。
【図9】着用者との関係において高いラップを示しているレンズの上面図である。
【図10A】構成、及び着用者に相対的な向きが様々なレンズの右側面図である。下方レークを有するように構成及び向きを決められたレンズのプロフィールを示した図である。
【図10B】構成、及び着用者に相対的な向きが様々なレンズの右側面図である。レークを伴わずに垂直方向中央の向きにされたレンズのプロフィールを示した図である。
【図10C】構成、及び着用者に相対的な向きが様々なレンズの右側面図である。下方レークを示してはいるが、真っ直ぐな視線に対するプリズム歪みを最小限に抑えられるような構成及び向きではないレンズを示した図である。
【図11】アイウェアフレームにおける所望の向きからレンズブランクへの、レンズの水平プロフィールの投射を図解した図である。
【図11A】アイウェアフレームにおける所望の向きからレンズブランクへの、レンズの垂直プロフィールの投射を図解した図である。
【図12】図6の右レンズ及びレンズブランクの前部(凸表面)を、ブランクの機械的中心線がページに垂直に突き出すように回転させて示した上面図である。
【図12A】図12と同様の上面図であり、同様な形状のレンズブランクのどの位置から左レンズをカットすることができたかを更に示している。
【図13】3Dアイウェアに使用するための多層レンズの一例を図解した図である。
【図14】3Dアイウェアに使用するための多層レンズの別の一例を図解した図である。
【図15】3Dアイウェアに使用するための多層レンズの別の一例を図解した図である。
【図16】図13のレンズを含む3Dアイウェアを形成するプロセスの一例を示したフローチャートである。
【図17A】円柱形レンズブランクボディの一例を示した斜視図である。
【図17B】図17Aのレンズブランクボディの断面図である。
【図18A】コロナ処理システムの一例を示した図である。
【図18B】図18Aのコロナ処理システムの一部分の部分拡大図である。
【図18C】図18Aのコロナ処理システムの一部分の別の部分拡大図である。
【図19】積層システムの一例を示した図である。
【図20】円柱形の表面を有するレンズブランクの一例と、該レンズブランクからレンズをカットするべき場所とを示した図である。
【図21】円柱形の表面を有するレンズブランクの別の一例と、該レンズブランクからレンズをカットするべき場所とを示した図である。
【0014】
<詳細な説明>
一部の実施形態は、「円柱形」又は「球形」の前面及び後面(それぞれ円柱又は球の表面の一部分に実質的に適合する表面)を有するレンズの観点から以下で論じられるが、当業者にならば、一部の実施形態では、異なる幾何学的形状の表面を有するレンズが使用されてもよいことが理解される。また、本明細書で例として挙げられるもの以外に、正面か
ら見た形状及び着用時の位置における向きが様々なレンズが使用されてもよいことが理解される。具体的には、いずれか一方のレンズの前面又は後面が、ドーナツ形又はその他の非球形の幾何学的形状の表面に適合することが可能である。
【0015】
図1及び図2A〜Bを参照すると、これらの図には、第1及び第2の湾曲レンズ12、14を有する3Dアイウェア10が示されている。図1は、3Dアイウェア10の斜視図である。図2Aは、線2A−2Aを通る水平面に沿って見た3Dアイウェア10の断面図である。図2Bは、線2B−2Bを通る垂直面に沿って見た3Dアイウェア10の断面図である。図1及び図2A〜Bに示された実施形態は、メガネデザインの一例に組み込まれた3Dレンズ12、14を示しており、本明細書の開示内容に基づいて明らかになるように、その他の様々な形状及び構成のレンズ及びフレームを使用することが可能である。連続リムを有する取り付けフレーム16は、必須の特徴ではなく、リムは、レンズ12、14の(1つ若しくは2つ以上の)底縁のみ、上縁のみ、又は例示のようにレンズ全体を囲んでいることが可能である。或いは、フレーム16は、当業者にならば明白なように、レンズのその他の部分を囲むことができる。また、フレーム無しのメガネを使用することも可能である。
【0016】
1対のテンプル20、22が、フレーム16に枢動式に装着される。或いは、テンプル20、22は、レンズ12、14に直接装着されてもよい。フレームは、当該分野でよく知られた金属、複合物、又は比較的硬い成形熱可塑性プラスチック材料などの様々な材料の任意を含んでよく、透明、又は様々な色の任意であってよい。当該分野では、射出成形、機械加工、及びその他の作成技術がよく知られている。
【0017】
図1及び図2に示された実施形態では、レンズ12、14は、円柱形である。図2Aからわかるように、レンズ12、14は、水平軸に沿って湾曲している。レンズ12、14は、水平軸に沿って先細った厚さを有することができ、本明細書で説明されるように、光学的矯正のために偏心させることができる。図2Bからわかるように、レンズ12、14は、垂直軸に沿って実質的に直線状である(湾曲していない)ことが可能である。
【0018】
レンズ12、14は、着用者が(1つ又は一連の)特殊な二次元画像を鑑賞するときに三次元画像を見せるように構成される。三次元画像は、円偏光の使用を通じて生成することができる。レンズ12、14は、逆向きに偏光された円偏光をブロックするように構成された円偏光子を含むことができる。例えば、1つの実施形態では、右レンズ14が、右回りに円偏光された光が右レンズ14を通るのを許可するように構成された円偏光子を含むことができる一方で、左レンズ12は、左回りに円偏光された光が左レンズ12を通るのを許可するように構成された円偏光子を含むことができる。右眼画像は、右回りに偏光された光によって生成され、左眼画像は、左回りに偏光された光によって生成される。三次元画像は、右眼画像と左眼画像とを重ね合わせることによって、又はそれらを順次迅速に表示することによって生成することができる。
【0019】
円偏光子は、直線偏光子を、直線偏光子の透過軸から約45°ずらされた速軸を有する4分の1波長板と組み合わせることによって作成することができる。一方向への約45°のずれは、右回りの円偏光子を生み出し、もう一方向への約45°のずれは、左回りの円偏光子を生み出す。円偏光子という用語は、完全に円偏光された光をフィルタリングする偏光子はもちろん、幾分楕円偏光された光をフィルタリングする偏光子も含むことを意図される。例えば、本明細書で使用される4分の1波長板という用語は、4分の1波長位相シフト、又は3D鑑賞に有効であるのに十分に4分の1波長位相シフトに近い位相シフトを生じる波長板を含むことを意図される。また、円偏光子は、直線偏光子を、直線偏光子の透過軸から約30°から約60°、又はより好ましくは約40°から約50°、又は最も好ましくは約45°ずらされた速軸を有する4分の1波長板と組み合わせることによっ
て作成することもできる。
【0020】
円偏光レンズは、直線偏光レンズよりも高価で且つ複雑であるけれども、円偏光の使用は、直線偏光の使用に勝る幾つかの利点を提供する。第1に、直線偏光レンズを使用して三次元画像を鑑賞するとき、着用者が頭部を傾けると、このようなレンズの偏光角がその意図する偏光の向きからずれるゆえに、画像の完全性が損なわれることがある。これに対して、円偏光レンズを使用するときは、円偏光子の傾きがその偏光に影響を及ぼすことはないゆえに、ユーザは、歪みを引き起こすことなく頭部を傾けることができる。例えば、時計回り(右回り)の円偏光子は、回転されたときでも時計回りの向きを維持する。第2に、直線偏光の角度が異なるレンズを有するアイウェアを着用するとき、着用者は、右眼と左眼との間で非一様な見え方を経験することがある。非一様な見え方は、方向感覚を失わせ、頭痛を引き起こす恐れがある。円偏光レンズは、上記のような非一様な見え方の問題を生じにくい。着用者は、円偏光によって見せられたものを鑑賞しているときに、非一様な見え方を経験するかもしれないが、円偏光によるこのような見え方は、稀である。
【0021】
一部の実施形態では、レンズ12、14は、偏光又はその他の3D機能の層に追加で可変の光減衰を提供するように構成される。例えば、レンズ12、14は、明るい光のなかでは暗くなり微光環境では弱くなるフォトクロミック組成を含むことができる。このような組成には、例えば、非限定例として、銀、銅、及びハロゲン化カドミウムがある。レンズのためのフォトクロミック組成は、各々参照によってその全体を本明細書に明示的に組み込まれる米国特許第6,312,811号、第5,658,502号、及び第4,537,612号に開示されている。フォトクロミックレンズは、したがって、映画館などの微光環境で三次元画像を鑑賞しているときは、比較的少ない光減衰を提供し、戸外で着用するなど明るい光のなかで使用されているときは、自動的に光減衰を増加させるだろう。したがって、一部の実施形態では、アイウェア10は、3D鑑賞及び通常の戸外使用の両方で使用することができる。
【0022】
その他の実施形態では、レンズ12、14は、可変の光減衰を提供するように構成された二色性色素のゲスト−ホスト装置を追加で含むことができる。例えば、レンズ12、14は、導電層、配向層、及び好ましくは表面不活性化層をコーティングされた、相隔たれた基板を含むことができる。基板の間には、ホスト材料及び光吸収二色性色素ゲストを含むゲスト−ホスト溶液である。電力回路が、フレーム16によって支持される。電力回路は、導電層に接続された電源を伴っている。電源の調節は、ホスト材料の配向を変化させ、該変化は、二色性色素の配向を変化させる。光は、二色性色素によって、その配向に応じて吸収され、そうして、着用者によって手動で調節可能な可変の光減衰を提供する。このような二色背色素のゲスト−ホスト装置は、参照によってその全体を本明細書に明示的に組み込まれる米国特許第6,239,778号に開示されている。
【0023】
一部の実施形態では、レンズ12、14は、着用者の眼に見せられる光の色を修正するための色調整を提供するように構成することができる。例えば、レンズ12、14は、様々な波長における光の透過特性を向上又は抑制して着用者の知覚に影響を及ぼすための、三色性要素又はその他の透過プロフィール修正要素を含むことができる。アイウェア10は、太陽光からの保護よりも、むしろ、3D鑑賞(例えば映画館での3D映画中など)に使用されるだろう。したがって、一部の実施形態では、レンズ12、14は、変わらない明るい3D画像を着用者に見せられるように、透過プロフィール修正要素、光減衰色素、UV遮断添加剤、又はフォトクロミック特徴を含んでいない。
【0024】
3Dアイウェア10のためのレンズ12、14は、様々なプロセスで製造することができる。例えば、射出成形されたレンズブランクボディに、円偏光子(例えば円偏光膜)を施す(例えば、接着する、積層させる、コーティングする)ことができ、結果得られたレ
