説明

Fターム[2H150AB03]の内容

光ファイバ、光ファイバ心線 (14,865) | 光ファイバの材料 (2,524) | コア、クラッド (2,447) | ガラス (1,712) | 石英系 (1,507)

Fターム[2H150AB03]の下位に属するFターム

Fターム[2H150AB03]に分類される特許

61 - 80 / 234


【課題】本発明は、スキュー光を低減させると同時に、励起光を効率よく導入できるダブルクラッドファイバを提供する。
【解決手段】レーザ媒質を含むコア11と、コア11への励起光を伝播するインナークラッド12と、励起光を閉じ込めるアウタークラッド13を備え、インナークラッド12は、励起光が導入される略円形の断面形状を持つ励起領域12bと、コア11を含む概円形の断面形状を持つ発振領域12aから成り、励起領域12bと発振領域12aの接合部分14の幅が長さ方向に沿って変化させたものである。 (もっと読む)


【課題】比較的簡単に、クラッドモード除去部を精度良く加工するとともに信頼性を向上させた光ファイバの加工方法を提供する。
【解決手段】ファイバ本体11をコア15を中心に周方向に回転させ、回転中のファイバ本体11のクラッド20に対してレーザを照射する。これにより、クラッド20の外周面にリング溝状のクラッドモード除去部21を形成する。そして、ファイバ本体11に対するレーザの照射位置をファイバ本体11の長手方向に変更してレーザを照射することで、ファイバ本体11の長手方向に間隔をあけて複数のクラッドモード除去部21を形成する。 (もっと読む)


高出力・シングルモード・ファイバ・レーザ・システムは、同じ広さに延在しているマルチモードコア(MM)及びMMコアの周囲のクラッドを含むアクティブファイバを有して構成されている。MMコアは、希土類及び遷移金属から選択される1つ以上のイオンによってドープされ、本開示の1つの態様にかかるボトルネック状の断面を有する。ボトルネック状の断面は、比較的小さい一様に寸法決めされた入力端部領域と、截頭錐状の領域と、比較的大きい一様に寸法決めされた増幅領域とを含む。MMコアのステップ屈折率は、基本モードのガウシアン電界分布を阻害せず、段階的に基本モードのガウシアン電界分布をリング分布に変換し、増幅領域に沿ってリング分布をサポートするように、入力領域に沿って成形されて寸法決めされた中央窪みを有して構成されている。さらなる態様によれば、コアは、リング電界分布を、さらなる変形なしで出力端部領域によってサポートされるガウシアン電界分布に段階的に成形する窪みを有する出力変換領域をさらに備えている。様々なエンド及びサイドポンプ構造が第1及び第2の態様にしたがって構成された構造で使用される。
(もっと読む)


【課題】優れた強度を有し安価に製造することができる光ファイバ、および、そのような光ファイバを製造することができる方法を提供する。
【解決手段】光ファイバ1は、石英ガラス系の光ファイバであって、コア領域11と、このコア領域11を取り囲む光学クラッド領域12と、この光学クラッド領域12を取り囲むジャケット領域13とを含む。ジャケット領域13は内周部から外周部に亘って略均一な組成である。ジャケット領域13の最外周部に圧縮応力が残留した圧縮歪層が形成されている。 (もっと読む)


【課題】
光信号の伝送特性を向上させ、且つ断線時における海水侵入箇所の交換コストの削減が可能な光ファイバ及びその製造方法の提供を目的とする。
【解決手段】
中心軸領域に設けられたコア2と、コア2の外周に設けられ、コア2よりも小さい屈折率を有する内部クラッド層3と、内部クラッド層3の外周に設けられ、複数の長孔状の気泡5を有する気泡層4と、内部クラッド層3の外周に設けられ、コア2と同等の若しくはコア2より小さい屈折率を有する外部クラッド層6とを有し、気泡5の長さが200m以下であることを特徴とする光ファイバ1である。 (もっと読む)


