説明

MEMSデバイス

【課題】 基板と可動構造体を備えるMEMSデバイスにおいて、長期間にわたってスティッキングを確実に防止することが可能な技術を提供する。
【解決手段】 本発明は、基板と可動構造体を備えるMEMSデバイスとして具現化される。その可動構造体は、基板の上方に間隙を隔てて配置される可動部と、絶縁膜を介して基板に固定される固定部と、可動部と固定部を連結する支持梁を備えている。そのMEMSデバイスは、可動構造体の下面側に、可動構造体から連続的に形成された第1凸部を有している。そのMEMSデバイスは、基板の上面側に、基板から連続的に形成された第2凸部を有している。そのMEMSデバイスでは、第1凸部と第2凸部がほぼ同じ大きさで、互いに対向して配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、MEMS(Micro Electro Mechanical Systems)デバイスに関する。
【背景技術】
【0002】
近年、半導体集積回路作製技術を利用して3次元構造を備えるMEMSデバイスを製造する技術が開発されており、圧力センサ、加速度センサ、ジャイロスコープ、光偏向装置、RFスイッチ、可変容量キャパシタ等の各種デバイスが実現されている。半導体集積回路作製技術で3次元構造を実現するために、犠牲層を含む積層基板を選択的かつ局所的にエッチングする技術が利用される。本明細書でいうMEMSデバイスとは、成膜技術とエッチング技術に代表される半導体集積回路作製技術を利用し、犠牲層を含む積層基板を選択的かつ局所的にエッチングすることによって実現された3次元構造を備える装置をいう。
【0003】
上記のMEMSデバイスの中には、基板の上方に間隙を隔てて保持される可動構造体を備えるものがある。例えば、加速度センサを実現するMEMSデバイスでは、デバイスに加速度が作用したときに、可動構造体の可動部が基板に対して相対変位して、可動部と基板の間の静電容量が変化する。この可動部と基板の間の静電容量の変化を検出することで、デバイスに作用した加速度を検出することができる。
【0004】
上述のようなMEMSデバイスでは、可動構造体が基板と面接触して固着してしまう事態(スティッキング)が生じることがある。スティッキングが生じてしまうと、可動構造体が基板に固定されていまい、本来の機能を果たすことができなくなってしまう。そこで、MEMSデバイスにおいてスティッキングを防止する技術が、例えば特許文献1−3に開示されている。
【0005】
特許文献1や特許文献2には、可動構造体および基板の表面を粗面化処理することで、スティッキングを抑制する技術が開示されている。
【0006】
特許文献3には、可動構造体および基板の表面に微細な凸部を後から成膜することで、スティッキングを抑制する技術が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−268704号公報
【特許文献2】特開平11−340477号公報
【特許文献3】特開2002−160363号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1や特許文献2の技術のように、基板の上面側と可動構造体の下面側を粗面化処理する場合、基板と可動構造体が繰り返し接触した場合に、表面に形成された微細な凹凸が磨耗して、スティッキングを防止することができなくなるおそれがある。
【0009】
特許文献3の技術のように、可動構造体および基板の表面に微細な凸部を後から成膜する場合、基板と可動構造体が繰り返し接触した場合に、後から成膜した凸部が剥離して、スティッキングを防止することができなくなるおそれがある。
【0010】
従来技術によるスティッキング防止技術はいずれも、可動構造体と基板との面接触を防ぐための凸部に磨耗や剥離が生じて、長期間にわたってスティッキングを防止することが難しい。MEMSデバイスを長期間にわたって使用する場合でも、スティッキングを確実に防止することが可能な技術が期待されている。
【0011】
本発明は上記の課題を解決する。本発明では、基板と可動構造体を備えるMEMSデバイスにおいて、長期間にわたってスティッキングを確実に防止することが可能な技術を提供する。
【課題を解決するための手段】
【0012】
本明細書が開示するMEMSデバイスは、基板と可動構造体を備えるMEMSデバイスである。その可動構造体は、基板の上方に間隙を隔てて配置される可動部と、絶縁膜を介して基板に固定される固定部と、可動部と固定部を連結する支持梁を備えている。そのMEMSデバイスは、可動構造体の下面側に、可動構造体から連続的に形成された第1凸部を有している。そのMEMSデバイスは、基板の上面側に、基板から連続的に形成された第2凸部を有している。そのMEMSデバイスでは、第1凸部と第2凸部がほぼ同じ大きさで、互いに対向して配置されている。
