説明

Fターム[3C081EA02]の内容

マイクロマシン (28,028) | 用途 (3,912) | センサ (751) | 速度、加速度センサ (475)

Fターム[3C081EA02]に分類される特許

61 - 80 / 475


【課題】プロセス数を増大させることなく、応力を緩和できる構造を有する半導体装置を提供する。
【解決手段】一方の面に埋め込み酸化層と半導体層がこの順で積層される半導体基板10を加工して作製され、前記一方の面側で他の基板に接合される半導体装置であって、前記埋め込み酸化層及び前記半導体層を加工して形成される半導体素子20と、前記埋め込み酸化層及び前記半導体層を加工して形成され、前記半導体素子に接続される配線部と、前記配線部の端部に連続する前記半導体層によって構成され、当該半導体層の下側の埋め込み酸化層が除去されて前記半導体基板との間に空隙が形成されるパッド部40と、前記パッド部と前記他の基板を接合する接合部とを含む。 (もっと読む)


【課題】小型化が可能な加速度センサーを提供する。
【解決手段】基板と、基板上に位置する第1の電極層と、第1の電極層の第1の面と対向して位置する第2の電極層と、第2の電極層を基板に支持する支持部と、を含み、第2の電極層は、上記第1の面に沿った方向に動くことができ、支持部は、第2の電極層が上記第1の面に沿った方向に動くことができるように第2の電極層を基板に支持する。これにより、感度と精度を確保しつつ、基板の面に垂直な方向における加速度センサーの厚みを低減し、加速度センサーを小型化することができる。 (もっと読む)


【課題】従来に比べて高精度での製作及び組み立てが不要である加速度センサを提供する。
【解決手段】基板1と、変位可能に基板に支持され可動電極12を有する変位部材3,7と、可動電極との間に静電力を発生させる第1固定電極11とを備えた加速度センサであって、上記第1固定電極は、基板の厚み方向に直交する方向において可動電極に対向して基板に支持され、加速度の作用により可動電極に対向する面積が変化する。 (もっと読む)


【課題】端面実装センサを提供すること。
【解決手段】回路基板上に側面実装するためのセンサデバイス・パッケージを作るセンサパッケージおよび方法。シリコンの機械層(25)中のセンサデバイスは、第1と第2のガラス層(24、26)の間にサンドイッチ状に挟まれてウェーハを作る。シリコンの機械層の予め定められた領域を露出させるために、第1のビア(30)が第1または第2の層に作られる。第2のビア(102)が、第1または第2の層に作られる。少なくとも1つの第2のビアは、第1のビアの深さ寸法よりも小さな深さ寸法を有する。機械層の露出領域と第2のビアの一部の間に金属トレース(70、72)が付けられる。ウェーハは、第2のビアが2つの部分に分けられるようにスライスされ、それによってセンサダイが作られる。次に、センサダイは、スライスされた第2のビアのところで回路基板に電気的かつ機械的に結合される。 (もっと読む)


【課題】 基板に沿った方向に相対的に移動可能な一対の対向電極を有するMEMSデバイスにおいて、他方の対向電極の下端部を削ることなく、一方の対向電極の下端部を短く削ることが可能な技術を提供する。
【解決手段】 本発明の製造方法は、半導体ウェハを準備する工程と、半導体ウェハの下側表面から第1導電体層と絶縁体層を貫通して第2導電体層に達する第1溝部を形成する工程と、前記第1溝部に導電体からなる保護部を形成する工程と、半導体ウェハの上側表面にレジストパターンを形成する工程と、反応性イオンエッチング法により第2導電体層に一対の対向電極を形成する工程と、反応性イオンエッチング法を継続して一方の対向電極の下端部を削る工程と、絶縁体層を選択的に除去する工程を備えている。その製造方法では、前記第1溝部は一対の対向電極が対向する方向に関して他方の対向電極の両側面の外側に配置されている。 (もっと読む)