【課題】実用上問題にならない値以下の曲げ損失に維持しつつ、モードフィールド径を大きくすることができると共に、カットオフ波長を短波長側にすることができる光ファイバを提供する。
【解決手段】本発明に係る光ファイバ1は、コア10と、コア10の周囲に形成されたクラッド20と、クラッド20中に、コア10の軸心方向に延びるように形成された複数の空孔を含む空孔領域とを備え、空孔領域は、コア10の周囲に形成された複数の空孔220を含む第1の空孔領域22と、第1の空孔領域22の周囲に形成され、複数の空孔240を含む第2の空孔領域24とを有し、第1の空孔領域22の単位断面積あたりの空孔220の数が、第2の空孔領域24の単位断面積あたりの空孔240の数よりも少ない光ファイバが提供される。 (もっと読む)


光ファイバの多段階膨張化を実施する方法が説明され、該方法は、断熱条件がファイバ全体で維持されるように連続的な膨張化工程を実施する工程を含む。このように多段階膨張された光ファイバを用いる様々な光デバイスならびにその光デバイスの製造方法もまた説明される。
(もっと読む)


【課題】水素処理や酸素処理をしなくても、光ファイバ中を伝送する紫外光の透過率に優れた光ファイバ、その作製に用いられるクラッド材の提供。
【解決手段】石英ガラスからなる光ファイバであって、光ファイバ中を伝送する光の光ファイバ1mあたりの内部透過率が波長193nmの光について65%以上かつ波長180nmの光について25%以上であり、平均H2濃度≦1×1016個/cm3であることを特徴とする光ファイバ。石英ガラスからなるチューブ状のクラッド材であって、平均OH濃度≦10ppm、平均F濃度≧7000ppm、平均O2濃度≦1×1016個/cm3、平均H2濃度≦1×1016個/cm3、平均ODC(I)濃度≦1×1013個/cm3、平均ODC(II)濃度≦1×1012個/cm3、平均NBOHC濃度≦2×1014個/cm3、平均E´センター濃度≦2×1014個/cm3であることを特徴とするクラッド材。 (もっと読む)


【課題】広い波長帯域内の任意の波長の信号光を波長が異なる変換光として高い変換効率で出力する。
【解決手段】光ファイバ型デバイス1は、第一の波長帯域内に含まれる波長λの信号光を入力し、第二の波長帯域内に含まれて波長λとは異なる波長λの変換光を発生し、ポンプ光を出力するポンプ光源21と、信号光とポンプ光とを合波して出力する光合波器40と、光合波器40により合波されて出力された信号光及びポンプ光を入力して導波し、その導波の間に生じる非線形光学現象によって変換光を発生する光ファイバ10と、を備え、ポンプ光の波長は、2×(1/λ+1/λ−1により求められる波長であり、光ファイバ10の零分散波長は第一の波長帯域内に含まれ、零分散波長における分散スロープが+0.01ps/nm/km以上+0.045ps/nm/km以下であり、光ファイバ10の長さが450m以下である。 (もっと読む)


モノリシック・ファイバは、所与の波長での実質的に基本モードのみをサポートすることができ、且つ両側の端領域、それぞれの端領域から内向きに走る円錐台形に形状設定された変換部領域、及び変換部領域にブリッジをかける中央の一様な寸法にされた領域を有する、二重のボトルネックをもつ形状にされたマルチモード(MM)コアを備えるように構成される。MMコアは、ファイバの長さに沿って変化する幅を有する中央に位置決めされた凹部を備えるように構成される、ステップ型屈折率プロフィールを有する。凹部の幅は、ガウス・プロフィールをもつ基本モードのみをサポートするようにMMコアの端領域では比較的小さい。凹部は、入力変換部領域に沿って大きくなっていくのに伴って、徐々に形状がガウス・プロフィールから基本モードのリング・プロフィールになり、これはMMコアの中央領域に沿ってガイドされる。凹部は、形状がリング・プロフィールからMMコアの出力端領域から放射される基本モードの実質的にガウス・プロフィールに戻るように、出力遷移領域に沿って徐々に小さくなる。屈折率プロフィールは、1つ又は複数のレアアース元素がドープされ且つ実質的に基本モードのみを増幅するように構成されたリング領域を有する。
(もっと読む)