【0013】
上記のMEMSデバイスでは、可動構造体が基板に向けて大きく沈み込んだ場合に、可動構造体の下面側の第1凸部の下面と、基板の上面側の第2凸部の上面が接触して、それ以上可動構造体が基板に向けて沈みこむことを防止する。この際の可動構造体と基板の接触面積は、第1凸部および第2凸部が形成されていない場合の接触面積に比べて、非常に小さい。これにより、可動構造体と基板が接触した場合のファンデルワールス力等に起因する接着力を低下させることができる。可動構造体と基板が面接触して固着してしまう事態(スティッキング)の発生を抑制することができる。
【0014】
上記のMEMSデバイスでは、第1凸部が可動構造体から連続的に形成されているので、可動構造体から第1凸部が剥離してしまうことがなく、強度が高い。また、第2凸部が基板から連続的に形成されているので、可動構造体から第2凸部が剥離してしまうことがなく、強度が高い。MEMSデバイスを長期間にわたって使用し、第1凸部と第2凸部が衝突を繰り返した場合であっても、第1凸部および第2凸部が磨耗や剥離を生ずるおそれが小さく、長期間にわたってスティッキングを確実に防止することができる。
【0015】
上記のMEMSデバイスでは、第1凸部が、可動部の下面側に、可動部から連続的に形成されていることが好ましい。
【0016】
上記のMEMSデバイスでは、可動部が基板に対して沈み込んだ場合に、可動部の下方に形成された第1凸部と第2凸部が接触することで、可動部と基板の面接触を抑制することができる。
【0017】
あるいは、上記のMEMSデバイスは、第1凸部が、支持梁の下面側に、支持梁から連続的に形成されていることが好ましい。
【0018】
上記のMEMSデバイスでは、可動部が基板に対して沈み込んだ場合に、支持梁の下方に形成された第1凸部と第2凸部が接触することで、可動部と基板の面接触を抑制することができる。このMEMSデバイスでは、可動部の下方にスティッキングを防止するための凸部を設ける必要がないので、可動部の下方の領域の設計の自由度を高めることができる。
【0019】
上記のMEMSデバイスは、次のような方法で好適に製造することができる。その方法は、下側シリコン層と上側シリコン層の間にシリコン絶縁膜が形成されたSOI基板を準備する工程と、可動構造体の形状に合わせて上側シリコン層をエッチングする工程と、可動構造体の下方のシリコン絶縁膜を部分的にエッチングする工程と、上側シリコン層と下側シリコン層の表面にシリコン絶縁膜を形成する工程と、可動構造体の下方のシリコン絶縁膜をエッチングする工程を備えている。
【0020】
上記の製造方法では、可動構造体の下方のシリコン絶縁膜を部分的にエッチングした後に、可動構造体の下方にはシリコン絶縁膜が部分的に残存する。その後のシリコン絶縁膜を形成する工程では、この残存しているシリコン絶縁膜がマスクとしての役割を果たし、下側シリコン層と上側シリコン層の露出している部分についてのみ、新たにシリコン絶縁膜が形成される。この際に、新たにシリコン絶縁膜が形成された部分では、シリコン絶縁膜とシリコン層との界面が内側に入り込むものの、元からシリコン絶縁膜が残存している部分では、シリコン絶縁膜とシリコン層との界面の位置はほとんど変化しない。その後、可動構造体の下方のシリコン絶縁膜をエッチングすることで、上側シリコン層と下側シリコン層に第1凸部と第2凸部がそれぞれ形成される。第1凸部は、可動構造体から連続的に形成されており、第2凸部は、基板から連続的に形成されている。上記の製造方法によれば、可動構造体の下面側と基板の上面側に、互いに対向する位置関係で、ほぼ同じ大きさの第1凸部と第2凸部を簡易な方法で形成することができる。
【0021】
上記の製造方法によれば、可動構造体の下方のシリコン絶縁膜を部分的にエッチングする際に、エッチングの時間を調整することによって、最終的に形成される第1凸部と第2凸部の平面視したときの大きさを調整することができる。第1凸部と第2凸部が小さくなりすぎてしまうことを防止し、第1凸部と第2凸部の強度を確保することができる。長期間にわたって確実にスティッキングを防止することができるMEMSデバイスを製造することができる。
【発明の効果】
【0022】
本発明によれば、基板と可動構造体を備えるMEMSデバイスにおいて、長期間にわたってスティッキングを確実に防止することができる。
【図面の簡単な説明】
【0023】
【図1】実施例1のMEMSデバイス10の平面図である。
【図2】図1のII−II線断面図である。
【図3】実施例1のMEMSデバイス10の製造方法を説明する図である。
【図4】実施例1のMEMSデバイス10の製造方法を説明する図である。