ンズブランクから、レンズ12、14のうちの1枚をカットすることができる。一部の実施形態では、右レンズと左レンズとが、異なる向きの円偏光子を含むゆえに、右レンズは、左レンズとは別のレンズブランクからカットされる。一部の実施形態では、右レンズ及び左レンズの形状は、互いの鏡像であるので、以下の議論の大半では、一般に、右レンズのみが説明される。予備成形されたレンズブランクからレンズをカットする方法を説明するにあたり、左レンズが右レンズとどのように異なるかは、着用時のレンズの向きに応じて選択されるレーク及びラップの程度に関係している。或いは、レンズボディは、成形後のカット工程の必要性を排除するために、その最終的な形状及び大きさに直接成形することができ、円偏光子は、その成形されたレンズボディに施すことができる。いずれの場合も、レンズは、所望の結果に応じてレンズの幾何学的形状を修正する成形後プロセスに通すことができる。例えば、レンズの後面は、レンズの倍率、プリズム、円柱、又はその他の光学的性質に影響を及ぼすために、磨く、すなわち研磨することができる。一部の実施形態では、レンズ12、14は、屈折力を有することができ、近視又は遠視を矯正するように構成された度付きレンズであることができる。レンズ12、14は、乱視を矯正するために、円柱特性を有することができる。
【0025】
図2Aを参照すると、レンズ14は、水平面内において、内側縁24から着用者の視界の少なくとも一部分を経て外側縁26に至る概ね弓形の形状によって特徴付けられる。デュアルレンズシステムにおける内側縁24から外側縁26までのレンズの弧長は、一般に、約1と2分の1インチ(およそ3.8センチ)から約3と2分の1インチ(およそ8.9センチ)までの範囲内であり、約2インチ(およそ5.1センチ)から約3インチ(およそ7.6センチ)までの範囲内であることも可能である。一部の実施形態では、レンズの弧長は、約2と8分の3インチ(およそ6.0センチ)である。
【0026】
レンズ12、14の外表面は、共通の円31上に位置するものとして図示されているように見えるが、ラップが高いメガネでは、右レンズ及び左レンズは、各レンズの内側縁が円31外に外れて外側縁が円31内に入るように、傾斜されているのが一般的である。レンズのこのような傾斜は、角度θ(図2)を増加させ、本明細書で説明される光学的矯正の望ましさを向上させる。
【0027】
着用されるときに、レンズ14は、少なくとも、着用者の正常な真っ直ぐな視線27を跨ぐことが望ましく、着用者の周辺視野ゾーンにまで及ぶことができる。本明細書で使用される着用者の正常な視線とは、例えば図9及び図10A〜Cにおいて線130によって示されるように、垂直面内又は水平面内のいずれにおいても角度的な逸脱を実質的に伴うことなく着用者の眼から真っ直ぐに出ている線を言う。
【0028】
レンズ14は、前方表面28と、後方表面30と、それらの間の、水平方向に沿って可変である厚さとを提供される。ポリカーボネートレンズボディの場合、内側縁24の領域におけるレンズ14の厚さは、一般に、約1mmから約2.0mmまでの範囲内であり、約1.25mmから約1.75mmまでの範囲内であることが可能である。一部の実施形態では、レンズ14の最も厚い部分は、レンズと光学的中心線との交点に又はその付近にあり、約1.4mmである。一部の実施形態では、レンズボディに施される円偏光膜が、少なくとも約1.0mmで且つ/又は約2.0mm以下の、場合によっては約1.5mmの、実質的に一様な量だけレンズ14の厚さを増加させる。
【0029】
一部の実施形態では、レンズ14の厚さは、内側縁24に接近しているところの最大厚さから外側縁26における比較的薄い厚さまで、必ずしも線形にではないが滑らかに先細る。外側縁26の近くにおけるレンズの厚さは、一般に、約0.635mmから約1.52mmまでの範囲内であり、約0.762mmから約1.27mmまでの範囲内であることも可能である。ポリカーボネートを用いる一部の実施形態では、レンズは、外側ゾーン
において約1.15mmの最小厚さを有する。外側縁26における最小厚さは、一般に、レンズの所望の耐衝撃性によって支配される。多くの場合、約0.050インチ(およそ0.13センチ)から約0.085インチ(およそ0.22センチ)までの範囲内の内側縁の厚さ、及び約0.035インチ(およそ0.089センチ)から約0.060インチ(およそ0.15センチ)までの範囲内の外側縁の厚さが、満足のいくものである。
【0030】
次に、図2Bを見ると、レンズ14は、垂直面に沿って直線状である(湾曲していない)ことが可能である(例えば、円柱形又は切頭円錐形のレンズ幾何学的形状)。一部の実施形態では、レンズ12、14は、視線27がレンズの前方表面28及び後方表面30に実質的に直交するように、垂直軸に実質的に平行に方向付けることができる。図2Bに示された実施形態では、レンズ14は、レンズを直交する線が正常な真っ直ぐな視線27から角度φだけずれるように、下向きに傾いている。ずれの角度φは、約0°より大きく且つ/若しくは約30°未満、又は約10°より大きく且つ/若しくは約20°未満、又は約15°であってよい。ただし、これらの範囲外の、その他の角度φが使用されてもよい。特定の偏光を持つ3Dレンズの場合、レーク角φは、約10°未満、好ましくは約5°未満、より好ましくは約2°未満であり、最適なのは、3Dパフォーマンスを最適にするために、約ゼロである。各種の円柱形状のレンズが使用されてよい。レンズ14の前方表面28及び/又は後方表面30は、水平軸に沿った曲率半径が実質的に一様であるように、直円柱の表面に適合することができる。水平方向に非一様な湾曲を有するレンズを提供するためには、楕円柱を使用することができる。例えば、レンズは、その内側縁24の近くよりも外側縁26の近くで、より湾曲していてよい。一部の実施形態では、例えば、(例えば図2Bに示されるように)垂直方向に傾いたレンズを提供するために、斜(非直)円柱を使用することができる。
【0031】
大幅なラップを提供するレンズを有する3Dアイウェアは、眼の側方保護を提供するが、そのレンズの湾曲は、着用者の視野の角度範囲を通じ、無視できないプリズム歪みを導入する。図3は、一様な厚さ44を有する円形の内表面水平断面及び外表面水平断面を持つレンズ41における屈折を図解している。このようなレンズ41では、レンズ41から眼46への光線の入射角が、視野の角度範囲全体にわたって変化する。例えば、説明を目的として内側光線50と呼ばれるとする光線は、入射地点における法線に対して角度αでレンズ41にぶつかる。当該分野でよく知られるように、透過表面における光の曲がりは、一部には、光線の入射角に依存する。光線50は、レンズ41の外表面52及び内表面54のそれぞれにおいて逆方向に屈折される、すなわち曲がるので、結果得られる透過光線56は、入射光線50に平行である。透過光線50は、入射光線50の経路に対して距離58だけ横方向に変位される。この変位は、(プリズム)光学的歪みの一次のソースを表す。
【0032】
更に、屈折による変位は、外側端60では、入射角βが増すゆえに、より一層強調される。光学分野の当業者にならば理解されるように、周辺入射光線62は、スネルの法則にしたがって、内側入射光線50よりも大きい変位64を経験する。周辺光線の変位64と、内側光線の変位58との間の不一致は、二次の光学的歪みを発生させる。この二次の歪みは、レンズ41の比較的外側の部分を通して見える画像を大幅に反らせるだろう。
【0033】
図4は、Jannardに対して発行された米国特許第4,859,048号におけるユニタリレンズシステムとの関係で開示されたのと同様なやり方でレンズ41(図3)の外側端60における入射角の増大を補償するための、厚さが先細ったレンズ71を図解している。先細りは、外側端76において、より内側の地点80におけるレンズ厚さ78と比べて薄いレンズ厚さ74を生じる。より薄いこの厚さ74は、図4の先細っていないレンズ41を通して生じる周辺光線変位64と比べて周辺光線変位82の量を減少させる。言い換えると、先細ったレンズ71の外側端76の近くにおけるレンズ厚さ74の減少は
、より内側の地点80における厚さ78及び入射角α’と比べた入射角β’の増大をある程度補償する。
【0034】
結果得られる同じレンズ71における周辺光線変位82と内側光線変位84との間の相違は、図3における対応する相違ほど大きくなく、二次の光学的歪みを減少させる。なお、二次の歪みの補正の程度は、頂点85から各外側端76にかけてどのように及びどの程度先細るか、並びに同範囲にわたって入射角がどのように変化するかに依存することに留意せよ。
【0035】
図4のレンズ71は、まるで、着用者の正常な視線86がレンズの頂点、すなわち機械的中心85においてレンズ71を垂直に通るようにフレーム(不図示)に取り付けられたかのように示されている。言い換えると、着用者の正常な視線の場合は、レンズの法線に対する入射角はゼロである。断面図におけるレンズ71の外表面及び内表面は、中心点87、88によってそれぞれ表されるずらされた等半径の円に適合する。中心点87、88を通るように引かれた線は、ここではレンズの光学的中心線と呼ばれ、着用時の向きにおいて、正常な視線と同一線上にある。この従来の構成は、説明を容易にするために、中央向きのレンズとして定義されるとする。正常な視線86が円周方向に時計回り又は反時計回りすると、レンズの法線に対する入射角は、レンズ頂点85におけるゼロから規則的に増大する。
【0036】
美観上の理由のため、飛来する破片から眼の側方を保護するため、又は周辺光を遮断するためには、ある程度のラップが望ましいと考えられる。ラップは、円柱形レンズ又は球形レンズなど水平曲率がきつい(ベースが高い)レンズを用いることによって、及び/又は各レンズを中央向きのデュアルレンズに対して側方に且つ後方に傾斜された位置で取り付けることによって達成されるだろう。このような傾斜は、正常な視線86を光学的中心線との共線的関係から外れさせ、レンズの光学を変化させる。その結果、着用者の顔のサイドに回り込む大幅な「ラップ」を有するデュアルレンズアイウェアには、ある程度のプリズム歪みが付随するのが一般的であった。
【0037】
同様に、美観上の理由のため、及び着用者の眼の下方からの光、風、埃、又はその他の破片を遮断するためには、高いレーク、すなわち垂直方向の傾きが望ましいと考えらえる。ラップが、正常な視線86を光学的中心線の水平成分との共線的関係から外れさせる傾向があるのと全く同様に、レークを伴ったレンズの取り付けは、(例えば図2Bに示されるように、)正常な視線を光学的中心線の垂直成分との共線的関係から外れさせる。大幅なレークを伴ったデュアルレンズアイウェアもやはり、ある程度のプリズム歪みを示すのが一般的である。
【0038】
本明細書で提供されるのは、着用時の向きにおいてレーク及び/又はラップを有する3Dアイウェアのための湾曲レンズにおけるプリズム歪みを最小限に抑えるための、改善された光学的な構成及び方法である。多岐にわたる様々なレンズ形状及び向きが使用されてよいが、本明細書で説明される光学的矯正は、高いベース曲率を使用し尚且つ着用時の向きにおいて高いラップ及び/又はレークを示すデュアルレンズ3Dアイウェアにおいて、特に有用であった。
【0039】
図2及び図5を参照すると、例示されたアイウェアは、中央向きの従来のデュアルレンズ取り付けと比べて側方に回転された位置に取り付けられた傾斜されたレンズ12、14又は102、104を組み入れている。傾斜されたレンズは、着用者の頭部に対して一定の向きを有するものと考えられ、これは、中央向きのレンズを有する従来のデュアルレンズアイウェアから始めて、テンプルのところでフレームを、頭部のサイドを包み込むように内向きに曲げることによって達成されるだろう。
【0040】