【課題】光ファイバのコア部内へ紫外線光を効率良く閉じ込めて伝送できること、透過率の高い光ファイバ材料で構成した光ファイバを提供すること、そして光ファイバ内に入射した紫外線光によって生じる劣化(吸収損失の増大)を少なくすることができる光ファイバの構造を提供すること。
【解決手段】高屈折率の円形状のコア部とその周りを覆う低屈折率のクラッド部とからなる光ファイバにおいて、前記コア部に少なくともSi−H基とOH基とを含有しているSiONを用いたことを特徴とする。 (もっと読む)


【課題】0次光成分を極力少なくし、透過±1次光の回折効率を極力多くして、転写した光ファイバー等の光導波路の回折格子の反射スペクトル中にノイズが発生しないようにした回折格子作製用位相マスクを提供する。
【解決手段】光ファイバー22に対して、相互に平行で断面略矩形の凹溝26と凸条27の繰り返しパターン面28を向けて配置され、繰り返しパターン面28とは反対側の面から露光光23を照射し、0次光25Aを5%以下に抑え、透過±1次光25B、25Cによる所定ピッチの干渉縞を露光して回折格子を作製する。凹溝26の深さdが露光光の位相を3πラジアン近傍にずらすようにすることにより、その位相をπラジアン近傍にずらす場合より、透過±1次光の回折効率あるいは透過0次光に対するコントラストを高くすることができる。 (もっと読む)


高速通信システムに用いられる、レーザ光源の波長分布および放射パターンを補正するための改善されたマルチモード光ファイバケーブルが設計される。改善されたマルチモード光ファイバケーブルは、波長依存性のVCSEL極性放射パターンを補正し、モード分散を低減する。ビット誤り率(BER)システム性能の改善、および/または高帯域光チャンネルリンクにおけるより広い届く範囲の達成を可能にする改善されたマルチモード光ファイバケーブル内部のモード分散を低減する技術が開示される。モード分散を最小化する改善されたマルチモード光ファイバケーブルの設計および製造には相当な努力が払われ、レーザ内の波長依存性の極性放射パターンの影響は無視される。材料分散効果はモード分散に顕著な影響を及ぼし、そして標準放物線屈折率プロファイルを修正することにより材料分散効果を補正し、全体のモード分散を低減することができる。
(もっと読む)


【課題】短尺な光ファイバで大きな遅延量を発生させ、波長分散と分散スロープの補償が可能である信号光の可変遅延発生装置を提供することにある。
【解決手段】送信機11と受信機12との間に配置された第1の光ファイバ13および第2の光ファイバ14と、送信機と第1の光ファイバとの間に配置され、前記信号光の波長を第1の光ファイバの累積分散値がB(ps/nm)であり、累積分散スロープ値がC(ps/nm2)である波長に変換する波長変換器15と、第1の光ファイバと第2の光ファイバとの間に配置され、第2の光ファイバの分散値がD(ps/nm/km)であり、分散スロープの符号が前記累積分散スロープ値Cと異なる波長の位相共役光に変換する位相共役光発生器16とを具備し、第1,第2の光ファイバが、共に通信波長領域600nm〜1700nmにおいて下に凸となる波長分散特性を有する。 (もっと読む)


発明はガラスファイバ及びガラスファイバを封入する3層以上の被覆を有する光ファイバに関し、3層以上の被覆は、ガラスファイバに接している一次被覆、一次被覆を囲む1層以上の中間被覆及び中間被覆を囲む二次被覆を含む。3層被覆系及び4層被覆系のいずれも改善されたマイクロベンディング性能を与えることが説明される。
(もっと読む)