【課題】簡便な方法でありながら狭間隔へもガラスが埋め込まれやすくなるガラス埋込シリコン基板およびその製造方法を提供する。
【解決手段】ガラス埋込シリコン基板の製造方法は、シリコン基板10に凹部11を形成する工程と、凹部11に粉末状、ペースト状または前駆体溶液であるガラス材料20aを充填する工程と、ガラス材料20aを加熱して軟化させる工程と、軟化させたガラス材料20aを焼結させる工程と、凹部11にガラス材料20aが充填されたシリコン基板10の表裏面においてガラス材料20aとシリコン基板10とを露出させる工程とを備える。 (もっと読む)


【課題】熱により誘起された高ひずみおよび測定精度の低下を生じないMEMSセンサを提供する。
【解決手段】
微小電気機械システム(MEMS)センサ20は、基板26と、基板26の平坦面28に形成されたサスペンションアンカー34、36とを備える。MEMSセンサ20は、基板26上に吊らされる、第1可動素子および第2可動素子をさらに備える。可撓性部材42、44が第1可動素子38をサスペンションアンカー34に相互接続し、可撓性部材46、48が第2可動素子40をサスペンションアンカー36に相互接続する。可動素子38、40は同一の形状を有する。可動素子は矩形または入れ子構成におけるL形状可動素子108、110であってよい。可動素子38、40は、基板26における点位置94の周りに互いに回転対称に配向される。 (もっと読む)


【課題】デバイス特性に影響を与えてしまうのを抑制することのできる静電容量式デバイスの製造方法および静電容量式デバイスを得る。
【解決手段】固定側基板2aの両面に露出するようにシリコンを貫通させて形成した貫通シリコン23a、23b、24a、24bを固定電極20a、20b、21a、21bとし、貫通シリコン23a、23b、24a、24bの外側露出面に金属膜25を成膜するとともに、固定側基板2aの表面における貫通シリコン23a、23b、24a、24bの外側露出面以外の部位に金属膜25と離間するように金属膜26を成膜する。そして、可動体基板1と固定側基板2aとを陽極接合する際に、金属膜25,26を用いて、固定側基板2aと可動体基板1との間に電位差を設ける一方、貫通シリコン23a、23b、24a、24bと可動体基板1とが同電位となるようにした。 (もっと読む)


【課題】精度、小寸法、及びコスト効率的な製造を可能とするMEMSセンサ設計を提供する。
【解決手段】一態様では、微小電気機械システム(MEMS)センサは、複数のセグメントを有するジグザグ形のねじりばね(トーションばね)を備え、該ねじりばねは、可動要素すなわちプルーフマスを、その下にある基板の上に懸架している。さらなる一態様では、この複数のセグメントを有するジグザグ形のねじりばねは、熱によって誘起される応力による測定誤差を最小化するべく配向される。係るジグザグ形のねじりばねを有するMEMSセンサは、既存のMEMS製法を用いて製造可能である。 (もっと読む)


【課題】機械的構造体の適切な、向上した及び/又は最適な動作のための制御された又は制御可能な環境を含むMEMSを提供する。
【解決手段】機械的構造体の少なくとも一部の上に犠牲層を堆積させ、該犠牲層の上に第1の封止層を堆積させ、犠牲層の少なくとも一部を露出させるように第1の封止層を貫通して少なくとも1つのベントを形成し、犠牲層の少なくとも一部を除去してチャンバを形成し、少なくとも1つの比較的安定したガスをチャンバに導入し、少なくとも1つのベント上又は少なくとも1つのベント内に第2の封止層を堆積させ、これにより、チャンバをシールし、この場合、前記第2の封止層が、半導体材料である。 (もっと読む)


