説明

Fターム[2G065BA02]の内容

Fターム[2G065BA02]の下位に属するFターム

Fターム[2G065BA02]に分類される特許

21 - 40 / 209


【課題】光励起によりテラヘルツ波を発生、検出する素子において低温成長半導体の歪みや欠陥がテラヘルツ波発生効率などを制限していた点を解決した光伝導素子等を提供する。
【解決手段】光伝導素子は、半導体低温成長層14を有し、半導体低温成長層14と半導体基板10との間に位置し且つ半導体低温成長層14よりも薄い半導体層11、12、13を有する。半導体低温成長層14は、半導体層11、12、13と格子整合し半導体基板10と格子整合しない半導体を含む。 (もっと読む)


【課題】活性化率が高く、毒性が低く、且つ制御が容易であるp型ドーパントを用いた量子型赤外線センサ用化合物半導体積層体を製造する方法を提供すること。
【解決手段】本発明による量子型赤外線センサを作製するための化合物半導体積層体は、基板に、n型コンタクト層、光吸収層、p型バリア層、及びp型コンタクト層が順次積層された積層体であって、前記光吸収層は、ノンドープのInSbと、p型ドーパントとしてSiがドーピングされた、GaSb、AlSb、及びAlGaSbからなる群より選択された一種とが周期的に積層された超格子構造体を有することを特徴とする。 (もっと読む)


【課題】検知すべき吸収波長帯に適したバンドギャップを有する光吸収層の材料を容易に、かつ、自由に設計することができ、InSb以外のバッファ層を用いることなく、各用途に応じた高感度な量子型赤外線センサを実現すること。
【解決手段】本発明による量子型赤外線センサを作製するための化合物半導体積層体は、基板に、n型コンタクト層、光吸収層、p型バリア層、p型コンタクト層が順次積層された積層体であって、前記光吸収層として、ノンドープまたはp型ドーピングされたInSbと、ノンドープまたはp型ドーピングされたGaSb、AlSb、AlGaSb、InAsのうちいずれか一つとが周期的に積層された超格子構造体を採用することを特徴とする。 (もっと読む)


【課題】受光量の変化にともなう温度変化を抑制できる赤外線固体撮像素子及びその駆動方法を提供する。
【解決手段】赤外線固体撮像素子20は、赤外線を検出する複数の赤外線検出画素21aが2次元方向に配列された画素エリア21と、画素エリア21から映像信号を読み出して映像信号出力線41に出力する読み出し回路22,23とを有する。読み出し回路22,23は、更に所定のタイミングで温度センサ13の出力を映像信号出力線41に出力する。 (もっと読む)


【課題】近赤外域〜遠赤外域にわたって高い受光感度を持ち、製造が容易であり、安定して高品質が得られる、受光デバイス、半導体エピタキシャルウエハ、これらの製造方法、および検出装置を提供する。
【解決手段】III−V族半導体基板と、III−V族半導体基板の上に位置し、(InAs/GaSb)が繰り返し積層された多重量子井戸構造の受光層3とを備え、III−V族半導体基板がInAs基板1であることを特徴とする。 (もっと読む)


【課題】照明光源が発光した光を受光して光学測定を行うときに、照明光源に熱のダメージを与えることなく正確に光学測定を行うことを目的とする。
【解決手段】本発明の光学測定装置は、LED8に対して電源部7が駆動電流を供給することでLED8を発光させる発光部2と、LED8が発光した光Lを受光してLED8の光学測定を行う測光部5と、発光部2と測光部5との間を接続し、発光部2の発光タイミングと測光部5の測定タイミングとを同期させるためのトリガ信号trigを伝送するトリガ信号伝送部20と、を備えている。これにより、光学測定を正確に行うことができ、LED8に対して作用する熱のダメージを軽減することができる。 (もっと読む)


【課題】フィルタ構造を用いずに所定の波長の光を選択的に検出できる半導体光素子および半導体光装置を提供する。
【解決手段】温度検知部と、温度検知部に熱的に接続された吸収部10とを含み、吸収部10に入射した光を検出する半導体光素子であって、吸収部10が、特定波長を表面に結合させる表面プラズモンを誘起するように表面にアレイ状に配置された凹部11および凸部を有し、特定波長の入射光の吸収量を、特定波長以外の入射光の吸収量より大きくする。また、複数の半導体光素子をアレイ状に配置する。 (もっと読む)


【課題】 光検知素子の検知効率を高めることが望まれている。
【解決手段】 基板の上に、複数の量子ドットを含む量子ドット層が配置されている。量子ドット層の上に、再入射構造物が配置されている。再入射構造物は、量子ドット層を通過した光を反射して量子ドット層に再入射させると共に、第1の方向の偏光成分を、第1の方向とは異なる第2の方向の偏光成分に変換して量子ドット層に再入射させる。 (もっと読む)


