説明

Fターム[2G065BA09]の内容

測光及び光パルスの特性測定 (19,875) | 検出素子、受光素子、受光器 (4,668) | 光電、熱電変換素子 (3,177) | 半導体 (1,206) | フォト(ホト)ダイオード (544)

Fターム[2G065BA09]に分類される特許

81 - 100 / 544


【課題】受光する光の強度にばらつきが生じたとしても、高精度に測定することができるイメージセンサ、分光装置、及びイメージセンサの作動方法を提供する。
【解決手段】イメージセンサ1は、入力用スイッチ22を介して受光素子21の接続された積分回路23、その出力電圧値が検出閾値を越えたときに検出信号Sを出力する電圧検出回路24、及び出力用スイッチ25を有する複数の光電変換部10と、ADC11と、入力用スイッチ22を閉状態に制御して検出信号Sが出力されたときにその入力用スイッチ22を開状態に制御し、入力用スイッチ22を閉状態に維持させた時間を電荷蓄積時間として測定すると共に、出力用スイッチ25を制御して光電変換部10ごとの出力電圧値を測定電圧値としてADC11から読み込み、各光電変換部10への入射光の強度を、電荷蓄積時間及び測定電圧値に基づいて演算する制御部12とを備えている。 (もっと読む)


【課題】本発明は、迷光による誤差を補正することによって、より精度よく残留輝度を測定し得る残留輝度測定装置および該システムを提供する。
【解決手段】本発明の残留輝度測定システム(残留輝度測定装置)Sは、遮光された蓄光標識MKの残留輝度を測定するものであって、蓄光標識MKを遮光する遮光部1Aと、遮光部1Aによって遮光された遮光域における所定の領域を測定域として前記測定域からの放射光を受光する測定部1Bと、遮光開始から互いに異なる複数の第1時間経過後に測定部1Bでそれぞれ受光された前記測定域からの放射光の複数の強度に基づいて、前記放射光に含まれる迷光の強度を迷光補正値として求め、測定部1Bで受光された前記測定域からの放射光の強度を前記迷光補正値で補正して、遮光開始から第2時間経過後における前記測定域の前記残留輝度を求める収集処理ユニット3とを備える。 (もっと読む)


【課題】検出された光子数を判定できるように構成された光子検出システムの提供。
【解決手段】検出システムは、アバランシェフォトダイオード51と、照明においてアバランシェによる信号がシステムの飽和値よりも小さいようにフォトダイオードの両端にバイアスを印加する手段と、アバランシェ信号の大きさを測定する手段と、を具備するようにしている。 (もっと読む)


【課題】単一光子検出器が被る1つの問題は、単一光子の検出により出力される信号は弱いことが多く、検出器出力の他のアーチファクトと区別するのが困難な場合がある。
【解決手段】単一光子を検出するように構成された光子検出器(APD51)と、光子検出器の出力信号を、第1の部分が第2の部分と実質的に同一である第1の部分と第2の部分とに分周する信号分周器(電力分配器55)と、第2の部分を第1の部分に対して遅延させる遅延手段(遅延線56)と、信号の第1の部分と遅延させた第2の部分とを、遅延させた第2の部分が出力信号の第1の部分における周期的変動を打ち消すために使用されるように合成する合成器(ハイブリッド結合器61)とを備える光子検出システム。 (もっと読む)


【課題】APDを用いる光強度測定方法において、APDの暗電流の影響が大きい極めて小さな入力光強度を精度よく測定する。
【解決手段】この光強度測定方法は、APD11が受けた入力光の強度を測定する方法であって、複数の周囲温度下でのAPD11の暗電流量を測定する第1ステップと、入力光をAPD11に入射させ、APD11の出力電流量を測定する第2ステップと、第2ステップのときの周囲温度に対応する暗電流量を出力電流量から減算した値を求めることにより、入力光の強度を得る第3ステップとを含む。 (もっと読む)


【課題】電磁放射検出デバイスを提供する。
【解決手段】電磁放射検出デバイスは、一つ以上のサブアセンブリ(300)にまとめられた複数の基本検出器(32、320)を含む。各サブアセンブリは複数の基本検出器(32、320)を含む。各基本検出器(32、320)は、相互接続部(32.1、320.1)によってインピーダンス整合デバイス(33)に接続されている。そして、インピーダンス整合デバイス(33)が、単一のサブアセンブリ(300)の全ての基本検出器(32、320)に共通であり、各サブアセンブリ(300)において、相互接続部(32.1、320.1)が略同一の抵抗値を有することを特徴とする。 (もっと読む)


【課題】製造が容易で、車両の周辺光および車両のウィンドシールドに付着した雨滴の検出精度を向上可能な光検出装置を提供する。
【解決手段】第1導光体30、第1受光素子、発光素子、第2導光体60および第2受光素子は、車両のウィンドシールドに取り付け可能なケースに収容されている。第1導光体30は、車両の周辺光を透過可能に設けられ、第2導光体60と接触可能な接触面35、および、当該接触面35とは異なる位置に突起状の第1溶着部36を有している。第2導光体60は、発光素子から射出された光およびウィンドシールドと車両外部との境界面で反射された光を透過可能に設けられ、第1溶着部36に対応する位置に突起状の第2溶着部68を有している。第1導光体30と第2導光体60とは、接触面35と接触面67とで接触しつつ、第1溶着部36と第2溶着部68とが熱溶着されることにより一体となっている。 (もっと読む)


