説明

Fターム[3D232EB04]の内容

走行状態に応じる操向制御 (73,124) | 制御対象(制御量) (5,762) | 操舵角、操舵量 (1,489)

Fターム[3D232EB04]に分類される特許

101 - 120 / 1,489


【課題】 車両挙動を安定化させつつ横方向運動制御を停止させることができる横方向運動制御装置を提供すること。
【解決手段】 横方向運動制御装置は、横方向運動量の目標値に基づいて、車両の横方向運動量を変化させるために作動する制御対象の制御量を演算し、演算した制御量に基づいて制御対象を制御する。また、車両のドライバの操舵操作量に基づいて制御対象の制御を停止するか否かを判断する。制御対象の制御を停止すると判断したときに、そのときから制御対象の制御量が縮退するように縮退制御量を決定する。制御対象の制御を停止すると判断したときに、決定した縮退制御量に基づいて制御対象の制御量を制御する。 (もっと読む)


【課題】制御対象のアベイラビリティに応じて、より最適な制御対象を選択して車両運動制御を実行することができるようにした車両運動制御装置を提供する。
【解決手段】異なる複数の制御対象を制御してアプリ要求値を実現する車両横方向運動制御を行う場合に、各制御対象のアベイラビリティ(最大制御量および制御量の変化量を含む制御可能範囲)をVLP、より詳しくはVLPのF/F演算部6やF/B演算部7に伝え、アベイラビリティに基づいて車両横方向運動制御に使用する制御対象の優先順位を決定する。このように、各制御対象のアベイラビリティを加味して車両横方向運動制御に使用する制御対象の優先順位を決定しているため、制御対象のアベイラビリティに応じて、より最適な制御対象を選択して車両横方向運動制御を行うことが可能となる。 (もっと読む)


【課題】 制御対象の運動状態が安定するように設定されたフィードバックゲインを用いて制御対象の運動量をフィードバック制御する運動量制御装置を提供すること。
【解決手段】 運動量制御装置は、複数のアクチュエータのうちの一つのアクチュエータを単独で作動させることにより制御対象の運動量をフィードバック制御した場合に用いる最適フィードバックゲインを、複数のアクチュエータのそれぞれが単独で作動した場合についてそれぞれ取得する最適フィードバックゲイン取得部と、最適フィードバックゲイン取得部により取得された複数の最適フィードバックゲインのうち最小のフィードバックゲインを制御系のフィードバックゲインとして設定するフィードバックゲイン設定部とを備える。 (もっと読む)


【課題】制御対象のアベイラビリティに応じて、より最適な車両運動制御を実行することができるようにした車両運動制御装置を提供する。
【解決手段】異なる複数の制御対象を制御してアプリ要求値を実現する車両横方向運動制御を行う場合に、各制御対象のアベイラビリティ(最大制御量および制御量の変化量を含む制御可能範囲)をアベイラビリティ演算部5から制御要求部1に対して伝える。これにより、各アプリケーションでアベイラビリティ情報を踏まえて、性能限界を超えない制御要求を生成することが可能となり、制御対象のアベイラビリティに応じて、より最適な車両運動制御を実行することが可能となる。 (もっと読む)


【課題】アプリケーションからの制御目標値に応じて制御プラットフォームが制御対象を最適制御する構造において、意図しない車両挙動が生じることを防止する。
【解決手段】制御目標値・アベイラビリティ比較部8にて、アベイラビリティ演算部5から伝えられるアベイラビリティ情報と制御要求部2などから伝えられる制御目標値とを比較し、その比較結果に基づいて車両横方向運動制御を実行するか否かを決める。これにより、アプリケーション1〜nや制御プラットフォームでのソフト的な異常による演算の誤りや、制御対象の制御に用いられるACT16〜19の異常、車両状態(例えば、路面μ)の急激な変化により、大きな車両の異常挙動を引き起こすことを防止できる。 (もっと読む)


【課題】 車両挙動を安定化させつつ横方向運動制御を停止させることができる横方向運動制御装置を提供すること。
【解決手段】 横方向運動制御装置は、車両の横方向運動量の目標値に基づいて、車両の横方向運動量を変化させるために協調して作動する複数の制御対象の横方向運動制御量を演算し、演算した横方向運動制御量に基づいて複数の前記制御対象を制御する。また、複数の前記制御対象の制御を停止するか否かを判断する。複数の前記制御対象の制御を停止すると判断したときに、そのときから複数の前記制御対象の横方向運動制御量が縮退するように、複数の前記制御対象の横方向運動縮退制御量をそれぞれ決定し、決定した横方向運動縮退制御量に基づいて複数の前記制御対象を制御する。 (もっと読む)


【課題】旋回性に優れ且つ車両姿勢が安定した車両用操舵装置を提供すること。
【解決手段】車両の幅方向Xに延びる第1の被動ラック9Aと第2の被動ラック9Bに、共通の駆動ピニオン10が噛み合う。トレッド幅変更アクチュエータ11が駆動ピニオン10を駆動すると、第1および第1の被動ラック9A,9Bが互いに反対方向に移動する。第1および第2の転舵輪3A,3Bをそれぞれ転舵する第1および第2の転舵アクチュエータ4A,4Bが、それぞれ、第1の被動ラック9Aおよび第2の被動ラック9Bと同行移動する。転舵角センサにて検出された転舵角等に応じて、トレッド幅変更アクチュエータ11を駆動制御し、トレッド幅WTを変更する。 (もっと読む)