【課題】ショットキー・バリア・ダイオードを用いた熱型センサを使い、赤外線を検出して温度変化を測定するときに光電変換で起こる誤差を除去し、より正しい測定値を得る。
【解決手段】金属薄膜2とSOI層3とは、ショットキー・バリア・ダイオード(以下、ダイオード)1を形成している。熱型センサはダイオード1を用いて構成されている。制御手段6は赤外線発生源20からの光がダイオード1に当たっていない状態で、逆バイアスされているダイオード1に流れる電流値Aと、シャッタ22を開けて、赤外線発生源20から光がダイオード1に当たっている状態で、逆バイアスされているダイオード1に流れる電流値Bと、ダイオード1に光が当たっている状態としたまま、短絡状態にした時のダイオード1に流れる電流値Cを、電流計5に測定させる。そして、計算手段9は(電流値B−電流値C)−電流値Aなどの計算を行い熱型センサの温度変化を推定する。 (もっと読む)


【課題】有効なレベルである、対象試料のスペクトル情報を取得する時間をより短縮することができる。
【解決手段】予め決められた複数の試料の類型候補から対象試料の類型を選択する。また、画素111−6に入射した対象試料からの光に基づく画素111−6の出力レベルを測定する。また、対象試料の類型に関連付けられている、画素111−1〜111−5の出力レベルを調整するレベル調整パラメータの複数の候補から、対象試料の類型に関連付けられているレベル調整パラメータを選択する。また、選択したレベル調整パラメータと画素111−6の出力レベルから、画素111−1〜111−5のレベル調整量を算出する。また、画素111−1〜111−5に入射する対象試料からの光に対応する出力レベルを測定するとき、算出したレベル調整量を用いて出力レベルを調整する。 (もっと読む)


【課題】赤外線を受光又は放出することで発生する熱によって特性が変化するデバイスからなる赤外線センサーを備えた半導体集積回路において、赤外線センサーの直流電圧出力成分が周囲温度に依存しないようにする。
【解決手段】第1トランジスタM65は赤外線センサーS61と接地電位間に配置され、抵抗R62を介して電源Vddに接続された第2トランジスタM64は第1トランジスタM65に流れる電流に比例した電流を流す。第3トランジスタM66はダミーセンサーS62と接地電位間に配置され、抵抗R63を介して電源Vddに接続された第4トランジスタM67は第3トランジスタM66に流れる電流に比例した電流を流す。トランジスタM64と抵抗R62の間の端子を赤外線センサー出力端子Vout61とし、トランジスタM67と抵抗R63の間の端子をダミーセンサー出力端子Vout62とする。 (もっと読む)


【課題】画素毎のバンプが増加してもフリップチップボンディングを適切に行うことができる赤外線撮像装置を提供する。
【解決手段】複数の画素が配列した赤外線イメージセンサ100と、赤外線イメージセンサ100から信号を読み出す読み出し回路300と、赤外線イメージセンサ100と読み出し回路300との間に設けられた中継部材200と、が設けられている。複数の画素の各々には、互いに相違する波長の赤外線を吸収する複数の吸収層106、110と、複数の吸収層にバイアスを印加するバイアスバンプ159と、複数の吸収層毎に設けられた出力バンプ157、158と、が設けられている。出力バンプは、読み出し回路に設けられた入力バンプ302、303に接続され、バイアスバンプは、読み出し回路に設けられたバイアス供給バンプ304に、中継部材に設けられた中継配線207を介して接続されている。 (もっと読む)


【課題】欠陥を制御されたナノチューブを含み、物理または化学量を検出するためのセンサの提供することにある。
【解決手段】典型的なナノチューブ・センサ19は、信号処理回路21と接続して使用され、この信号処理回路21は、電力を供給し、そしてセンサからの信号を処理して、検出された量に比例した出力を生成する。ナノチューブは、シリコン酸化物などからなるベース・フィルム23上に配置され、ナノチューブの各端に電極25を含む。信号処理回路21は、限定されるものではないがひずみ、圧力、湿度および光などの検出された量を示す出力信号27を供給する。 (もっと読む)