【図5】実施例1のMEMSデバイス10の製造方法を説明する図である。
【図6】実施例1のMEMSデバイス10の製造方法を説明する図である。
【図7】シリコン層が酸化する際の酸化シリコンとシリコン層の界面の位置を模式的に示す図である。
【図8】実施例2のMEMSデバイス20の平面図である。
【図9】図8のIX−IX線断面図である。
【発明を実施するための形態】
【0024】
好ましい実施例の特徴を最初に列記する。
(特徴1)MEMSデバイスは、下側シリコン層と上側シリコン層の間にシリコン酸化膜が形成されたSOI基板から製造する。
(特徴2)MEMSデバイスは加速度センサとして用いられる。
【実施例1】
【0025】
以下では図面を参照しながら、実施例1に係るMEMSデバイス10について説明する。図1は、MEMSデバイス10の平面図であり、図2は図1のII−II線断面図である。MEMSデバイス10は、下側シリコン層と上側シリコン層の間にシリコン酸化膜が形成されたSOI(Silicon on Insulator)基板から、半導体製造プロセスを利用して製造される。
【0026】
図1および図2に示すように、MEMSデバイス10は、下側シリコン層に形成された基板100と、上側シリコン層に形成されており、基板100の上方に間隙を隔てて保持された可動構造体102を備えている。図1に示すように、可動構造体102は、平面視したときの外形が矩形形状に形成された可動部104と、可動部104の端部から伸びる支持梁106と、支持梁106を保持する保持部108を備えている。支持梁106は、細長に形成された梁であり、可動部104と保持部108を連結している。保持部108は支持梁106よりも幅広に形成されている。図2に示すように、保持部108は絶縁層110を介して基板100に対して固定されている。本実施例のMEMSデバイス10では、支持梁106は低い剛性となるように形成されているので、可動部104は基板100に対してY軸(図1の上下方向に伸びる軸)、Z軸(図1の紙面垂直方向に伸びる軸)の二軸方向に変位可能である。
【0027】
MEMSデバイス10は加速度センサとして用いることができる。MEMSデバイス10にZ方向の加速度が作用すると、可動部104が基板100に対してZ方向に変位する。すると、可動部104と基板100の間の静電容量が変化する。この静電容量の変化を電気信号として検出することで、その検出した静電容量の変化量からZ方向の加速度を算出することができる。
【0028】
また、可動部104にアクチュエータを設けることで、MEMSデバイス10を角速度センサとして用いることもできる。例えば、アクチュエータによって可動部104をY方向に振動させる構成とした場合、可動部104がY方向に振動している状態でMEMSデバイス10にX軸(図1の左右方向に伸びる軸)周りの角速度が作用すると、可動部104にZ方向のコリオリ力が作用して、可動部104が基板100に対してZ方向に変位する。このZ方向の変位に伴って可動部104と基板100の間の静電容量が変化し、この静電容量の変化を電気信号として検出することで、その検出した静電容量の変化量からX軸周りの角速度を算出することができる。
【0029】
図1に示すように、可動部104には複数の貫通孔112が形成されている。貫通孔112は、SOI基板からMEMSデバイス10を作製する際に、犠牲層であるシリコン酸化膜をエッチングするためのエッチングホールである。貫通孔112は可動部104の全体に亘って等間隔にX方向およびY方向に並んで配置されており、可動部104は格子状の形状となっている。本実施例のMEMSデバイス10では、可動部104の外形は500μm角の矩形形状に形成されており、個々の貫通孔112は5μm角の矩形形状に形成されており、隣接する貫通孔112間のX方向およびY方向の間隔はいずれも5μmである。
【0030】
図2に示すように、可動部104はその下面側に、可動部104から連続的に形成された複数の第1凸部114を有している。本実施例では、基板100と可動部104の間隔は2μmであり、第1凸部114の高さは0.6μm程度であり、第1凸部114の平面視したときの大きさは1μm〜2μmである。図1に示すように、第1凸部114は、格子状に形成された可動部104の格子点に相当する位置に配置されている。
【0031】
図2に示すように、基板100はその上面側に、基板100から連続的に形成された複数の第2凸部116を有している。本実施例では、第2凸部116の高さは0.6μm程度であり、第2凸部116の平面視したときの大きさは1μm〜2μmである。それぞれの第2凸部116は、対応する第1凸部114と互いに対向する位置に配置されている。
【0032】