【課題】入射光量に応じた高精度の値の電気信号を出力することができる光検出装置を提供する。
【解決手段】光検出装置1は、フォトダイオードPD,積分回路10,比較回路20,電荷注入回路30,計数回路40,第1保持回路51,第2保持回路52,増幅回路60,AD変換回路70および選択回路80を備える。積分回路10は、アンプA10,積分容量素子C10,第1スイッチSW11,第2スイッチSW12および第3スイッチSW13を有する。スイッチSW12,SW13の開閉動作により、電荷注入回路30による電荷注入の際の積分回路10の出力電圧値V10の変化量が求められる。 (もっと読む)


【課題】外乱赤外線をより適切に遮断することができ、画像劣化を抑制することができる赤外線撮像装置を提供する。
【解決手段】半導体基板1の表面には、空洞部1aの開口を覆うように面状に遮蔽膜7及び反射膜8が形成されている。即ち、遮蔽膜7は、半導体基板1における光学系150と対向する面に、機械的でかつ熱的に接続されている。反射膜8は、遮蔽膜7の表面の全体を覆うように形成されている。撮像画素開口101aは、遮蔽膜7及び反射膜8に空けられている。遮蔽膜7及び反射膜8は、撮像画素開口101aで、光学系通過赤外線152のみを空洞部1a内の温度検出部5へ通す。遮蔽膜7及び反射膜8は、これらの面全体における撮像画素開口101a以外の箇所で、外乱赤外線を遮断・反射する。 (もっと読む)


【課題】CdSセンサ、光電子管等に代えて、フォトIC等、半導体素子等の光センサを用いた場合に、火炎が発する光の検出に関して、安定した性能を確保することが可能な火炎センサ、火炎検出装置、及び燃焼装置を提供すること。
【解決手段】バーナが発する火炎を検出する火炎センサ42であって、前記火炎が発する光を検出する光センサ43と、前記光センサ43の検出部43C側に配置され前記火炎が発する光を集光するレンズ44と、前記レンズ44の光軸方向において、前記レンズ44と前記光センサ43の間に配置され、前記レンズ44を通過した光を前記光センサ43側に反射するように構成された反射部46とを備えることを特徴とする。 (もっと読む)


【課題】微弱な光パルスであっても、光増幅器を使用することなく、高い時間分解能で光パルスを検出することができる時間ゲート付き光検出装置およびこれを用いた多点計測システムを提供する。
【解決手段】時間ゲート付き光検出装置は、所定の変調周波数で光パルスを発生するレーザ光源LAと、レーザ光源LAからの自然放出光の強度を検出するための光検出器PDと、レーザ光源LAからの光パルスと同期した被測定光パルスをレーザ光源LAへ注入するための光カプラCP1と、光パルスと被測定光パルスとの間の時間差を調整するための可動ミラーMRと,光パルスと被測定光パルスの偏光状態を揃えるための偏波コントローラなどで構成される。 (もっと読む)


【課題】上下機構の製造タクト増加を抑えると共に、精度のよい発光測定ができる。
【解決手段】LEDチップ2をセットしてLED素子4を発光駆動可能とする台座3と、LED素子4からの発光を反射させる反射筒部5と、反射筒部5からの光を拡散して均一な光に変換する拡散板8と、拡散板8からの拡散光を受光素子6により受光してLED素子4の発光量を検査する受光・検査装置7とを有し、発光量の検査時に、電磁石52による電磁吸着力により反射筒部5を上方に移動させてLED素子4側と受光素子6側とを反射筒部6および拡散板8を介して光漏れなくカバーする。即ち、反射筒部5の上端開放側と、これに対向する拡散板8の拡散領域外周側とを光漏れなく電磁石52による電磁吸着力により吸着させる。 (もっと読む)


【課題】従来技術よりも簡便な構成により高速性が向上された光子検出器を提供すること。
【解決手段】APD701からの電圧信号と、パルス電源703からのゲート電圧印加時刻を示す信号とが光子入射判別手段704に入力され、光子入射判別手段704において、APD701からの電圧信号のうちのゲート電圧の微分波形電圧とAPD701に対する光子入射による光子入射信号とをゲート電圧印加時刻を用いて判別する。そして、ゲート電圧印加時刻を含まない光子検出時刻のみを示す信号を出力する。光子入射判別手段704は、入力された信号が所定の閾値を超えたときに信号パルスを出力する閾値回路を有する。ここで、所定の閾値は、ゲート電圧の微分波形電圧のピーク値および光子入射信号のピーク値よりも小さく設定する。このように閾値が小さくても、上記構成によれば正しく光子入射が検出できる。 (もっと読む)


