説明

Fターム[2G052BA03]の内容

サンプリング、試料調製 (40,385) | サンプリング (2,056) | 試料の状態 (447) | 移動しているもの (243)

Fターム[2G052BA03]の下位に属するFターム

Fターム[2G052BA03]に分類される特許

61 - 76 / 76


【課題】連続して押し出されるゴムシートからのサンプル片の採取、及びそのサンプル片の測定装置への受け渡しの一連の動作を、高い信頼性を有して効率よくしかも高頻度で行う。
【解決手段】押出機2からのゴムシートGを、カッタ受け台と、その上方に配される昇降可能な打抜きカッタ5との間に通し、かつ該打抜きカッタ5の下降により、前記カッタ受け台との間で前記ゴムシートGからサンプル片Gsを打抜きカッタ5の筒孔5A内に打ち抜く。又打抜きカッタ5直下のサンプル受取り位置P1で、前記筒孔5A内のサンプル片Gsを、バキュームパッド7で吸着し、かつサンプル測定手段に設けたサンプル受渡し位置まで搬送する。 (もっと読む)


【課題】内部を流下中の被搬送物を特別に用意した道具を使わずに簡単に採取できる流下樋を得る。
【解決手段】第1流下樋10では、蓋部36により試料採取口34が閉塞された状態で、作業者が片方の手Hの指で蓋部36の取っ手40を引っ張り上げると、蓋部36が開放位置へ回動される。このとき、試料採取部材42の採取部46が、採取位置を経由し、樋本体22内を流下する籾Mの一部が採取部46に掬われる。そして、蓋部36が開放位置に達すると、採取部46に採取された籾Mは、採取部46の底壁46Aをつたって案内部44側へ落下し、更に案内部44の底壁44Aをつたって作業者の片方の手Hの手の平の上に落下する (もっと読む)


水面下位置からの液体の化学的特性または生物学的特性を測定するための方法および装置が開示され、密封されたケーシングが、試料採取されるべき液体中に沈められる。サンプリングのための液体の流れは、静水圧により駆動され、したがって正確な水面下位置に配置される際に、ポンプまたは同様のものとは無関係である。流量は、本発明の第1の態様においては、サンプリング期間中に一定の静水圧を提供することにより制御される。代替としては、入口が、トレーサ物質を含むカートリッジを備え、これは、液体により部分的に溶解され、流量に比例して放出される。
(もっと読む)


【課題】 試料の採取量が少なくても固体燃料の性状に合致した試料を採取することである。
【解決手段】 スプーン13はスプーン駆動機構15により、ベルトコンベヤ11の固体燃料の採取位置まで移動し、ベルトコンベヤ11に所定の搬送幅で搭載された粒状の固体燃料の一部を試料として採取し試料回収容器17の試料投入口18まで運ぶ。その際、制御装置16は、固体燃料の搬送幅方向の複数の異なる位置でスプーン13により試料を採取するようにスプーン駆動機構15を制御する。 (もっと読む)


開口部(34、36;44、46)を有し、互いに嵌合する少なくとも二つの部分(30、40)から、サンプルチャンバーを画定する空洞の容器が形成される。一方の部分(40)は、他方の部分(30)に対して、相対的に動かすことができ、容器内を空気が通過する流路が設けられるように開口部が開放される各部分の第一相対配置と、空気が通過する流路が存在せず、チャンバー内に一定量の空気が閉じ込められるように開口部が閉鎖される、各部分の第二相対配置とに動かされる。ある変形例においては、当該部分(40)は他方の部分(30)に対して相対的に軸方向に可動である。他の変形例では、各部分は管状であり、一方の部分が他方の部分に対して相対的に回転可能である。他の変形例では開口部は端部閉鎖部にあり、端部蓋がその上に位置し、端部蓋は回転可能であり、開口部を合致させ、チャンバーを開放して、空気が通過するようにする。他の変形例では、一方の部分は他方の部分に対して相対的に枢動可能又は屈曲可能であり、それぞれの開口部を開放又は閉鎖する。他の変形例では、一方の部分は他方の部分の軸に対して横断方向の軸について回転可能であり、それぞれの開口部を開放又は閉鎖する。 (もっと読む)