【課題】微小電気機械システム(MEMS)装置のためのシステムおよび方法を提供すること。
【解決手段】一実施形態では、第1の基層と、第1の基層に接合される第1のデバイス層であり、第1の組のMEMSデバイスを含む、第1のデバイス層と、第1のデバイス層に接合される第1の上部層であり、第1の組のMEMSデバイスが密閉して分離される、第1の上部層とを含む第1の二重チップをシステムは備える。第2の基層と、第2の基層に接合される第2のデバイス層であり、第2の組のMEMSデバイスを含む、第2のデバイス層と、第2のデバイス層に接合される第2の上部層であり、第2の組のMEMSデバイスが密閉して分離され、第1の上部層の第1の上部表面が第2の上部層の第2の上部表面に接合される、第2の上部層とを含む第2の二重チップをシステムはさらに備える。 (もっと読む)


【課題】3層チップスケールMEMSデバイスのためのシステムおよび方法を提供すること。
【解決手段】微小電気機械システム(MEMS)デバイスのためのシステムおよび方法が提供される。一実施形態では、システムは、第1の外側層と、第1の組のMEMSデバイスを含む第1のデバイス層とを備え、第1のデバイス層は第1の外側層に接合される。システムは、第2の外側層と、第2の組のMEMSデバイスを含む第2のデバイス層とをさらに備え、第2のデバイス層は第2の外側層に接合される。さらに、システムは、第1の側と、第1の側と反対側の第2の側とを有する中央層を備え、第1の側は第1のデバイス層に接合され、第2の側は第2のデバイス層に接合される。 (もっと読む)


【課題】部品を合わせて封止するための冷間圧接法、ジョイント構造、及び気密封止された封じ込め装置を提供する。
【解決手段】第1の金属を含む第1の接合面18を含む少なくとも1つの第1のジョイント構造16を有する第1の基材12を提供すること、第2の金属を含む第2の接合面22を含む少なくとも1つの第2のジョイント構造を有する第2の基材14を提供すること、及び前記接合面を、一以上の界面で、前記接合面の前記第1の金属と前記第2の金属の間に金属−金属結合を形成するのに有効な量だけ、局所的に変形させ、剪断するために、前記少なくとも1つの第1のジョイント構造と前記少なくとも1つの第2のジョイント構造とを合わせて圧縮することを含む。接合面のオーバラップ部分は、表面汚染物を置換し、接合面間の密接を入熱なしに促進するのに有効である。気密封止された装置は、薬物製剤、バイオセンサ又はMEMS装置を含むことができる。 (もっと読む)


【課題】MEMS製造技術を用いた単一チップ上に作られた面内加速度計と面外加速度計の両方を含む超頑強、かつ、高性能な、3軸加速度計を提供する。
【解決手段】物体に堅固に取り付けられた基板付きの面内加速度計及び一体成形の材料からなる、基板104の上方に可動自在に所定の距離を離間される、プルーフマス102を含む。プルーフマスは102、プルーフマスと基板との間に異なる高さの隙間を形成するためにプルーフマスから下に伸びる複数の電極突部116を含む。プルーフマス102は、物体が加速しているときに、複数の基板電極108,110の各々の上面に平行な方向に動く構成で、隙間の領域の変化及び基板とプルーフマスとの間の容量の変更をもたらす。面内加速度計は面外加速度計の製造に使用される技術と同じ技術を用いて製造可能で高い衝撃用に適する。 (もっと読む)


【課題】製造効率の低下を抑制した機能素子、機能素子の製造方法、物理量センサー及び電子機器を提供する。
【解決手段】第1基板12と、前記第1基板12上に設けられ、且つ、素子部を有する第2基板50と、を備え、前記第1基板12と前記第2基板50との間には内部空間68が設けられ、前記第1基板12および前記第2基板50の互いに対向する面の少なくとも一方には、前記内部空間68と外部とを連通する排気溝24が設けられていることを特徴とする。 (もっと読む)