ラップが増した結果、着用者の正常な視線27は、図4に示されるようにレンズ14に垂直にぶつかることはなくなる。その代わり、着用者の正常な視線27の入射角θ(図2)は、90°を上回るのが一般的であり、優れたラップを達成するためには約95°を上回ってよく、約100°から約135°までの範囲内であることが可能である。ベースが9.5の一実施形態では、入射角θは、約101.75°である。ベースが低いレンズほど、着用時の向きにおいて示す角度θが大きくなり、6.5のベースを有する一実施形態における角度θは、約113.4°であった。2.8インチ(約7.1センチ)の瞳孔間距離を有するベースが4の一実施形態では、角度θは、約119.864°であった。
【0041】
図5は、より曲率がきつい(よりベースが高い)レンズ102及び104と、恐らくはより大きいラップとを有することを除いて図2に示されたのと同様なスタイルの、3Dメガネ100の水平断面を示している。メガネ100が着用されるとき、レンズ104の外側縁106は、上述のように眼の側方を大幅に覆うように、着用者のこめかみに大幅に回り込むとともに着用者のこめかみにごく接近する。
【0042】
レンズの前方(前)表面108は、ここでは水平断面として示された円柱110などの規則的な幾何学的立体の表面の一部分に概ね適合することができる。例示された実施形態の円柱形レンズ102及び104の前面の水平曲率は、したがって、半径によって特徴付けることができる。業界の慣例により、曲率は、ミリメートルを単位としたレンズの前方表面の半径(R)が、530をベースカーブで割り算したものに等しいような、すなわち、
【数1】

であるような、ベース値を用いて表すこともできる。
【0043】
一部の実施形態は、6以上のベースカーブを有するレンズブランクを使用して、比較的高いラップを有するデュアルレンズ3Dメガネシステムを作成することを可能にする。約7と2分の1から10と2分の1までの間、又は約8から9と2分の1までの間のベースカーブが使用されてよく、実施形態によっては、約8と4分の3から9までの間のベースカーブを使用することが可能である。ベースが6のレンズの前方表面に適合する円の半径は、例えば、約88.33ミリメートルである。比較のため、ベースが3のレンズの前方表面を特徴付ける円の半径は、約176.66ミリメートルである。一部の実施形態では、円偏光子が、レンズボディのベース曲率に適合するように湾曲されてレンズに施される。高いベース番号に関係付けられる曲率は、円偏光の効率を低下させ、着用者に見せられる3D画像の質を下げる恐れがある。したがって、一部の実施形態では、約6と2分の1以下のベースカーブ(例えば、3、4、5、又は6のベースカーブ)が使用され、一般には、約4以上である。
【0044】
図5に例示された実施形態は、光学的中心線における約0.0649インチ(およそ0.165センチ)の厚さ、及びレンズの外周に沿って光学的中心線から2インチ(およそ5センチ)のところにある基準点における約0.053インチ(およそ0.23センチ)の厚さを有し且つベースが8と4分の3であるレンズブランクからカットすることができる。或いは、レンズは、その最終的な形状及び構成に直接成形することができる。
【0045】
図6は、レンズブランク122の斜視図であり、その凸外表面136は、三次元幾何学的形状124(例えば、例示された実施形態では球)の表面の一部分に概ね適合する。当業者にならば、レンズが様々な幾何学的形状(例えば、円柱又はドーナツ形)に適合可能
であることが理解される。図6〜7に示された実施形態では、レンズ120は、水平方向及び垂直方向の両方に湾曲している。
【0046】
レンズの外表面は、一定の水平半径を有する(球若しくは円柱)若しくは進行性の曲線を有する(楕円、ドーナツ形、若しくは卵形)滑らかで連続した表面を有する形状に、又は水平面内若しくは垂直面内のいずれかにおいてその他の非球形を成している形状に適合することができる。ただし、本明細書で説明される一部の実施形態では、幾何学的形状124は、概ね球として近似されている。本明細書で説明されるその他の実施形態では、幾何学的形状124は、第1の軸に沿っては湾曲しているが第2の軸に沿っては湾曲していない概ね円柱形である。図6及び図7に関連して論じられる球形レンズの特徴及び態様の多くは、円柱形レンズはもちろん、その他の幾何学的形状に適合するレンズにも同様に適用することができる。
【0047】
図6及び図7Aに例示された球124は、架空の三次元一枚壁構造であり、その壁の一部分は、そこからレンズ120をカットするのに適している。当該分野で知られるように、精密なレンズカットは、多くの場合、レンズ120を最終的にカットする元となるレンズブランク122を作成することによって達成される。しかしながら、当業者にならば、図6及び図7Aの例示から明確であるように、別途のレンズブランクの使用は随意であり、レンズボディ120は、もし必要であれば、その最終的な形状及び構成に直接成形することができる。
【0048】
やはり図6及び図7Aからわかるように、レンズ120及び/又はレンズブランク122は、球124に沿った様々な場所の任意に位置決めすることができる。一部の実施形態では、光学的中心線132が、球124に対してレンズ120の向きを決めるための基準線として機能する。外表面及び内表面の両方が球の一部分に適合する例示された実施形態では、光学的中心線は、2つの中心C1とC2とをつなぐ線132として定められる。当業者にならば明らかなように、非球形のレンズ幾何学的形状を目的とする場合は、球の2つの幾何学的中心をつなぐのとは異なるやり方で類似の基準線を形成することができる。
【0049】
レンズ120は、図7Aに例示されるように、球の壁の一部分の幾何学的形状を保持するやり方で最終的に形成される。球124上におけるレンズ120の場所は、レンズ120がメガネフレームにおいて向きを決められときに、レンズを通る着用者の正常な視線130がレンズ120を得る元となった幾何学的構成の光学的中心線132に概ね平行に維持されるように選択される。図6及び図7Aの例示では、レンズ120は、かなりのラップと、ある程度の下方レーク(着用時の正常な視線が光学的中心線130よりも下方で球124と交わることによって示される)とを有する右レンズである。異なる形状又はより少ないラップを有するレンズは、レンズを形成した元となった架空の球124の光学的中心線132に重なることがある。しかしながら、架空の球124の光学的中心線132がレンズ120と交わるかどうかは、着用時の向きにおいてレンズ120で視線130が光学的中心線132と概ね平行に維持される限り重要ではない。
【0050】
同様に、もしレンズが、着用時の向きにおいてレークを有さない又は上方レークを有するならば、正常な視線(及びレンズ全体)は、光学的中心線を内包した中央水平経線又はその上方で球124と交わるだろう。正常な視線130が光学的中心線132に対して最終的にとる空間的な距離及び位置は、したがって、ラップ及びレークの程度を(水平距離及び垂直距離によって)示している。しかしながら、伴われる距離如何にかかわらず、レンズは、正常な視線130が水平面内及び垂直面内の両方において光学的中心線132からずれてはいるが光学的中心線132に実質的に平行に維持される限り、示される光学的歪みを最小限に抑えられる。
【0051】
本明細書で使用される「実質的に平行」とは、レンズ120が着用時の位置における向きにされたときに、事前に選択された視線130が、光学的中心線132に平行な状態から水平面内又は垂直面内において総じて約±15°を超えて逸脱しないことを意味する。一部の実施形態では、正常な視線130は、光学的中心線132から約±10°を超えて逸脱せず、その他の実施形態では、正常な視線130は、光学的中心線132から約±5°以下しか逸脱せず、その他の実施形態では、正常な視線130は、光学的中心線132から約±2°以下しか逸脱しない。一部の実施形態では、視線130は、着用時の向きにおいて光学的中心線に平行である。
【0052】
水平面内における平行からのばらつきは、垂直面内における平行からのばらつきよりも、光学に対して大きな悪影響を及ぼすのが一般的である。したがって、垂直面内における視線130と光学的中心線132との間の立体角は、アイウェアによっては、逸脱の角度の水平成分が上記の平行な向きからの逸脱範囲内である限り、上で挙げられた範囲を超えていることが可能である。視線130は、着用時の向きにおいて実施形態によっては光学的中心線から、垂直面内において約±10°以下、実施形態によっては約±3°以下しか逸脱しない。
【0053】
図7Aは、図6のレンズ120、レンズブランク122、及び幾何学的形状124の切り取り図である。幾何学的形状124の光学的中心線における水平断面134によって明らかにされるように、この図は、幾何学的形状124が、厚さが変化する壁を伴った中空であることを示している。
【0054】
幾何学的形状124が伴う先細った壁は、中心点C1及びC2と、半径R1及びR2とによって表される、水平方向にずらされた2つの球から得られる。レンズブランク122の外表面136が、(半径R1の)1つの球に適合することができる一方で、レンズブランク122の内表面138は、(半径R2の)もう1つの球に適合することができる。2つの球を記述するパラメータを調節することによって、レンズブランク122の先細りの性質も調節することができる。
【0055】
具体的には、レンズブランクの外表面136及び内表面138が適合する2つの球についてのパラメータは、屈折率を最小若しくはゼロにするように、すなわち度付きでないレンズを作成できるように、選択することができる。CTが、選択された中心厚さ(中空の幾何学的形状124の最大厚さ)を表し、nが、レンズブランク材料の屈折率であり、R1が、外表面136の曲率に関する設計上の選択によって設定されるとき、R2は、以下の方程式によって決定することができる。
【数2】

CT/nは、球の中心C1とC2との間の隔たりを表している。例えば、設計上の選択としてベース6のレンズが望ましいときは、中心厚さは、3mmとして選択され、材料の選択肢の1つ(ポリカーボネート)の屈折率は、1.586であり、R2は、以下のように決定することができる。
【数3】

この例では、外表面136の半径R1は、88.333mmに等しく、内表面138の半径R2は、87,225mmに等しく、球の中心C1及びC2は、1.892mm隔たれている。これらのパラメータは、偏心された球形の実施形態のレンズブランク122の曲
率を記述している。
【0056】
一部の実施形態の場合は、光学的中心線132は、ずらされた球の両方の中心点C1及びC2を通る線である。この線は、光学的中心140において幾何学的形状124の壁の最も厚い部分を通っているが、これは、非球形の実施形態の場合は当てはまらないかもしれない。光学的中心線132は、例示されたレンズブランク122の表面136を通っているが、これは、必ずしも必要ではない。光学的中心140は、レンズ120上にはないが、より大きいレンズ、又は着用時の向きにおいてそれほどラップを示さないレンズの場合は、レンズ120上にあるかもしれない。
【0057】