【課題】検出対象の物体が透明部材の場合にも、物体の検出を確実に行う。
【解決手段】透明部材が基本位置に配置されて検出領域内を通過した場合の当該透明部材に相当する基準線に対して、基準線の法線となす角が所定の角度である光を投光する第1の投光部1aと、検出領域を介して第1の投光部により投光された光を受光する第1の受光部2aと、基準線に対して、法線となす角が所定の角度であり、かつ、法線を挟んで第1の投光部による光と交差する光を投光する第2の投光部1bと、検出領域を介して第2の投光部により投光された光を受光する第2の受光部2bと、第1,2の受光部により受光された受光量に基づいて、検出領域での透明部材の有無を検出する判定部3とを備える。 (もっと読む)


【課題】干渉フィルタを用いて高い精度で所望の分光応答度特性を得ることのできる測光機器の受光装置を提供する。
【解決手段】測定目的に応じた所定の分光応答度特性を有するように設計される測光機器の受光装置10である。入射光を拡散する拡散板12と、その拡散板12により拡散された入射光の波長成分を制限する干渉フィルタ15と、その干渉フィルタ15と拡散板12との間に配置され、干渉フィルタ15の入射面15bにおける入射光の入射角度を制限する入射角度制限部材(14)と、を備える。 (もっと読む)


【課題】操作者の負担の小さい残留輝度測定装置および残留輝度測定システムを提供する。
【解決手段】遮光された蓄光標識100の測定域の残留輝度を測定する残留輝度測定装置Sは、蓄光標識100の測定域からの放射光を受光するSPD21と、SPD21を制御し、測定開始から所定時間経過後までの測定域からの放射光をSPD21で測定するとともに、SPD21で測定された測定値を記憶する処理回路22と、SPD21と処理回路22とを納める測定ユニット20および遮光ユニット10を備えるハウジングとを備え、前記ハウジングは、SPD21が蓄光標識100の測定域に対向し、前記測定域が周囲光から遮光されるように、蓄光標識100に脱着可能に固定するための固定手段を装着する固定部としての領域1Aを有する。 (もっと読む)


【課題】フォトダイオードの接続段数の増加を抑えながら、より大きな出力電圧を得ることができる赤外線センサを提供する。
【解決手段】赤外線エネルギーを電気信号に変換して取り出す赤外線センサ1において、赤外線エネルギーを電気信号に変換する受光部2、受光部2が赤外線エネルギーを受光したことによって励起された電荷に対してローレンツ力を加えるように作用する磁場を発生させる磁石7、磁性体6、リードフレーム3を設け、磁石7、磁性体6、リードフレーム3によって電荷の移動する方向と直交する方向にローレンツ力を加える。 (もっと読む)


【課題】表示素子を有する多光軸光電センサの小型化を図る。
【解決手段】多光軸光電センサは、対向配置される投光器10及び受光器20を有する。受光器20は、複数の受光素子22a〜22lと、複数の表示灯31a〜31dと、受光用シフトレジスタ26a〜26cと、投受光駆動信号SI0と表示駆動信号SIa〜SIdとクロック信号SCとを出力する受光制御回路23と、クロック信号SCを受光用シフトレジスタ26a〜26cとに入力するためのクロック信号線28bと、駆動信号SI0,SIa〜SIdを受光用シフトレジスタ26a〜26cに入力するための駆動信号線27aとを備える。表示灯31a〜31dが接続される表示用シフトレジスタ33は、クロック信号線28b及び駆動信号線27aに分岐接続される。受光制御回路23は、受光素子22a〜22lに表示駆動信号SIa〜SIdが転送されるタイミングでの受光信号S1〜S3を無効化する。 (もっと読む)


【課題】微弱な赤外線光を高感度、高S/N比で検出することができる赤外線センサを提供する。
【解決手段】基板1上に形成された半導体材料を含む第1メサ部40、第1メサ部40と極性が異なる半導体材料を含む第2メサ部43を含む複数のフォトダイオードを含む赤外線センサを、複数のフォトダイオードの全てについて、フォトダイオードが占有する基板面積SWと、第1メサ部40と第2メサ部43との接触面積S12とが、0.7≦(S12/SW)≦0.98の関係になるように構成する。 (もっと読む)


【課題】光電流及び素子抵抗をともに大きくできるようにすること。
【解決手段】本発明の赤外線センサ100は、第1の光吸収層103及び第2の光吸収層106によって吸収された赤外線を光電流に変換するPNダイオードをトンネル接合によって直列接合させた構造である。半導体基板101上に設けられた第1のn型化合物半導体層102と、その上に設けられた第1の光吸収層103と、その上に設けられた第1のp型ワイドバンドギャップ層104と、その上に設けられた第2のn型化合物半導体層105と、その上に設けられた第2の光吸収層106と、その上に設けられた第2のp型ワイドバンドギャップ層107と、その上に設けられたp型キャップ層108と、第1のn型化合物半導体層102上及びp型キャップ層108上に電極110,109を備えている。 (もっと読む)


81 - 100 / 544