【課題】通常の光ファイバと融着接続した場合の接続損失を低減することができるフォトニック結晶ファイバを提供する
【解決手段】フォトニック結晶ファイバ1は、石英ガラスからなり、コア領域11と、このコア領域11を取り囲むクラッド領域12とを備え、ファイバ軸に沿って一様な屈折率分布を有する。クラッド領域12は、ファイバ軸に垂直な断面において低屈折率背景領域14中に高屈折率領域13が三角格子状に周期的に配列された二次元周期構造を有する。コア領域11は、断面の中央部において二次元周期構造の欠陥(すなわち、二次元周期構造の中央部の或る格子点における高屈折率領域の不存在)の位置にあり、高屈折率コア領域15および低屈折率コア領域16を有する、コア導波モードの実効屈折率は低屈折率背景領域14の屈折率より高い。 (もっと読む)


【課題】本発明の目的は、斜めに切断された光ファイバを調芯して光学部品に融着接続するときに、融着接続前と融着接続後の出力光の観測値の変化を小さくする技術を提供することである。
【解決手段】本発明の光ファイバモジュールは、光ファイバ、ガラスロッド、光学部品を備える。光ファイバは、法線方向が、光軸とあらかじめ定められた角度だけ異なる端面を有する。ガラスロッドは、光ファイバに融着された第1端面と、光軸と法線方向が一致する第2端面とを有する。光学部品は、ガラスロッドの第2端面に融着されたガラス端面を有する。そして、ガラスロッドと光学部品のガラス端面との屈折率の差があらかじめ定められた範囲である。 (もっと読む)


【課題】 光の伝送損失を抑制することができるフォトニックバンドギャップファイバの製造を可能とするフォトニックバンドギャップファイバ用母材を提供する。
【解決手段】 フォトニックバンドギャップファイバ用母材の製造方法は、光ファイバのコアとなる柱状のコアガラス体10、及び、光ファイバのクラッドとなりコアガラス体を被覆するクラッドガラス体20を連続して形成し、中間母材110とする形成工程と、コアガラス体10の長手方向に沿ってクラッドガラス体20に孔30をあける孔あけ工程と、クラッドガラス体20の屈折率よりも屈折率が高い高屈折率部41が、クラッドガラス体と同じ屈折率の外側層42により被覆された複数の2層ガラスロッド40を孔30に挿入する挿入工程と、2層ガラスロッド40が孔30に挿入された中間母材110を加熱して、中間母材110と2層ガラスロッド40とを一体化する加熱工程とを備える。 (もっと読む)


【課題】 高帯域アプリケーション向けの広帯域を可能にするために、クラッド効果を低減させる。
【解決手段】 外側光学クラッドで取り巻かれた光学コアを含むマルチモード光ファイバであって、この光学コアが、その中心から周縁まで、半径(r1)を持ち、かつ上記外側光学クラッドに対してアルファインデックス形屈折率分布を呈する中心コアと、上記中心コアの周縁にあって、幅(wt)と、上記外側光学クラッドに対する屈折率差(Δnt)を持つディプレスト・トレンチとを含み、上記中心コアの直径が50±3μmの値を持ち、また、上記ディプレスト・トレンチの幅(wt)が0.5μm〜2μmであり、さらに、上記外側光学クラッドに対する上記ディプレスト・トレンチの屈折率差(Δnt)が−4×10−3〜−1×10−3であるようなマルチモード光ファイバ。 (もっと読む)


【課題】微細なシリコン細線による光回路にも対応可能な光ヒューズを提供する。
【解決手段】光ヒューズは、対象とする光に対し、線形吸収の光吸収量より2光子吸収による光吸収の方が大きい材料から構成されたコア101と、クラッド102とからなる光導波路より構成されたものである。例えば、コア101は、シリコンから構成され、クラッド102は、酸化シリコンから構成されている。このように構成された光ヒューズによれば、光ヒューズを透過できる光強度が制限できるようになる。光ヒューズの長さをLとし、コア101における2光子吸収における吸収係数をβとすると、光ヒューズを透過できる光強度は、1/(βL)より大きくなることはない。従って、対象とする光の波長に適合するように、光ヒューズの長さを設定すれば、光ヒューズを透過できる光強度を、所望の状態に制限できるようになる。 (もっと読む)


61 - 80 / 234