本実施例のMEMSデバイス10では、可動部104が基板100に向けて大きく沈み込んだ場合に、可動部104の下面側の第1凸部114の下面と、基板100の上面側の第2凸部116の上面が接触して、それ以上可動部104が基板100に向けて沈みこむことを防止する。この際の可動部104と基板100の接触面積は、第1凸部114および第2凸部116が形成されていない場合の可動部104と基板100の接触面積に比べて、非常に小さい。これにより、可動部104と基板100が接触した場合のファンデルワールス力等に起因する接着力を低下させることができる。本実施例のMEMSデバイス10によれば、可動部104が基板100に固着してしまう事態(スティッキング)の発生を抑制することができる。
【0033】
本実施例のMEMSデバイス10では、第1凸部114が可動部104から連続的に形成されているので、可動部104から第1凸部114が剥離してしまうことがなく、強度が高い。また、第2凸部116が基板100から連続的に形成されているので、可動部104から第2凸部116が剥離してしまうことがなく、強度が高い。MEMSデバイス10を長期間にわたって使用し、第1凸部114と第2凸部116が衝突を繰り返した場合であっても、第1凸部114および第2凸部116が磨耗や剥離を生ずるおそれが小さく、長期間にわたってスティッキングを確実に防止することが可能なMEMSデバイス10を実現することができる。
【0034】
以下では図3から図6を参照しながら、本実施例のMEMSデバイス10の製造方法を説明する。図3から図6は、図1のII−II断面、すなわち、図2の断面に対応している。
【0035】
まず図3に示すように、下側シリコン層302と上側シリコン層306の間にシリコン酸化膜304が形成されたSOI基板300を準備し、上側シリコン層306の上面にフォトリソグラフィによってレジストパターン308を形成する。このレジストパターン308は、図1の可動構造体102の可動部104、支持梁106および保持部108を平面視した形状に対応している。
【0036】
次いで図4に示すように、DRIE(Deep Reactive Ion Etching)法によって、上側シリコン層306をエッチングする。これによって、上側シリコン層306はレジストパターン308に対応する形状にトリミングされて、図1の可動部104、支持梁106および保持部108に相当する部位が形成される。
【0037】
次いで図5に示すように、上側シリコン層306の上面のレジストパターン308を除去した後に、バッファードフッ酸を用いた等方性エッチングによって、シリコン酸化膜304をエッチングする。以下ではこの工程を1回目の犠牲層エッチングともいう。この際、上側シリコン層306の可動部104に対応する部分には、エッチングホールである複数の貫通孔112が形成されている(図1参照)ので、それぞれのエッチングホールを介してエッチング液が回りこみ、可動部104の下方に存在するシリコン酸化膜304も速やかにエッチングされる。ここでのエッチング時間は短めに設定されており、エッチング液が最も回り込みにくい部位、すなわち格子状に形成された可動部104の格子点に相当する部位には、除去されないシリコン酸化膜304が残存する。
【0038】
次いで図6に示すように、熱酸化処理によって、下側シリコン層302と上側シリコン層306の表面にシリコン酸化膜310を形成する。この熱酸化処理により、下側シリコン層302と上側シリコン層306でシリコンが露出している表面に、新たにシリコン酸化膜310が形成される。図7に示すように、熱酸化によって上側シリコン層306の表面にシリコン酸化膜310を形成する場合、シリコン酸化膜310と上側シリコン層306の界面は、元の上側シリコン層306の表面よりも45%程度内側に入り込む。しかしながら、図6に示すように、この熱酸化処理を行う前からすでにシリコン酸化膜304で覆われている部位(すなわち、上側シリコン層306の下側表面において、残存するシリコン酸化膜304で覆われている部位)については、上側シリコン層306とシリコン酸化膜304の界面が内側にほとんど移動しない。上側シリコン層306の下側表面では、シリコン酸化膜304との界面に比べて、シリコン酸化膜310との界面の方が、より内側に入り込むことになる。同様に、下側シリコン層302の上側表面でも、シリコン酸化膜304との界面に比べて、シリコン酸化膜310との界面の方が、より内側に入り込むことになる。
【0039】
そして、バッファードフッ酸を用いた等方性エッチングによって、可動部104の下方に残存しているシリコン酸化膜304および新たに形成されたシリコン酸化膜310を除去する。以下ではこの工程を2回目の犠牲層エッチングともいう。これによって、図2に示すようなMEMSデバイス10を製造することができる。上記の製造方法によれば、可動部104の下面側と基板100の上面側に、互いに対向する位置関係で、ほぼ同じ大きさの第1凸部114と第2凸部116を形成することができる。