図7Bは、レンズ120’、レンズブランク122’、及び幾何学的形状124’の切り取り図であり、図7Bの幾何学的形状124’が円柱であることを除いて多くの点で図7Aと同様である。図7Bの断面は、レンズ120’と交わる水平面に沿って見たものである。円柱124’は、中空であってよく、厚さが変化する壁を有することができる。円柱形のレンズブランク122’は、水平断面内における中心点C1’と、半径R1’とを有する直円柱の形状に適合する外表面136’と、水平断面内における中心点C2’と、半径R2’とを有する第2の直円柱の形状に適合する内表面138’とを有することができる。光学的中心線132’は、両方の中心点C1’及びC2’を通る線によって定められる。円柱は、その垂直軸において一様であるので、各円柱は、それぞれの中心線を定めることができ、円柱の2つの中心線と交わる面は、レンズブランク122’の光学的中心を表すことができることが理解される。図8Aに示された中心点C1’及びC2’、並びに光学的中心線132’は、水平断面が第1及び第2の円柱中心線、並びに光学的中心面とそれぞれ交わるところに位置している。
【0058】
内表面138’の中心点C2’は、外表面136’の中心点C1’からずらすことができ、外表面136’及び内表面138’の半径(R1’及びR2’)は、等しい、又は例えば上記の方程式(2)によって示されるように、外表面136’の半径R1’が内表面138’の半径R2’よりも大きいことが可能である。もし、中心点C1’とC2’とが十分にずらされているならば、半径R2’は、半径R1’よりも大きくなるだろう。一実施形態の例では、中心点C1’及びC2’は、1.892mm隔たれており、半径R1’は、83.333mmに等しく、半径R2’は、87.225mmに等しい。図8Aは、図7Aのレンズ120の垂直断面を例示したものであり、外表面136及び内表面138が適合する図8Aでは球である幾何学的形状124も、仮想線で示されている。図に示された実施形態では、光学的中心線132は、レンズ120の垂直プロフィールを通ることができる。選択される先細りに関係付けられる光学的中心線132は、また、着用時の向きにおいて、着用者の正常な視線130に概ね平行に、尚且つ着用者の正常な視線130から離れるように方向付けられる。
【0059】
図8Bは、図7Bのレンズ120’の水平断面を例示したものであり、外表面136’及び内表面138’が適合する幾何学的形状124’(例えば円柱)が、仮想線で示されている。レンズブランク122’は、この図では省略されている。(図7A及び図8Aに示されるような)球形レンズ120は、図8Bに示されたのと同様な又は同じ水平断面を有してもよいことが理解される。一部の実施形態では、選択される向きに関係付けられる光学的中心線132’は、また、レンズ120’がメガネフレームに取り付けられる際に、着用者の正常な視線130’に概ね平行に、ただし着用者の正常な視線130’からずれるように方向付けられる。
【0060】
ゆえに、高度なラップを伴ったデュアルレンズ3Dアイウェアのための光学的矯正レンズを提供することに加えて、一部の実施形態は、ある程度のレークによって特徴付けられる3Dアイウェアのための光学的矯正レンズを提供する。「レーク」及び「光学的矯正」
という用語は、以下で詳しく定義される。
【0061】
総じて、「レーク」は、着用時の向きにおいて、正常な視線130(図8Aを参照せよ)が非垂直角度でレンズ120の垂直接線にぶつかるときのレンズの状態を記述するものとして理解される。一部の実施形態にしたがった光学的矯正3Dアイウェアの場合は、しかしながら、レークされたレンズに対する正常な視線は、光学的中心線に概ね平行で尚且つ光学的中心線から垂直方向にずれている。したがって、正しい向きにされたレンズのレークの程度は、正常な視線が光学的中心線から垂直方向に離れている距離によって測ることができる。
【0062】
図10Bに示されるような、中央向きのレンズの場合は、着用者の視線は、光学的中心線と一致し、したがって、垂直変位を見せない。このようなレンズは、着用時の向きにおいて(以下で定められるように)光学的に矯正可能ではあるが、レークは有さない。図10Cは、下方へ傾いている、すなわちレークされてはいるが、「変位」が有意に測定されえないほど光学的中心線と正常な視線とが大きく分かれているレンズの向きを示している。このようなレンズは、従来の意味では下方レークを有しており、眼の下方の保護を提供する及び着用者の顔に適合するという利点がある一方で、垂直方向に光学的に矯正はされない。
【0063】
これに対して、図10Aに示されたレークされたレンズは、光学的中心線からの有限な垂直変位によって特徴付けられる。図10Aは、下方レークを生じるために使用される下方変位を示している。光学的中心線が、上記の許容可能な角度範囲内で正常な視線から分かれている場合は、この変位は、レンズ表面又はその近くで測定されるはずである。変位は、おおよそ非ゼロの任意の変位から約8.0インチ(およそ20センチ)までの幅があるだろう。ベース曲率が低いレンズほど、優れたレークを実現するために必要な変位が大きくなるだろう。ベースが6の曲率を持つレンズの垂直変位は、しかしながら、約0.1インチ(およそ0.25センチ)と約2.0インチ(およそ5.1センチ)との間であることが望ましい。一部の実施形態では、垂直変位は、約0.1インチ(およそ0.25センチ)と約1.0インチ(およそ2.5センチ)との間であり、特に、約0.25インチ(およそ0.64センチ)と約0.75インチ(およそ1.9センチ)の間であり、約0.5インチ(およそ1.3センチ)であることが可能である。
【0064】
本明細書で使用される「光学的に矯正する」という用語は、着用時の向きにおけるプリズム歪み、屈折力、及び非点収差のうちの1つ又は2つ以上の値によって測定される歪みが比較的低いレンズを言う。一部の実施形態にしたがったレンズは、少なくとも1/4ジオプタ又は3/16ジオプタの低さの、多くの場合、約1/8ジオプタ未満の、プリズム歪みを示す。一部の実施形態では、プリズム歪みは、約1/16ジオプタ未満、又は約1/32ジオプタ未満である。一部の実施形態にしたがったレンズの屈折力及び非点収差もやはり、低い。屈折力及び非点収差もやはり、それぞれ、少なくとも1/4ジオプタ又は3/16ジオプタの低さであり、約1/8ジオプタ未満、約1/16ジオプタ未満、又は約1/32ジオプタ未満であることが可能である。当業者にならば理解されるように、光学的歪みを最小限に抑えることの利点は、水平寸法及び垂直寸法の両方に当てはまる。なかでも特別な利点は、本明細書で教示される原理をレンズの垂直寸法及び水平寸法の両方に適用することによって得られ、これは、着用者の視野の全角度範囲にわたって卓越した光学的品質を伴いつつ、(ラップ及びレークを通じた)周辺光からの眼の側方保護及び下方保護の組み合わせを可能にする。一部の実施形態では、レンズは、第1の方向に(例えば水平軸に沿って)は光学的に矯正され、第2の方向に沿って(例えば垂直軸に沿って)は光学的に矯正されないことが可能である。
【0065】
更に、本明細書で説明される主要な実施形態は、水平断面及び/又は垂直断面において
一定の半径を有する円筒形及び球形のものであるが、水平面及び垂直面の両方において様々なレンズ構成が可能である。したがって、例えば、一部の実施形態のレンズの外表面若しくは内表面のいずれか、又は外表面及び内表面の両方が、図6及び図7Aに示されるような球形、又は図7Bに示されるような直円柱に概ね適合することができる。或いは、レンズの外表面若しくは内表面のいずれか、又は外表面及び内表面の両方が、切頭円錐形、ドーナツ形、楕円柱、楕円体、回転楕円体、その他の非球体、又はその他の様々な三次元形状に適合することができる。一方の表面の垂直曲率又は水平曲率如何にかかわらず、もう一方の表面は、取り付けられた着用時の向きにおけるレンズの倍率、プリズム、及び非点収差のうちの1つ又は2つ以上を最小限に抑えられるように選択することができる。図9〜12は、一部の実施形態にしたがった、右レンズ120をカットする元となるレンズブランク122上における場所を選択する方法を説明するのに役立つ。デュアルレンズ3Dアイウェアのための左レンズの作成にも、同様の方法が使用されるだろうことが理解される。
【0066】
第1のステップとして、レンズの内表面138及び外表面136にとって所望のおおよその曲率を選択することができる。レンズ120の場合、この選択は、レンズブランク122のベース値を決定する。本明細書の随所に記されるように、数々のその他の曲率が利用可能である。レンズ厚さの選択も、事前に選択可能である。具体的には、事前に選択された衝撃力にレンズが耐えられるように、最小厚さが選択可能である。
【0067】
所望のレンズ形状も、選択可能である。例えば、図12は、レンズ120を正面から見た形状の一例を示している。選択される具体的な形状は、一般に、本明細書で開示される、向き及び偏心を伴ったレンズの光学とは無関係である。
【0068】
レンズにとって所望の着用時の向きも、着用者126の正常な視線130に相対的に選択されるべきである。上記のように、向きによっては、周辺光からの側方保護及び周辺光の遮断、並びに美観上の理由のための、大幅な側方ラップと、また、ある程度の下方レークとを提供することができる。例えば、一部の実施形態は、ラップを実現するために、傾斜されたレンズ120を使用することができる。或いは、ラップは、より高いベースのレンズと、より従来の(傾斜されていない)向きとの使用を通じて実現することができる。図9及び図10A〜Cは、向きが着用者の視線130にどのように関係するかをより明白に例示している。
【0069】
3Dアイウェアの設計者は、着用者126の頭部に相対的なレンズの様々な着用時垂直向きを図解した図10A〜Cから理解されるように、レーク、すなわち垂直傾斜の程度も選択することができる。図10Aは、着用者126の頭部に相対的な、及び詳細には真っ直ぐな正常な視線130に相対的な、レンズ120の向きを例示している。図12Aに例示されるような下方レークは、一般的な頭部生体構造に対する適合性の向上などの様々な理由で望ましいとされる。本明細書の開示内容に照らして当業者ならば明らかになるように、光学的中心線132(図7を参照せよ)と交わる水平面よりも下方に機械的中心点を有するレンズ120は、光学的中心線と真っ直ぐな視線との間に概ね平行な関係を保ちつつ、図10Aに例示されるように下方レークを持つようにレンズ120の向きを決めることを可能にする。架空の球内における光学的中心線に対するレンズ120の位置付けは、着用時の向きにおけるレンズ120と正常な視線130の平行線との間における位置付けと同じであるはずなので、この球の光学的中心線132の下方からカットされるレンズは、いずれも、相応の下方レークを伴って取り付けられ、本明細書で説明される光学的矯正を実現することができる。
【0070】
したがって、図10Aに例示されるように、正常な視線130と光学的中心線132との間の変位の垂直成分を特定することによって、望ましい程度のレークを選択することが
できる。いずれにせよ、変位が大きいほど、下方レークも大きくなる。一部の実施形態では、垂直変位は、ゼロよりも大きい。一般的に、垂直変位は、ベース曲率に応じて、約0.1インチ(およそ0.25センチ)から約2インチ(およそ5.1センチ)までである。一部の実施形態では、垂直変位は、約0.1インチ(およそ0.25センチ)から約1インチ(およそ2.5センチ)、又は約0.2インチ(およそ0.51センチ)以上である。一部の実施形態では、垂直変位は、約0.25インチ(およそ0.64センチ)から約0.75インチ(およそ1.9センチ)までであり、一実施形態では、約0.5インチ(およそ1.3センチ)であった。
【0071】
或いは、(レンズの厚さは考慮せずに、)レンズの曲率に相対的な正常な視線の向きを固定する一般的なプロフィールを選択することができる。例えば、図10Aは、正常な視線130に相対的な上縁152及び底縁154の両方の基準点を提供する。この関係は、次いで、以下の図11Aの議論から明らかになるように、レンズブランク上におけるどの位置からレンズをカットするかを決定するために用いることができる。