【課題】 スペクトル線幅が狭い(コヒーレンス時間が長い)レーザ光のコヒーレンス時間を正確に測定する。
【解決手段】 遅延時間τの関数である被測定レーザ光のコヒーレンス関数γ(τ)を測定する場合に、被測定レーザ光(11)の光周波数を線形に掃引し(12)、掃引されたレーザ光を分岐し(131)、分岐された一方のレーザ光をサーキュレータ(14)により光ファイバ(15)に入射してレイリー散乱光を生じさせ、光ファイバ(15)で生じたレイリー散乱光と分岐されたもう一方のレーザ光とを合波し(132)、合波された光を受光して光電流を検出し(16)、検出された光電流を数値化してフーリエ変換し(17,18)、フーリエ変換された光電流値より、遅延0における振幅の標準偏差と遅延τにおける振幅の標準偏差とを算出し、両者の比により遅延τにおけるコヒーレンス関数の絶対値を求める(19)。 (もっと読む)


【課題】信号処理回路に対して斜めに入射することで遮光層により遮られない光によって、信号処理回路の動作が不安定にならないようにし、且つ遮光層に照射される光によって生じる浮遊電荷の影響で信号処理回路の動作が不安定にならないようにする。
【解決手段】受光素子36と受光素子36から出力される信号を処理する信号処理回路38とがSOI基板上に形成された光入射部12において、信号処理回路38上の配線層のうち最上層を、太陽光を遮光する遮光層42とし、遮光層42と電気的に接続される複数のコンタクトプラグ52が遮光層の端部に沿ってSOI基板の厚さ方向に積層される。複数のコンタクトプラグ52は、グランドもしくは遮光層に生じる浮遊電荷を引き抜くのに十分な電位とされている。 (もっと読む)


【課題】赤外線撮像装置の分解能を向上することができる赤外線イメージセンサ及び赤外線撮像装置を提供する。
【解決手段】赤外線イメージセンサ11には、複数個の第1の画素1aが配列した第1の赤外線検知層1と、第1の赤外線検知層1上方に形成され、複数個の第2の画素2aが配列した第2の赤外線検知層2と、複数個の第1の画素1aの各々から信号を出力する第1の出力部3と、複数個の第2の画素2aの各々から信号を出力する第2の出力部4と、が設けられている。平面視で、複数個の第2の画素2aの配列が、複数個の第1の画素1aの配列からずれている。 (もっと読む)


【課題】表面プラズモンを誘起し、検出したい波長での感度を増大させた赤外線検出装置を提供する。
【解決手段】多層に積層された量子ドット24のサブバンド間遷移を利用して赤外線を吸収する光吸収層200と、光吸収層200を挟むように設けられた下部電極27及び上部電極28を有する。上部電極28には、表面プラズモンを誘起して検出すべき波長における感度を増大させるための周期的な孔29が形成されている。 (もっと読む)


【課題】レンズ部以外の部位であるベース部を通して赤外線検出素子の受光面へ赤外線が入射するのを防止することが可能な半導体レンズ、半導体レンズの製造方法を提供する。
【解決手段】半導体レンズ3は、パッケージ2において赤外線検出素子1の受光面の前方に形成された矩形状の透光窓23を覆うようにパッケージ2の内側から配設される。半導体レンズ3は、赤外線検出素子1の受光面へ赤外線を集光するレンズ部3a以外の部位であるベース部3bの外周形状が矩形状に形成されている。また、半導体レンズ3は、透光窓23の内側に位置するベース部3bを通して赤外線検出素子1の受光面へ入射しようとする赤外線を吸収することで阻止する赤外線阻止層3cを備えている。赤外線阻止層3cは、不純物(例えば、ボロンなど)が高濃度ドーピングされた高濃度不純物ドーピング層により構成してある(つまり、赤外線阻止層3cをベース部3b内に形成してある)。 (もっと読む)


【課題】光センサーの受光面積の割合を大きくし、感度を向上させる。
【解決手段】第一電極11Aと、第一電極11Aの表面に成膜され、所定の波長の光を吸収することにより導電性が変化する光導電性膜12Aと、光導電性膜12Aの表面に成膜され、所定の波長の光を透過する第二電極13Aとを備える光センサー1Aである。 (もっと読む)


【課題】 2次元配列の検出アレイを有する赤外線固体撮像装置において、配線の段差形状等によって生じる配線抵抗値の差が引き起こす電圧分布偏りを抑圧することで、シェーディングを抑圧できるものを得る。
【解決手段】 温度検出器21が2次元配列された検出器アレイ2と、温度検出器21の一方の極を行毎に共通接続した行選択線42と他方の極を列毎に共通接続した列信号線41と、行選択線42を順次選択して画素用電圧供給源と接続する垂直走査回路7と、列信号線41を順次選択して撮像出力を出力する水平走査回路6とを備える赤外線固体撮像装置であって、垂直走査回路7は、入力端と出力端との電位を等しくするバッファ手段73を設け、前記画素用電圧供給源とそれぞれのバッファ手段73との接続線をアレイ配置したダミー検出器31の一方の極を共通接続したもので構成する。 (もっと読む)


21 - 40 / 209