【0040】
第1凸部114は、可動部104の下面側を部分的な熱酸化とエッチングによって削り出すことで形成されており、可動部104から連続的に形成されている。第2凸部116は、基板100の上面側を部分的な熱酸化とエッチングによって削り出すことで形成されており、基板100から連続的に形成されている。上記の製造方法によれば、可動部104の下面側および基板100の上面側に、互いに対向する位置関係で、可動部104から連続的に形成された第1凸部114と、基板100から連続的に形成された第2凸部116を、簡易な方法で形成することができる。
【0041】
上記の製造方法によれば、1回目の犠牲層エッチングにおけるエッチング時間を調整することで、第1凸部114および第2凸部116の平面視したときの大きさを所望の大きさに調整することができる。従って、第1凸部114や第2凸部116の平面視したときの大きさが、小さくなりすぎないように調整する(例えば、1μm〜2μm程度の大きさを確保する)ことで、第1凸部114および第2凸部116の強度を確保することができる。
【0042】
なお、上記では貫通孔112をX方向およびY方向に等間隔に配置することで、第1凸部114、第2凸部116を格子点状に形成する場合について説明したが、貫通孔112の間隔を不均等にすることで、第1凸部114および第2凸部116の形状および配置を変更することができる。例えば、貫通孔112の一部の間隔を15μmとし、他の部分の間隔を5μmとすれば、1回目の犠牲層エッチングにおいて、15μmの間隔とした箇所のシリコン酸化膜304のみを残存させ、5μmの間隔とした箇所のシリコン酸化膜304を除去することができる。これによって、貫通孔112の間隔を15μmとした箇所にのみ、第1凸部114および第2凸部116を形成することができる。
【実施例2】
【0043】
以下では図面を参照しながら、実施例2に係るMEMSデバイス20について説明する。図8はMEMSデバイス20の平面図であり、図9は図8のIX−IX線断面図である。
【0044】
図8および図9に示すように、MEMSデバイス20は、下側シリコン層に形成された基板800と、上側シリコン層に形成されており、基板800の上方に間隙を隔てて保持された可動構造体802を備えている。図8に示すように、可動構造体802は、平面視したときの外形が矩形形状に形成された可動部804と、可動部804の端部から伸びる支持梁806と、支持梁806を保持する保持部808を備えている。支持梁806は、細長に形成された梁であり、可動部804と保持部808を連結している。保持部808は支持梁806よりも幅広に形成されている。図9に示すように、保持部808は絶縁層810を介して基板800に対して固定されている。支持梁806は低い剛性となるように形成されているので、可動部804は基板800に対してY軸、Z軸の二軸方向に移動可能である。実施例1のMEMSデバイス10と同様に、本実施例のMEMSデバイス20は、加速度センサや角速度センサとして用いることができる。
【0045】
図8に示すように、可動部804には犠牲層をエッチングする際のエッチングホールである複数の貫通孔812が形成されている。貫通孔812は可動部804の全体に亘って等間隔にX方向およびY方向に並んで配置されており、可動部804は格子状の形状となっている。実施例1のMEMSデバイス10に比べて、本実施例のMEMSデバイス20では、より多数の貫通孔812が、より密に配置されており、隣接する貫通孔812の間の間隔が、より狭くなっている。
【0046】
図9に示すように、支持梁806はその下面側に、支持梁806から連続的に形成された第1凸部814を有している。また、基板800はその上面側に、基板800から連続的に形成された複数の第2凸部816を有している。第2凸部816は、対応する第1凸部814と互いに対向する位置に配置されている。実施例1のMEMSデバイス10と異なり、本実施例のMEMSデバイス20では、可動部804の下面側には凸部が形成されておらず、基板800の上面側の可動部804と対向する部位には凸部が形成されていない。
【0047】
本実施例のMEMSデバイス20では、可動部804が基板800に向けて大きく沈み込んだ場合に、支持梁806の下面側の第1凸部814の下面と、基板800の上面側の第2凸部816の上面が接触して、それ以上可動部804が基板800に向けて沈みこむことを防止する。この際の支持梁806と基板800の接触面積は、第1凸部814および第2凸部816が形成されていない場合の可動部804と基板800の接触面積に比べて、非常に小さい。本実施例のMEMSデバイス20によれば、可動部804が基板800に固着してしまう事態(スティッキング)の発生を抑制することができる。