【課題】均一又は不均一な流体組成、速度、及び温度のプロフィールを有する導管内の流体組成及び質量流量のリアルタイムで正確な測定値を取得するためのサンプリング方法及び装置を提供する。
【解決手段】少なくとも1つのサンプリングノズル又はサンプル孔を有する流体のための導管で使用されるサンプリング装置及び方法。収集されたサンプルは、マニホルドに導かれ、そこで分析が行われ流量が測定される。採取された流体は、導管に戻される。静圧制御システムは、真空ポンプ又は他の装置を使用してサンプルノズル収集マニホルドの静圧と導管の静圧とを等しくし、質量速度及び面積加重平均流体組成及び質量流量を達成する。 (もっと読む)


【課題】管体内のダストを効果的に除去することができるガス測定装置を提供する。
【解決手段】出口管14のガス導出口14aとは反対側の端部にはガス導出口14aに向けてパージエアを供給するパージエア供給口46を設けた。また、入口管13の煙道外に露出した部位のガス導入口13a寄りにはガス導入口13aに向けて斜めにパージエアを供給するパージエア供給口31を設けた。このため、出口管14はパージエア供給口46からガス導出口14a側へ流れるパージエアにより堆積した煤塵(ダスト)が除去される。一方、パージエア供給口31からパージエアを供給することによるエゼクタ効果により、パージエア供給口46からのパージエアが吸引され入口管13に分流する。入口管13はパージエア供給口31からのパージエア及び連結管15を介して流入したパージエアにより堆積した煤塵(ダスト)が除去される。 (もっと読む)


身体流体(bodily fluid)の組成を分析する装置。該装置は患者の身体流体との流体的連通を保持するよう構成された患者端末と、該患者から身体流体のサンプルを抜き取るよう間歇的に動作可能な少なくとも1つのポンプと、を有する流体ハンドリングネットワークを具備する。該装置は更に該サンプルの少なくとも1部分を分析し、2つ以上の被検体(analytes)の存在を測定するよう位置付けられた流体分析器を具備する。又患者内の身体流体の組成を分析する方法が開示される。該方法は患者の身体流体との流体的連通を保持するよう構成された流体ハンドリングネットワークを通して該患者の身体流体のサンプルを抜き取る過程を具備する。該方法は更に、該サンプル内の2つ以上の被検体の濃度を推定するために流体分析器内で該サンプルの該少なくとも1部分を分析する過程を具備する。
(もっと読む)


本発明は、流体精製デバイスを用いる製造プロセスにおける汚染物質濃度の監視に関する。本発明は、全プロセスにわたりプロセス流体流中に含まれる汚染物質を吸着させるために精製材料を用いるプロセス流体流中の汚染物質濃度を分析するための高感度方法を提供する。
(もっと読む)


【課題】製鉄所において取り扱うガスの分析析試料を注射器を用いて採集するガスサンプリングにおいて、分析精度が高く、しかも簡便なガスサンプリング装置およびガスサンプリング方法を提供する。
【解決手段】製鉄所において取り扱うガスの分析析試料を注射器を用いて採集するガスサンプリング装置であって、前記注射器入側の導通管に三方弁を設置することにより、前記注射器内部のガスを分析試料と置換することを特徴とするガスサンプリング装置およびガスサンプリング方法。 (もっと読む)


【課題】バックグラウンド計数値を正確に把握し、測定対象核種を高感度に測定する。
【解決手段】サンプル空気に含まれるダストを捕集する濾紙3と、ダストから放射される放射線を検出して電気パルス信号に変換する放射線検出器7と、電気パルス信号から得られる波高データから波高スペクトルを測定するスペクトル測定部8と、波高スペクトルの測定対象領域についてα線の計数値を求め、混入するラドン・トロンの娘核種のα線によるバックグラウンド計数値を推定して、前記計数値からバックグラウンド計数値を除去した正味計数値に基づいて測定対象核種の放射能濃度を演算する演算部9を備えている。尚、演算部9は、波高スペクトルに基づいてラドン・トロンの娘核種のスペクトルピークについてテールを指数関数で近似して、当該指数関数に基づいて前記バックグラウンド計数値を演算する。 (もっと読む)