【0072】
次に、図11を参照すると、レンズブランク122’への図7Bの円柱形レンズ120’の対応付けが例示されている。選択された向きの測定基準とされる正常な視線130’は、光学的中心線132’に実質的に平行に且つ光学的中心線132’からずれた状態に維持される。変位の水平成分は、低めのベース曲率の場合は、一般的に、約0.1インチ(およそ0.25センチ)から約8インチ(およそ20センチ)までの範囲内である。
【0073】
図11に例示されるような美観設計並びに所望のレーク及びラップの向きが(選択されたフレーム150’などによって)決定され、上記美観設計にぴったり合う適切なベース曲率を有するレンズブランク122’が形成されたら、レンズ120’として使用されるのに適した円柱部分を明らかにするために、理論的な円柱、すなわちブランクの表面上に、上記美観設計を図式的に又は数学的に「投影」することができる。円柱へのレンズ形状の投影は、円柱のその場所からカットされたレンズが、着用時の向きにおいて円柱の光学的中心線が所望の真っ直ぐな視線に概ね平行になる向きからレンズ120’を回転させなくても上記美観設計に適したラップを示すように位置決めされるまで、円柱の表面上を移動されることが望ましい。垂直方向に実質的に一様なレンズブランク(例えば円柱形レンズブランク122’)の場合、レンズ120’は、垂直方向においては任意の適切な場所からカットされてよく、場合によっては、垂直方向における投影は不要である。場合によっては、以下で更に詳しく説明されるように、1つの円柱形レンズブランクから複数のレンズをカットすることができる。
【0074】
レンズによっては(例えば球形又はドーナツ形)、図11に示されたのと同様に水平方向の投影がなされてよく、図11Aに示されるように、選択された垂直方向の向きに対しても同様な同時的投影を実施することができる。図11Aは、選択されたフレーム150から、垂直方向に湾曲している(例えば球の表面に適合している)レンズブランク122上における位置への投影を図解したものである。フレーム150(又は図10Aによって提供されるような概念上の構成)は、視線130との関係においてレンズの上縁152及び底縁154の形で基準点を提供する。投影は、次いで、視線130を光学的中心線132に実質的に平行に維持しつつ、上縁152及び底縁154の両方が同時にレンズブランクの外表面136上における対応する点と一致するまで上下に推移させることができる。
【0075】
水平プロフィール及び垂直プロフィールの両方の投影は、同時に実施されて、視線130が光学的中心線132又はレンズブランク122のその他の基準線に平行になる所望の三次元形状(図12に示された、正面から見た形状を含む)に対応するレンズブランク122上における固有な位置を見つけることができる。もちろん、視線130及び中心線132は、実質的に平行であってよい、すなわち上記の許容可能な角度逸脱範囲内であって
よいことが理解される。
【0076】
この形状は、次いで、ブランク122からカットする、又は最終的なレンズ構成に直接成形することができる。結果得られるレンズ120は、所望の形状に適合するのみならず、着用時の向きにおけるプリズム歪みを最小限に抑える。
【0077】
図12は、図6及び図7Aにおいて球の表面の一部分に適合するものとして示されているようなレンズブランク122を、ページに向かって凹んだ状態で例示している。図12では、レンズブランク122は、ブランクの機械的中心が中央水平経線上における図の中心に示されるように、理論的の球の上に形成されている。例示されたレンズプロフィール120は、内側縁148と、外側縁144と、上側縁152と、下側縁154とを有する。右レンズ120の内側縁148は、レンズブランク122の光学的中心の近くに位置している。
【0078】
右レンズ120の少なくとも一部分が、レンズブランク122の左下(第3)象限に位置している。ラップ及び下方レークの両方を示している一部の実施形態では、レンズ面積の少なくとも半分が、レンズブランク122の第3象限内にある。一部の実施形態では、レンズ120の面積の全部又は実質的に全部が、例示のように、光学的中心の下方に且つ左に位置している。同程度のレークを示してはいるがラップは少ないレンズは、レンズ面積の50%又はそれ以上もがレンズブランク122の右下(第2)象限内にあるように、レンズブランク122上に位置決めすることができる。
【0079】
図12Aは、同じレンズブランク122上における、左レンズ120Lがカットされうる位置を例示している。左レンズ120Lは、内側縁148Lと、外側縁144Lと、上側縁152Lと、下側縁154Lとを有する。左レンズ120Lは、例示されたプロフィールの右レンズ120及び左レンズ120Lの両方を同じレンズブランク122からカットすることはできないゆえに、仮想線で描かれている。むしろ、例示された左レンズ120Lは、第1のレンズブランク122と同一の形状を有する第2のレンズブランク上に示された位置からカットされるだろう。一部の実施形態では、右レンズ120及び左レンズ120が、それぞれ左眼(例えば左回りに円偏光された)画像及び右眼(例えば右回りに円偏光された)画像をブロックすることによって3D鑑賞を可能にするように構成されるように、第1及び第2のレンズブランクは、形状は同じであるが偏光の向きは異なる。
【0080】
左レンズ120Lの形状は、右レンズ120と向こう対称であるはずなので、左レンズ120Lの形状は、右レンズ120の形状の鏡像である。例えば、右レンズ120の画像は、光学的中心線130及び球124の極が通る垂直面を挟んで反転させることができる。その画像を投影されるだろうレンズブランクは、例示されたレンズブランク122と同一であるが、機械的中心を中心に180°回転されたものである。
【0081】
或いは、左レンズ120Lの形状は、垂直対称軸を挟んで右レンズ120の形状の鏡像であると見なすこともできる。図12Aに例示されるように、左レンズ120Lは、右レンズ120を上下逆さまにしたものである。レンズブランク122の場合、垂直対称軸は、レンズブランク122を、球124(図6及び図7A)の上半球及び下半球にそれぞれ適合する上半分と下半分とに分ける中央水平経線170である。ゆえに、内側縁148L、外側縁144L、上側縁152L、及び下側縁154Lの各々の水平位置(すなわち、レンズブランク122の内側縁又は外側縁からの距離)は、右レンズ120上における対応する点と同じである。左レンズ上及び右レンズ上における対応する点は、水平経線170からの垂直距離も同じであるが、ただし、逆方向である。例えば、左レンズ120Lの上縁152Lは、右レンズ120の上縁152が水平経線170の下方にある距離とおおよそ同じ距離だけ水平経線170の上方にある。
【0082】
したがって、幾分レークされたデュアルレンズ実施形態では、左レンズ120Lが、レンズブランク122の実質的に上半分からカットされる一方で、右レンズ120は、同一形状のレンズブランクの実質的に下半分からカットされる。ラップ及びレークの両方を示している一部の実施形態の場合は、左レンズ120Lが、レンズブランク122の実質的に左上(第4)象限からカットされる一方で、右レンズは、実質的に第3象限からカットされる。この文脈で使用される「実質的に」は、レンズ120又は120Lの表面積の50%を超える面積が、関係するレンズブランク122の一半分内又は一象限内に入ることを言う。
【0083】
もちろん、この説明は、光学的中心線が機械的中心を通る(すなわち、レンズブランク122の先細りが水平方向に非対称的である)のではなく中央水平経線170を通る(すなわち、レンズブランク122の先細りが垂直方向に対称的である)ことによって説明されるレンズブランク122に限定されない。代替のレンズブランクは、代替の先細りを利用可能であることが理解される。当業者ならば、右レンズ及び左レンズをカットする位置を、先細りの対称性如何にかかわらず、着用時の向きにおける正常な視線が光学的中心線に実質的に平行に維持されるように調節できるだろう。
【0084】
こうして、一部の実施形態は、先細りと、着用者の眼からレンズの表面への変動入射角との間に正しい対応関係を付与する正確な方法を提供する。着用者の視線と先細りの形態との間の関係を使用することによって、非点収差、倍率、及びプリズム歪みを最小限に抑えつつ、様々なレンズ設計が利用可能である。例えば、設計者は、着用者の視線に相対的に、レンズにとって所望の向き及び曲率を選択することができる。向き及び曲率は、広範囲のレーク、ラップ、ベース値、及び着用者の顔への接近具合から選択することができる。次いで、先細りの形態、及び理論的な球又はその他の形状上におけるレンズプロフィールの場所を、着用時の向きにおけるプリズム歪みが最小限に抑えられるように選択することができる。
【0085】
図13は、3Dアイウェアに使用するための多層レンズ1300の、原寸に比例しない一実施形態の断面を図解している。レンズ1300は、ポリカーボネート、CR−39、ガラス、又はその他の適切な材料で形成されたレンズボディ1302を含むことができる。レンズボディ1302は、剛性であってよく、複合レンズ1300の形状を決定付けることができる。接着剤層1306によって、前面(着用者の眼から最も遠く)に円偏光子1310が施される。一部の実施形態では、レンズボディ1302の前面及び後面に、ハードコード1304を施すことができ、接着剤層1306は、ハードコート1304の前方に施すことができる。円偏光子1310は、接着剤層1314又はその他の適切な接合層によって接合される4分の1波長板1312と直線偏光子1316とを含むことができ、好ましくは、4分の1波長板1312の速軸は、直線偏光子の透過軸から約45°ずらされる。直線偏光子は、ヨウ素をベースにした偏光子であってよい、且つ/又は偏光を生み出す二色性色素であってよい。円偏光子は、一部の実施形態では、熱(例えば摂氏80°超え又は90°超え)に弱い。したがって、一部の実施形態では、レンズ1300は、本明細書で説明されるように、円偏光子に熱を加えることなく組み立て可能であることによって、3Dレンズ1300のための高い偏光効率を保つことができる。
【0086】
一部の実施形態では、円偏光子1310及び接着剤層1306は、少なくとも約1.0mm且つ/若しくは約2.0mm以下、又は約1.5mmの合計厚さを有することができる。レンズボディ1302は、少なくとも約1.0mm且つ/若しくは約2.0mm以下、又は約1.4mmの厚さを有することができる。レンズ1300の層には、その他の厚さも使用可能である。
【0087】
図13に例示された実施形態に示されている特定の層は、省略することができる。例えば、場合によっては、ハードコート1304は使用されない。図13に具体的に示されていない追加の層が追加されてもよい。例えば、レンズ1300の前面及び/又は後面に、反射防止コーティングを施すことができる。また、一部の実施形態では、円偏光子1310をかき傷又はその他の損傷から保護するために、レンズの前面に追加のハードコート層又はその他の保護層を形成することができる。場合によっては、円偏光子1310は、その前面及び/又は後面に、三酢酸セルロース(TAC)のコーティング又はその他のコーティングを含むことができる。場合によっては、円偏光子1310は、着用者の眼から最も遠く離れた層として位置決めされ、円偏光子1310の前方に追加の層が設けられることはない。したがって、レンズ1300を通過して着用者の眼に到達する3D画像からの光は、レンズ1300のその他のどの層よりも先に、円偏光子1310に接触する。光は、円偏光子に接触する前に、レンズ1300のどの層によっても屈折又はそれ以外の変更を加えられないので、その結果、光は、円偏光子1310によって高い効率でフィルタリングされる。