【0048】
本実施例のMEMSデバイス20は、実施例1のMEMSデバイス10とほぼ同様の方法によって製造される。本実施例のMEMSデバイス20では、可動部804に多数の貫通孔812が密に配置されているので、1回目の犠牲層エッチングの際に、可動部804の下方に存在するシリコン酸化膜は完全に除去されて、支持梁806の下方に存在するシリコン酸化膜が部分的に残存する。その後、熱酸化処理と、2回目の犠牲層エッチングを行うことによって、図8および図9に示すMEMSデバイス20を製造することができる。
【0049】
以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【0050】
例えば、上記の実施例では、第1犠牲層エッチングと第2犠牲層エッチングにおいて、バッファードフッ酸を用いた等方性エッチングを行う場合について説明したが、バッファードフッ酸を用いたエッチングに代えて、気相のフッ酸を用いたベーパーエッチングを行う構成としてもよい。
【0051】
上記の実施例では、下側シリコン層と上側シリコン層の間にシリコン酸化膜が形成されたSOI基板から半導体製造プロセスによってMEMSデバイスを製造する場合について説明した。これとは異なり、まず上側シリコン層と下側シリコン層を別個に製造しておいて、それぞれの表面に第1凸部と第2凸部を形成しておいて、その後に両者をシリコン酸化膜を挟んで接着させて、MEMSデバイスを製造してもよい。
【0052】
上記の実施例では、加速度や角速度などの物理量を検出するセンサとして用いられるMEMSデバイスを例として説明したが、本発明が適用可能な範囲はこれに限られない。例えば、可動部の上面にミラーを設けて、揺動軸の周りに可動部が揺動可能となるように支持梁で支持する構成のMEMSデバイスは、光偏向装置に用いることができる。このようなMEMSデバイスについても、本発明によれば、可動部が基板に固着してしまうスティッキングを抑制することができる。本発明は、基板の上方に間隙を隔てて保持される可動構造体を備えるMEMSデバイスであれば、どのようなものであっても、適用することができる。
【0053】
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【符号の説明】
【0054】
10,20 MEMSデバイス
100 基板
102 可動構造体
104 可動部
106 支持梁
108 保持部
110 絶縁層
112 貫通孔
114 第1凸部
116 第2凸部
300 SOI基板
302 下側シリコン層
304 シリコン酸化膜
306 上側シリコン層
308 レジストパターン
310 シリコン酸化膜
800 基板
802 可動構造体
804 可動部
806 支持梁
808 保持部
810 絶縁層
812 貫通孔
814 第1凸部
816 第2凸部

【特許請求の範囲】
【請求項1】
基板と可動構造体を備えるMEMSデバイスであって、
可動構造体が、基板の上方に間隙を隔てて配置される可動部と、絶縁膜を介して基板に固定される固定部と、可動部と固定部を連結する支持梁を備えており、
可動構造体の下面側に、可動構造体から連続的に形成された第1凸部を有し、
基板の上面側に、基板から連続的に形成された第2凸部を有し、
第1凸部と第2凸部がほぼ同じ大きさで、互いに対向して配置されているMEMSデバイス。
【請求項2】
第1凸部が、可動部の下面側に、可動部から連続的に形成されている請求項1のMEMSデバイス。
【請求項3】
第1凸部が、支持梁の下面側に、支持梁から連続的に形成されている請求項1のMEMSデバイス。
【請求項4】
請求項1のMEMSデバイスを製造する方法であって、
下側シリコン層と上側シリコン層の間にシリコン絶縁膜が形成されたSOI基板を準備する工程と、
可動構造体の形状に合わせて上側シリコン層をエッチングする工程と、
可動構造体の下方のシリコン絶縁膜を部分的にエッチングする工程と、
上側シリコン層と下側シリコン層の表面にシリコン絶縁膜を形成する工程と、
可動構造体の下方のシリコン絶縁膜をエッチングする工程を備える方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−135819(P2012−135819A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2010−287764(P2010−287764)
【出願日】平成22年12月24日(2010.12.24)
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【Fターム(参考)】