【課題】 粒子捕捉手段で捕捉した粒子の高濃度化の効果を減殺することなく、粒子センサの正確なキャリブレーションを行うに十分な時間を確保できるセンサ配置位置を実現する。また、流速に依存しない出力値を得る。
【解決手段】 流体が流れる配管15の近傍または内部に第1粒子捕捉手段を設け、流れの方向16の下流側の配管15の近傍または内部に粒子センサ12および第2粒子捕捉手段28を配置する。第1粒子捕捉手段11によって流体内に存在する粒子17を所定時間捕捉し、これを解放すると共に第2粒子捕捉手段28による粒子17の捕捉を開始する。その後、粒子センサ12のキャリブレーションを実行し、観測領域18に到達した粒子17の数量を粒子センサ12で計量する。 (もっと読む)


【課題】
船舶バラスト水を環境基準に適合すべく殺滅する方法を含む、特に保守性・経済性に優れた船舶バラスト水処理方法の提供。一般の自然水を原水とした生物を殺滅した液体の製法の提供。
【解決手段】
濾過助剤には濾過中に生物が集中し、かつ、フィルタエレメント表面に比較的薄く延ばされた薄膜状となっているので、その状態で殺滅の熱エネルギー、電気エネルギーが効率よく付与できる。また殺滅のあとの死骸残渣を前工程で分離した清浄水と混合した液体をバラスト水として航行中貯留する。この混合水は生物を殺滅してあるので船舶貨物の搭載の際に排水可能である。 (もっと読む)


【課題】 有害微量物質濃度の測定が行われたときに、測定結果に対する信頼性を高めることができる有害微量物質のサンプリング方法と、排ガス中の有害微量物質の濃度検出をリアルタイムにかつ連続的に行うことができる有害微量物質の測定方法と、排ガス中の有害微量物質を法定値よりも低濃度に抑制することができる有害微量物質の抑制方法を提供する。
【解決手段】 一定速度vで吸収液が供給・排出される吸収液槽22内の吸収液中に、煙突8から抜き出した排ガスを供給して、その排ガス中の有害微量物質を吸収液中に吸収・捕集する。次いで、吸収液中の有害微量物質の濃度検出を、レーザ計を具備する分析器25を用いて連続的にかつリアルタイムに検出し、この検出結果に基づき、排ガス中の有害微量物質濃度を算出する。そして、排ガス中の有害微量物質濃度に基づいて、上流側ダクト5内の排ガスへの吸着剤の吹込み量をフィードバック制御する。 (もっと読む)


本発明は、ガスと接触するガスプローブ(1)の感度の高いセンサ要素(3)を少なくとも部分的に取り囲む少なくとも1つの保護装置(2)を備える、車両の内燃機関からの排気ガスを分析するためのガスプローブ(1)、特にラムダプローブに関する。少なくとも1つの保護装置(2)は、少なくとも部分的に吸湿面を有するガス接触面(4)を備える。
(もっと読む)


プロセス環境からガスを抽出するプローブ(S)は、管状要素(2)を備え、これは、前記プロセス環境内に配置される。この管状要素は、一端にガス吸引開口(TS)を有し、内部キャビティ(CA)が構成され、これにより、プロセス環境の内部は、ガス取り出しシステムと流体連通するようになっている。さらに、前記プローブは、第2の管状要素(1)を含み、これは、第1の管状要素(2)のキャビティの内部へのびている。この第2の管状要素は、吸引開口端部(即ち、プロセス環境側)に配置の一端(UG)を有し、これは、前記加速されたガス状流体を第1の管状要素(2)の吸引開口へむけ噴射し、そこから前記プロセス環境へ戻す構造になっている。また、前記プローブに結合できるプロセス環境からガスを引き抜くシステムが回路(40,C)を備え、これでプローブの第1の管状要素(2)のキャビティ(CA)を介してプロセス環境からガスを吸引し、更に、回路(50,C)を備え、これで、プローブの第2の管状要素(1)を介して同じプロセス環境へ前記ガスを噴射するようにするシステムも考えられる。 (もっと読む)


61 - 76 / 76