【0088】
図13に例示されたレンズ1300の層は、配置を変えることが可能である。例えば、図14は、接着剤層1406を使用してレンズボディ1402の後面(着用者の眼の最も近く)に円偏光子1410が施される多層レンズ1400の一例を図解している。円偏光子1410は、4分の1波長板1412と、接着剤層1414と、直線偏光子1416とを含む。場合によっては、レンズボディ1402の前面及び/又は後面に、ハードコート層1402を施すことができる。図14の実施形態では、接着剤層1406は、(図13にあるように)直線偏光子1416に施されるのではなく、4分の1波長板1412に施されるので、円偏光子1410は、直線偏光子1416よりも着用者の眼から遠くにある4分の1波長板1412によって向きを決められる。レンズ1400の裏側は、(例えばレンズの凹み形状によって又はアイウェアのテンプルによって)より良く保護されるのが一般的であるので、この実施形態では、円偏光子1410は、かき傷又はその他の損傷からより良く保護される。
【0089】
図15は、多くの点で図13及び図14のレンズと同様又は同じである多層レンズ1500の一実施形態を図解している。レンズ1500は、接着剤層1506を使用してレンズボディ1502の前面に付けられた円偏光子1510(4分の1波長板1512、接着剤層1514、及び直線偏光子1516を有する)を含むことができる。レンズボディ1502の後面及び円偏光子1510の前面には、ハードコート1504を施すことができる。この実施形態では、円偏光子1510は、光がハードコート層1504を通って伝わった後にすぐ円偏光子1510に達するように、レンズ1500のその他の層よりも前方に位置決めされながらも、ハードコート1504によって、損傷から保護される。
【0090】
図16は、3D鑑賞用に構成されたレンズを有する3Dアイウェアを作成するための方法の一例1600を示したフローチャートである。図16は、図13のレンズ1300に示された構造を有し尚且つ円柱の表面に適合する前面及び後面を有するレンズとの関連で説明されるが、その他のレンズ構造及び形状が使用されてもよいことが理解される。
【0091】
ブロック1602では、成形レンズブランクボディが提供される。レンズブランクボディは、ポリカーボネート、CR−39、ガラス、又はその他の任意の適切な材料で形成することができる。レンズブランクボディは、剛性であってよく、レンズのその他の層は、レンズブランクボディが最終的なレンズの形状を決定付けるように、レンズブランクボディの形状に適合することができる。レンズブランクボディは、射出成形することができ、ただし、レンズブランクボディの形状の形成には、熱成形又は機械加工などのその他のプロセスが使用されてもよい。図17Aは、前面1702及び後面1704を有する円柱形レンズブランクボディ1700の一例を示した斜視図である。図17Bは、レンズブラン
クボディ1700の断面図である。レンズブランクボディは、垂直対称軸1706を挟んで対称的であることができる。図17A〜Bに示された実施形態では、前面1702及び後面1704は、図3と同様に、共通の中心点及び異なる半径を有するそれぞれの円柱の表面に適合することができる。一部の実施形態では、レンズブランクボディ1700は、その厚さが、より厚い中央部分1708からより薄い端部分1710へと先細るように、図4と同様に、互いからずらされた中心点を有するそれぞれの円柱の表面に適合する前面1702及び後面1704を有することができる。一部の実施形態では、レンズブランクボディ1700は、少なくとも約0.045インチ(およそ0.11センチ)且つ/若しくは約0.065インチ(およそ0.17センチ)以下の、又は約0.055インチ(およそ0.14センチ)の最大厚さを有する中央部分1708を有することができる。ただし、これらの範囲外の厚さが使用されてもよい。レンズブランクボディ1700の表面は、本明細書で論じられるように、球又はドーナツ形などのその他の形状に適合することもできる。
【0092】
ブロック1604では、レンズブランクボディにハードコートが施される。レンズブランクボディは、引き続き熱硬化可能なポリシロキサン材料に浸すことができる。熱硬化されたハードコートは、3Dレンズに一般的に使用されているUV硬化性ハードコートよりも硬く、且つかき傷又は汚れに強くなる。ハードコートは、少なくとも約150°F(およそ66℃)、且つ/又は約260°F(およそ127℃)以下の温度で、高温硬化の場合の2時間半程度から低温硬化の場合の約8時間の時間にわたって熱硬化可能である。ただし、実施形態によっては、これらの範囲外の値が使用されてもよい。ハードコートは、円偏光子が施される前に熱硬化可能であるゆえに、ハードコートを硬化させるために使用される熱に、円偏光子が曝されることはない。
【0093】
ブロック1606では、レンズブランクボディ1700の前面1702のハードコートにコロナ処理を施すことができる。図18A〜Cは、その第1の側1810と第2の側1812との間で一連のクリップ1804を運ぶように構成されたコンベヤベルト1802を含むコロナ処理システム1804の実施形態の一例を示している。コンベヤベルト1802は、コンベヤベルト1802の両端にあるターン部材1816の周囲を回ることができるように互いに枢動式につながれた複数のリンク部材1814を含むことができる。コンベヤベルト1802の第1の側1810に処理前のレンズブランクボディ1700を取り付け、コンベヤベルト1802の第2の側1812から処理後のレンズブランクボディ1700を取り外すことができるように、リンク部材1814の一部は、クリップ1804を有することができる。ただし、コンベヤベルト1802の方向は、処理前のレンズブランクボディが第2の側1812に取り付けられるように、逆転させることも可能である。コンベヤベルト1802は、レンズブランクボディ1700がシステム1800のコロナ処理1806センタを通ることができるように、モータによって駆動することができる。コロナ処理センタ1806は、レンズブランクボディ1700の上部にコロナ処理を施すように位置決めされた第1のコロナヘッド1808Aと、レンズブランクボディ1700の下部にコロナ処理を施すように位置決めされた第2のコロナヘッド1808Bとを含むことができる。一部の実施形態では、実質的にレンズブランクボディ1700の前面全体にコロナ処理を施すために、1つのコロナヘッドを使用することができる。
【0094】
多くのヴァリエーションが可能である。一部の実施形態では、レンズブランクボディ1700に手でコロナ処理を施すために、手持ち式のコロナ処理ヘッドを使用することができる。コロナ処理は、表面張力を引き下げて、レンズブランクボディ1700の前面(例えばそこに施されたハードコート)の接合特性を向上させることができる。レンズブランクボディと円偏光子との間の接合特性の向上には、紫外線(UV)光処理、オゾン処理、及び水酸化ナトリウム(NaOH)処理などのその他の表面処理を使用することも可能である。
【0095】
ブロック1608では、レンズブランクボディに円偏光子が積層される。図19は、レンズブランクボディ1700(例えばその上に被覆されたハードコート)に膜(例えば円偏光子1902)を積層させるための積層システム1900の一例を示している。積層システム1900は、トラック1906の上を滑ることができる滑動部材1904を含むことができる。滑動部材1904は、レンズブランクボディ1700を受けることができるレンズブランクボディホルダ1908を有することができ、円偏光膜1902の直線偏光層の透過軸をレンズブランクボディ1700の直線(非湾曲)軸に約5°未満、又は約3°未満、又は約1°未満の方向付け変動角で実質的に方向付けられた状態でレンズブランクボディ1700と円偏光膜1902とが位置合わせされるように、円偏光膜1902を受けることができる。もし、円偏光子1902がレンズブランクボディ1700と正確に位置合わせされず、レンズブランクボディ1700の曲率が円偏光子1902の直線偏光層の透過軸に作用するならば、直線偏光子の効率は低下し、これは、3D鑑賞中に右眼画像と左眼画像との間にクロストークを発生させる色ずれや無効な画像フィルタリングなどの歪みを引き起こす恐れがある。
【0096】
レンズブランクボディ1700又は円偏光膜1902には、接着剤を施すことができる。接着剤は、実質的に光学的に透明であってよい。感圧性の接着剤が使用されてよく、該接着剤は、積層後にレンズブランクボディ1700と円偏光膜1902との間に配されるように、巻き付ける、吹き付ける、又はそれ以外の形で表面に施すことが可能である。その他のタイプの接着剤が使用されてもよい。例えば、UV硬化性接着剤、又は溶剤接合が使用されてよい。
【0097】
滑動部材1904は、ユーザが滑動部材1904をトラック1906に沿って押してレンズブランクボディ1700をローラ1912A及び1912Bに接触させるために使用することができるハンドル1910を含むことができる。レンズブランクボディ1700及び円偏光膜1902をローラ1912Aと1912Bとの間に供給するために、1つ又は2つ以上のモータ1914が、上部ローラ1912A及び/又は下部ローラ1912Bを回転させることができる。ローラ1912A及び1912Bは、レンズブランクボディ1700と円偏光膜1902との間における実質的に一様な接着のために、ブランクの凹表面及び膜1902の凸表面の全体に実質的に均等に分布された圧力を加えるように構成することができる。
【0098】
一部の実施形態では、ローラ1912A及び1912Bの位置は、固定されてよく、ローラ1912Aと1912Bとの間の隙間は、レンズブランクボディ1700、接着剤層、及び円偏光膜1902がローラ1912Aと1912Bとの間の隙間に通されるのに伴ってそれらの層に圧力が加えられるように、それらの層の厚さよりも小さいことが可能である。一部の実施形態では、ローラ1912A及び1912Bは、隙間にレンズが通されるときに圧縮する圧縮性材料を含むことができる。一部の実施形態では、ローラ1912A及び1912Bの一方又は両方の位置が可変であり、少なくとも1つのバネ又はその他の付勢部材が、ローラ1912A及び1912Bを互いに向かって付勢することができる。例示された図19の実施形態では、積層の際に上部ローラ1912Aの軸棒1916が下部ローラ1912Bから離れ、積層中に実質的に一様な圧力がレンズに加えられるように、バネが上部ローラ1912Aを下部ローラ1912Bに向かって付勢することができる。
【0099】
図19に示された積層システム1900は、図に示されるように円柱形レンズを積層させるために使用可能であるように、ローラ1912Aと1912Bとの間に直線状の隙間を有しているが、その他の構成も可能である。例えば、ローラ1912A及び1912Bは、それらの間にドーナツ形又は球形のレンズが通されることに適応するために、湾曲し