【課題】 基板と可動構造体を備えるMEMSデバイスにおいて、長期間にわたってスティッキングを確実に防止することが可能な技術を提供する。
【解決手段】 本発明は、基板と可動構造体を備えるMEMSデバイスとして具現化される。その可動構造体は、基板の上方に間隙を隔てて配置される可動部と、絶縁膜を介して基板に固定される固定部と、可動部と固定部を連結する支持梁を備えている。そのMEMSデバイスは、可動構造体の下面側に、可動構造体から連続的に形成された第1凸部を有している。そのMEMSデバイスは、基板の上面側に、基板から連続的に形成された第2凸部を有している。そのMEMSデバイスでは、第1凸部と第2凸部がほぼ同じ大きさで、互いに対向して配置されている。 (もっと読む)


【課題】本発明は、1つの加速度センサ素子で広範囲の加速度を検出できる加速度センサを提供することを目的とする。
【解決手段】本発明に係る加速度センサは、第一の梁31で保持され加速度により変位可能な第一の質量体21と、第一の質量体21の変位を電気量に変換可能に配置された固定電極51,52と、第一の質量体21の変位が所定の範囲を超えたときに、第一の質量体21の変位容易度に変化をもたらす変位容易度変化部材22,32,8,9とを、備えている。 (もっと読む)


【課題】互いに噛み合う櫛歯状の第1電極および第2電極の大きさのばらつきを少なくでき、センサの検出精度を向上できるMEMSセンサおよびその製造方法を提供すること。
【解決手段】ベース基板7をエッチングすることにより、柱状部29およびベース部30を形成する。次に、当該柱状部29およびベース部30を熱酸化することにより、これらを絶縁膜に変質させる。これにより、柱状部29からなる絶縁層85およびベース部30の表層部からなるベース絶縁層21を形成する。次に、ベース絶縁層21上にポリシリコン層22を形成し、当該ポリシリコン層22およびベース絶縁層21の積層構造をエッチングして、Z固定電極71およびZ可動電極72の形状に成形する。同時に、それらの間にトレンチ50を形成する。そして、当該トレンチ50の底部を等方性エッチングすることにより、ベース絶縁層21直下に凹部20(空洞23)を形成する。 (もっと読む)


【課題】上部電極の直下に下部電極を簡単に形成でき、上部電極と下部電極との短絡を防止し、センサの検出精度を向上できるMEMSセンサおよびその製造方法を提供する。
【解決手段】ベース基板7上に駆動用電極22を選択的に形成し、駆動用電極22を被覆するように、SiOからなる電極被覆膜23を形成する。次に、電極被覆膜23上に、犠牲ポリシリコン層52および犠牲酸化膜53を順に形成する。次に、犠牲酸化膜53上に、ポリシリコン層26を形成し、エッチングにより、固定電極27、可動電極28およびコンタクト電極29の形状に成形する。同時に、それらの間にトレンチ56を形成する。次に、トレンチ56の底部をさらに掘り下げて、犠牲酸化膜53から犠牲ポリシリコン層52を露出させる。そして、犠牲ポリシリコン層52を完全に除去することにより、固定電極27の櫛歯部32および可動電極28の櫛歯部39の直下に空洞37を形成する。 (もっと読む)


【課題】低コスト、高信頼性、および小さなセンサを可能とする、ウェハレベルパッケージプロセスを提供する。
【解決手段】下カバーウェハ210および上カバーウェハ230を提供するステップと、基板層上に複数のMEMS装置を含む半導体ウェハを提供するステップと、半導体ウェハを下カバーウェハの第1表面に接合するステップと、上カバーウェハの第2表面を半導体ウェハに接合するステップと、を有する。下カバーウェハの第1表面および上カバーウェハの第2表面は、半導体ウェハに接合されたときに、複数の密封シールされるキャビティ区域を画定し、MEMS装置の各々は、シールされるキャビティ区域の1つの内側に配置される。上カバーが半導体ウェハに接合された後に、上カバーウェハの第1表面から上カバーウェハの第2表面まで延びる複数の穴が形成される。その後、各穴に金属リード層が堆積され、MEMS装置に電気的接続を提供する。 (もっと読む)


61 - 80 / 475