ていることが可能である。
【0100】
ブロック1610では、レンズブランクを圧力ポットに入れることができ、積層されたレンズブランクからあらゆる残りの空気を押し出すとともにレンズブランク及び膜に一様な圧力を加えることによって接着を向上させるために圧力を加えることができる。圧力ポットは、少なくとも約25psiの、好ましくは少なくとも約50psiの昇圧を少なくとも30分間にわたって、一プロセスでは約75psiの圧力を約60分間にわたって加えることができる。ただし、その他の値が使用されてもよい。
【0101】
ブロック1612では、積層されたレンズブランクから1枚又は2枚以上のレンズがカットされてよい。レンズブランクからのレンズのカットには、3軸のCNCフライスマシンを使用することができる。一部の実施形態では、レンズの縁を斜めに切って、アイウェアへのレンズの装着を促すとともにアイウェアにおける保持力を高めることができる。縁の直角カットが使用されてもよい。右レンズと左レンズとで、異なる円偏光子を使用することができるので、右レンズ及び左レンズは、異なるレンズブランクからカットすることができる。場合によっては、左レンズブランクから複数の左レンズをカットし、右レンズブランクから複数の右レンズをカットすることができる。
【0102】
図20は、円柱の表面に適合する前面2002及び後面2004を有し尚且つ本明細書で開示されたその他のレンズブランクと多くの点で同様又は同じであるレンズブランク2000を例示している。レンズブランク2000の機械的中心線、頂点、すなわち最も厚い部分は、線2006によって示されている。図20に示された実施形態では、レンズブランク2000は、軸2006を挟んで対称的ではない。レンズブランク2000からは、複数の右レンズ2008A及び2008Bをカットすることができる。第2の右レンズ2008Bは、第1の右レンズ2008Aと同じ形状を有することができ、第2の右レンズ200Bが第1の右レンズ2008Aの真下に位置する場所からカットされるように、水平軸に沿って第1の右レンズ2008Aと同じ位置からカットすることができる。第1の右レンズ2008A上及び第2の右レンズ2008B上における対応する点は、垂直軸2006から同じ水平距離だけ離れている。例示されたレンズブランク2000は、レンズブランク2000から2枚のレンズがカットされることを示しているが、レンズブランクのサイズ次第では、同じレンズブランクから更に追加のレンズがカットされてよい。実施形態によっては、1つのレンズブランク2000から、形状の異なる複数の右レンズをカットすることができる。左レンズは、右レンズブランク2000と形状は同じだが偏光の向きが異なる円偏光子を有する左レンズブランクから同様にカットすることができる。
【0103】
図21は、円柱の表面に適合する前面2102及び後面2104を有し尚且つ本明細書で開示されたその他のレンズブランクと多くの点で同様又は同じであるレンズブランク2100を例示している。レンズブランク2100の機械的中心線、頂点、すなわち最も厚い部分は、線2106によって示されている。図21に示された実施形態では、レンズブランク2100は、軸2106を挟んで対称的である。レンズブランク2100からは、複数の右レンズ2108A及び2108Bをカットすることができる。第2の右レンズ2108Bは、第1の右レンズ2108Aと同じ形状を有することができ、第1の右レンズ2108Aを上下逆さまにしたものであってよい。第1の右レンズ2108A上及び第2の右レンズ2108B上における対応する点は、垂直軸2106から同じ水平距離だけ、ただし逆方向に、離れている。一部の実施形態では、第1の右レンズ2108Aの半分以上が、垂直軸2106の第1の側にあり、第2の右レンズ2108Bの半分以上が、垂直軸2106の第2の側にある。第1のレンズ2008Aの機械的中心点2010Aは、軸2106の右側に位置決めすることができ、第2のレンズ2008Bの機械的中心点2010Bは、軸2106の左側に位置決めすることができ、これら2つの中心点2010A及び2010Bは、軸2106から水平方向に実質的に等距離に位置することができる。
右レンズブランク2100は、垂直軸2106を挟んで対称的であるので、第2の右レンズ2108Bは、第1の右レンズ2108Aに相対的に約180°回転されていることを除いて、形状、曲率、及び厚さ(例えば先細り)において第1の右レンズ2108Aと実質的に同じである。例示されたレンズブランク2100は、レンズブランク2100から2枚のレンズがカットされることを示しているが、レンズブランクのサイズ次第では、同じレンズブランクから更に追加のレンズがカットされてよい。実施形態によっては、1つのレンズブランク2100から、形状の異なる複数の右レンズをカットすることができる。左レンズは、右レンズブランク200と形状は同じだが偏光の向きが異なる円偏光子を有する左レンズブランクから、同様にカットすることができる。
【0104】
ブロック1614では、3Dレンズは、3Dアイウェアを作成するためにフレームに取り付けられる。一部の実施形態にしたがったレンズは、少なくとも1/4ジオプタ又は3/16ジオプタの低さの、多くの場合、約1/8ジオプタ未満の、プリズム歪みを示す。一部の実施形態では、プリズム歪みは、約1/16ジオプタ未満、又は約1/32ジオプタ未満である。一部の実施形態にしたがったレンズの屈折力及び非点収差もやはり、低い。屈折力及び非点収差もやはり、それぞれ、少なくとも1/4ジオプタ又は3/16ジオプタの低さであり、約1/8ジオプタ未満、約1/16ジオプタ未満、又は約1/32ジオプタ未満であることが可能である。一部の実施形態では、本明細書で開示される3Dレンズは、少なくとも約20ラインの精細度パターン分解能を保持することができる。
【0105】
本明細書で開示される3Dレンズは、高い偏光効率を有することができる。一部の実施形態では、高い偏光効率は、本明細書で開示される3Dレンズが有する以下の特徴のうちの1つ又は2つ以上に帰することができる。すなわち、湾曲3Dレンズは、円偏光子を熱に曝すことなく組み立て可能であることによって、円偏光子を構成する直線偏光子及び4分の1波長板の完全性を維持することができる。従来の湾曲偏光レンズには、レンズに熱が加えられることによって、円偏光子の偏光効率の低下を招く恐れがあるものがある。また、本明細書で開示される一部の実施形態では、レンズは、一方向(例えば水平軸沿い)にのみ湾曲し、もう一方向(例えば垂直軸沿い)には直線状であり、円偏光子は、直線偏光子の透過軸が非湾曲直線方向に実質的に方向付けられるように、位置合わせすることができる。また、円偏光子をレンズの前方端に配することによって、円偏光子は、レンズのその他の層が収差を導入する又はレンズの偏光効率を低下させる恐れがあるそれ以外のやり方で光を変化させる前に、光を受け取ることができる。一部の実施形態では、レンズは、少なくとも約98%、好ましくは少なくとも約99.0%、又は少なくとも約99.5%の、そして一実施形態では少なくとも99.7%の、偏光効率を有することができる。偏光効率は、また、水平方向及び垂直方向の両方の広い角度範囲にわたる軸外鑑賞において一定であることができる。したがって、着用者は、偏光効率の著しい損失及び右眼画像と左眼画像との間のクロストークに見舞われることなく、着用者の正常な視線からずれた角度で3D画像を鑑賞することができ、レンズの曲率は、従来の平面レンズよりも広範囲にわたる着用者の周辺視野を網羅するとともに、優れた美観上のスタイルを提供することができる。レンズは、約200から約700までの範囲のコントラスト比(暗状態対明状態)と、約125nm±10nmの遅延値とを有するだろう。特定の実施形態では、%Tは、約38%から約47%までの範囲であり、1回のパス(レンズのみ)対相対するL/R円偏光子のスペクトル比は、約400〜100又はそれ以上であり、直線偏光子対4分の1波長板の角度値は、左が約−45°±2°で右が約135°±2°である。
【0106】
本開示は、3Dアイウェアのためのレンズに関する各種の特徴を説明しており、そのただの1つとして、本明細書で説明された利点に対して単独で責任を負うものではない。当業者にならば明らかであるように、本明細書で説明された各種の特徴は、組み合わせる、変更する、又は省略することが可能である。本明細書で具体的に説明されたものと異なる組み合わせ及び小組み合わせも、本開示の一部を構成することを意図される。本明細書で
は、各種のフローチャートのステップとの関連で、各種の方法が説明されている。多くの場合、フローチャートのなかで別々のステップとして示されている複数のステップを1つのステップとして実施することができるように、特定のステップを組み合わせることが可能である。同様に、別々に実施されるように、特定のステップを小ステップに分割することも可能である。場合によっては、ステップの順序を並べ替えたり、特定のステップをまるごと省略したりすることができる。また、本明細書で説明される方法は、本明細書で具体的に説明されたステップに加えて追加のステップを含む方法も含むものとして理解される。
【0107】
本発明は、特定の実施形態の観点から説明されてきたが、当業者にならば、本明細書の開示内容を踏まえてその他の実施形態が明らかになるだろう。したがって、本発明の範囲は、これらの実施形態の記載によって限定されることを意図されず、添付の特許請求の範囲を参照にすることによってのみ定められることを意図される。

【特許請求の範囲】
【請求項1】
3Dアイウェアのためのレンズブランクを形成する方法であって、
実質的に水平な軸に沿って湾曲し尚且つ実質的に垂直な軸に沿って実質的に直線状である表面を含むレンズブランクボディを提供することと、
前記レンズブランクボディにハードコートを施すことと、
前記ハードコートを熱硬化させることと、
前記レンズブランクボディの前記表面にコロナ処理を施すことと、
4分の1波長板と、透過軸を含む直線偏光子とを含む円偏光膜を提供することと、
前記直線偏光子の偏光効率が前記レンズブランクボディの湾曲によって大幅に低下されることがないように、前記透過軸が前記レンズブランクボディの前記実質的に垂直な軸に実質的に平行に方向付けられるように、前記レンズブランクボディの前記表面に前記円偏光膜を積層させることと、
を備える方法。
【請求項2】
請求項1に記載の方法であって、更に、
前記円偏光膜を上に積層された前記レンズブランクボディを圧力ポットに入れることと、
前記圧力ポットを使用して、前記レンズブランクボディ及び前記円偏光膜に圧力を加えることと、
を備える方法。
【請求項3】
請求項2に記載の方法であって、
前記圧力は、約50psiから約100psiまでの間である、方法。
【請求項4】
請求項1に記載の方法であって、更に、
前記レンズブランクボディ及びその上に積層された前記円偏光膜をカットして、斜めに切られた縁を有する少なくとも1枚のレンズを形成することを備える方法。
【請求項5】
請求項1に記載の方法であって、更に、
前記レンズブランクボディ及びその上に積層された前記円偏光膜をカットして、第1のレンズ及び第2のレンズを形成することを備え、前記第1及び第2のレンズは、ともに、右レンズとして使用されるように構成され、前記第1及び第2のレンズがカットされるときに、前記第2のレンズの向きは、前記第1のレンズの向きから約180°ずらされる、方法。
【請求項6】
請求項5に記載の方法であって、
前記レンズブランクボディは、非一様な厚さと、前記実質的に垂直な軸に実質的に平行な対称軸とを有し、前記第1のレンズの中心点は、前記対称軸の第1の側に位置決めされ、前記第2のレンズの中心点は、前記対称軸の第2の側に位置決めされ、前記第1及び第2のレンズの前記中心点は、前記第1及び第2のレンズが実質的に同じ先細った厚さを有するように、前記対称軸から実質的に等距離にある、方法。
【請求項7】
請求項1に記載の方法であって、
前記レンズブランクボディは、射出成形によって形成される、方法。
【請求項8】
請求項1に記載の方法であって、
前記ハードコートは、ポリシロキサンを含む、方法。
【請求項9】
請求項1に記載の方法であって、
前記レンズブランクボディは、前面及び後面を含み、前記円偏光膜は、前記レンズブランクボディの前記前面に積層される、方法。
【請求項10】
請求項9に記載の方法であって、更に、
前記レンズブランクボディ及び前記円偏光膜をカットして、レンズを形成することと、
前記レンズをアイウェアフレームに取り付けることと、
を備え、前記円偏光膜は、3D鑑賞中に画像の光が前記レンズのその他のどの層よりも先に前記円偏光膜にぶつかるように、前記レンズの最前方の層である、方法。
【請求項11】
請求項1に記載の方法であって、
前記レンズブランクボディは、UV遮断添加剤を含まない、方法。
【請求項12】
請求項1に記載の方法であって、
前記レンズブランクボディは、前面及び後面を含み、前記前面は、第1の中心を有する前方円柱の表面に適合し、前記後面は、第2の中心を有する後方円柱の表面に適合し、前記第2の中心は、前記レンズブランクボディの厚さが前記実質的に水平な軸に沿って先細るように、前記第1の中心からずらされている、方法。
【請求項13】
請求項12に記載の方法であって、更に、
前記レンズブランクボディから少なくとも1枚のレンズをカットすることであって、前記第1の中心と前記第2の中心との間に引かれた線は、前記レンズのための光学的中心線を提供する、ことと、
着用者の視線が前記光学的中心線に実質的に平行になるように尚且つ前記着用者の前記視線が前記光学的中心線からずれるように前記レンズが位置決めされるように、前記レンズをアイウェアフレームに取り付けることと、
を備える方法。
【請求項14】
請求項1に記載の方法であって、
前記実質的に水平な軸に沿った湾曲は、実質的に一様な曲率半径を有する、方法。
【請求項15】
請求項1に記載の方法であって、
前記実質的に水平な軸に沿った湾曲は、実質的に非一様な曲率半径を有する、方法。
【請求項16】
3Dアイウェアに使用するためのレンズであって、
第1の軸に沿って湾曲され尚且つ第2の軸に沿って実質的に直線状である表面を有するレンズボディと、
前記レンズボディの前記表面に付けられた円偏光子と、
備えるレンズ。
【請求項17】
請求項16に記載のレンズであって、
前記第2の軸は、前記第1の軸から約90°ずれている、レンズ。
【請求項18】
請求項16に記載のレンズであって、
前記円偏光子は、4分の1波長板と、直線偏光子とを含む、レンズ。
【請求項19】
請求項18に記載のレンズであって、
前記直線偏光子は、透過軸を有し、前記透過軸は、前記レンズボディの前記第2の軸に実質的に平行に方向付けられる、レンズ。
【請求項20】
請求項16に記載のレンズであって、更に、
前記レンズボディと前記円偏光膜との間に配されるハードコートを備えるレンズ。
【請求項21】
請求項20に記載のレンズであって、
前記ハードコートは、熱硬化されたポリシロキサンを含む、レンズ。
【請求項22】
請求項20に記載のレンズであって、
前記円偏光子は、前記ハードコートと前記円偏光子との間に配される接着剤によって前記ハードコートに積層される、レンズ。
【請求項23】
請求項22に記載のレンズであって、
前記ハードコートは、積層前に前記ハードコートの表面張力を引き下げるために、コロナ放電によって処理される、レンズ。
【請求項24】
請求項16に記載のレンズであって、
前記レンズボディは、UV遮断添加剤を含まない、レンズ。
【請求項25】
請求項16に記載のレンズであって、
前記レンズボディは、射出成形されたレンズボディである、レンズ。
【請求項26】
請求項16に記載のレンズであって、
前記レンズボディは、前面及び後面を含み、前記円偏光子は、前記レンズボディの前記前面に付けられる、レンズ。
【請求項27】
請求項26に記載のレンズであって、
前記円偏光子は、3D鑑賞中に画像の光が前記レンズのその他のどの層よりも先に前記円偏光子にぶつかるように、前記レンズの最前方の層である、レンズ。
【請求項28】
請求項16に記載のレンズであって、
前記レンズボディは、前面及び後面を含み、前記前面は、第1の中心を有する前方円柱の表面に適合し、前記後面は、第2の中心を有する後方円柱の表面に適合し、前記第2の中心は、前記レンズボディの厚さが前記第1の軸に沿って先細るように、前記第1の中心からずらされている、レンズ。
【請求項29】
請求項16に記載のレンズであって、更に、
前記レンズを支えるアイウェアフレームを備え、前記第1の中心と前記第2の中心との間に引かれた線は、前記レンズのための光学的中心線を提供し、前記レンズは、着用者の視線が前記光学的中心線に実質的に平行になるように尚且つ前記着用者の前記視線が前記光学的中心線からずれるように、前記アイウェアフレームにおいて位置決めされる、レンズ。
【請求項30】
請求項16に記載のレンズであって、
前記第1の軸に沿った湾曲は、実質的に一様な曲率半径を有する、レンズ。
【請求項31】
請求項16に記載のレンズであって、
前記第1の軸に沿った湾曲は、実質的に非一様な曲率半径を有する、レンズ。
【請求項32】
レンズを形成する方法であって、
第1の軸に沿って湾曲し尚且つ第2の軸に沿って実質的に直線状であるレンズボディを提供することと、
4分の1波長板と、直線偏光子とを含む円偏光膜を提供することと、
前記円偏光膜を前記レンズブランクボディの前記表面に積層させることと、
を備える方法。
【請求項33】
請求項32に記載の方法であって、
前記直線偏光子は、前記直線偏光子がその透過軸に沿って実質的に湾曲されないように前記レンズブランクボディの前記第2の軸に実質的に平行に方向付けられた透過軸を含む、方法。
【請求項34】
請求項32に記載の方法であって、更に、
前記レンズブランクボディにハードコートを施すことと、
前記ハードコートを熱硬化させることと、
を備え、前記円偏光膜は、接着剤を使用して前記ハードコートに積層される、方法。
【請求項35】
請求項32に記載の方法であって、更に、
積層前に前記レンズブランクボディの前記表面にコロナ処理を施すことを備える方法。
【請求項36】
請求項32に記載の方法であって、更に、
前記円偏光膜を上に積層された前記レンズブランクボディを圧力ポットに入れることと、
前記圧力ポットを使用して、前記レンズブランクボディ及び前記円偏光膜に圧力を加えることと、
を備える方法。
【請求項37】
請求項36に記載の方法であって、
前記圧力は、約50psiから約100psiまでの間である、方法。
【請求項38】
請求項32に記載の方法であって、更に、
前記レンズブランクボディ及びその上に積層された前記円偏光膜をカットして、斜めに切られた縁を有する少なくとも1枚のレンズを形成することを備える方法。
【請求項39】
請求項32に記載の方法であって、更に、
前記レンズブランクボディ及びその上に積層された前記円偏光膜をカットして、第1のレンズ及び第2のレンズを形成することを備え、前記第1及び第2のレンズは、ともに、右レンズとして使用されるように構成され、前記第1及び第2のレンズがカットされるときに、前記第2のレンズの向きは、前記第1のレンズの向きから約180°ずらされる、方法。
【請求項40】
請求項39に記載の方法であって、
前記レンズブランクボディは、非一様な厚さと、前記第2の軸に実質的に平行な対称軸とを有し、前記第1のレンズの中心点は、前記対称軸の第1の側に位置決めされ、前記第2のレンズの中心点は、前記対称軸の第2の側に位置決めされ、前記第1及び第2のレンズの前記中心点は、前記第1及び第2のレンズが実質的に同じ先細った厚さを有するように、前記対称軸から実質的に等距離にある、方法。
【請求項41】
請求項32に記載の方法であって、
前記レンズブランクボディは、射出成形によって形成される、方法。
【請求項42】
請求項32に記載の方法であって、
前記レンズブランクボディは、前面及び後面を含み、前記円偏光膜は、前記レンズブランクボディの前記前面に積層される、方法。
【請求項43】
請求項42に記載の方法であって、更に、
前記レンズブランクボディ及び前記円偏光膜をカットして、レンズを形成することと、
前記レンズをアイウェアフレームに取り付けることと、
を備え、前記円偏光膜は、3D鑑賞中に画像の光が前記レンズのその他のどの層よりも先に前記円偏光膜にぶつかるように、前記レンズの最前方の層である、方法。
【請求項44】
請求項32に記載の方法であって、
前記レンズブランクボディは、前面及び後面を含み、前記前面は、第1の中心を有する前方円柱の表面に適合し、前記後面は、第2の中心を有する後方円柱の表面に適合し、前記第2の中心は、前記レンズブランクボディの厚さが前記第1の軸に沿って先細るように、前記第1の中心からずらされている、方法。
【請求項45】
請求項44に記載の方法であって、更に、
前記レンズブランクボディから少なくとも1枚のレンズをカットすることであって、前記第1の中心と前記第2の中心との間に引かれた線は、前記レンズのための光学的中心線を提供する、ことと、
着用者の視線が前記光学的中心線に実質的に平行になるように尚且つ前記着用者の前記視線が前記光学的中心線からずれるように前記レンズが位置決めされるように、前記レンズをアイウェアフレームに取り付けることと、
を備える方法。
【請求項46】
請求項32に記載の方法であって、
前記第1の軸に沿った湾曲は、実質的に一様な曲率半径を有する、方法。
【請求項47】
請求項32に記載の方法であって、
前記第1の軸に沿った湾曲は、実質的に非一様な曲率半径を有する、方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図11】
image rotate

【図11A】
image rotate

【図12】
image rotate

【図12A】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17A】
image rotate

【図17B】
image rotate

【図18A】
image rotate

【図18B】
image rotate

【図18C】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公表番号】特表2013−518301(P2013−518301A)
【公表日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2012−550174(P2012−550174)
【出願日】平成23年1月21日(2011.1.21)
【国際出願番号】PCT/US2011/022142
【国際公開番号】WO2011/091314
【国際公開日】平成23年7月28日(2011.7.28)
【出願人】(500291315)オークリー インコーポレイテッド (10)
【Fターム(参考)】