【課題】車両を目標位置まで自律走行させる場合に、車両が目標位置へ到着する可能性を向上させることができる走行制御装置を提供すること。
【解決手段】走行制御装置100は、車両1の走行中に、前回の補正が行われた時に設定された直線距離dと、現在の車両1の車両位置から目標とする駐車位置Oまでの直線距離dとを比較し、直線距離dが直線距離dよりも短くなる場合に、目標とする駐車位置Oの再認識を試みる。これにより、車両1が目標位置Oに近づく度に、目標とする駐車位置Oを再認識できるので、再認識された駐車位置O’に含まれる誤差を徐々に(段階的に)低下させることができる。よって、目標とする駐車位置Oの特定精度を徐々に(段階的に)向上させることができるので、車両1が目標とする駐車位置Oに到着する可能性を向上させることができる。 (もっと読む)


【課題】先行車両を追従するためのステアリングホイールの目標ステアリング操舵角を運転者に提示し、先行車両に安定して追従させる。
【解決手段】先行車両と自車両との相対位置を検出する先行車両検出手段6と、自車両の車速を検出する車速検出手段7と、先行車両と自車両とが同一の円の円周上に位置するとして、先行車両検出手段6により検出された相対位置情報から円の回転半径を演算し、予め設定されたマップを用いて車速検出手段7により検出された車速と回転半径とから先行車両に追従するためのステアリングホイール3の目標ステアリング操舵角を演算する目標操舵角演算手段9と、目標操舵角演算手段9により演算された目標ステアリング操舵角を提示する目標操舵角提示手段10とを備える。 (もっと読む)


【課題】旋回時、車体の向きと横加速度応答の適正化により、運転のしやすさを向上させること。
【解決手段】車両用舵角制御装置は、転舵角センサと、車輪速センサと、操舵角センサ5と、目標横加速度演算部15と、目標車体横滑り角演算部16と、転舵角演算部17と、前輪ステアリング機構と、後輪転舵機構と、を備える。目標横加速度演算部15は、車速と操舵角に基づいて目標横加速度を演算する。目標車体横滑り角演算部16は、車速と操舵角に基づいて目標車体横滑り角を演算する。転舵角演算部17は、目標横加速度と目標車体横滑り角を実現するように前輪舵角指令値と後輪舵角指令値を演算する。前輪ステアリング機構と後輪転舵機構は、舵角指令値に基づき、左右前輪と左右後輪の実舵角を独立に制御する。 (もっと読む)


【課題】ペダルやステアリングの操作状況に応じて生ずる芝の損傷を防止するとともに車両にかかる負担を軽減することができる乗用型芝刈り車両及びその制御方法を提供する。
【解決手段】乗用型芝刈り車両1は、ステアリングホイール16の操作量に応じて回転軸の角度が変更される後輪12を備える車両であって、車両の速度を検出する速度センサ36と、ステアリングホイール16の操作量に基づいて目標とすべき後輪12の回転軸の角度である目標操舵輪角度を算出する目標操舵輪角度算出部38aと、速度センサ36の検出結果に応じて後輪12の回転軸の角度の制限値である操舵輪角度制限値を設定する操舵輪角度制限値設定部38bと、目標操舵輪角度が操舵輪角度制限値を超えている場合には、目標操舵輪角度を操舵輪角度制限値に設定して後輪12を制御するモータ制御部38cとを備える。 (もっと読む)


【課題】車両運転者が、バイワイヤシステムの故障検出のために必要な操作を容易に行うことができる技術を提供
【解決手段】バイワイヤ制御部15は、起動スイッチのオン後に、ステアリング可動域制限部11(アクセル可動域制限部12、ブレーキ可動域制限部13)により、ステアリングST(アクセルペダルAP、ブレーキペダルBP)の操作を0°〜54°(0%〜10%、0%〜10%)の範囲内に制限する。そして、ステアリング操作量(アクセル操作量、ブレーキ操作量)が、ステアリング診断開始判定範囲(アクセル診断開始判定範囲、ブレーキ診断開始判定範囲)内であると判断した場合に、転舵量(駆動量、制動量)が、ステアリング診断開始判定範囲(アクセル診断開始判定範囲、ブレーキ診断開始判定範囲)に応じて予め設定されたステアリング正常判定範囲(アクセル正常判定範囲、ブレーキ正常判定範囲)内であるか否かを判断する。 (もっと読む)


【課題】見通しの悪いカーブ路を車両が走行する場合であっても、燃費の悪化を抑制することができる走行軌跡作成装置を提供する。
【解決手段】車両1の走行軌跡を作成する走行軌跡作成装置10において、カーブ路の入口部32から出口部34までの形状を認識するカーブ路形状認識手段11と、カーブ路内における、出口部34を見通す地点40を特定する出口部見通し地点特定手段12と、入口部32から出口部見通し地点40及び出口部見通し地点40から出口部34までの車両1の走行軌跡を作成する走行軌跡作成手段13と、を備えること、を特徴とする走行軌跡作成装置10。 (もっと読む)


【課題】自動運転から手動運転への自動での切り替えを可能とする自動運転車両制御装置を提供することを課題とする。
【解決手段】ドライバがオーバーライドした場合に自動運転から手動運転に切り替える自動運転車両を制御する自動運転車両制御装置1であって、自動運転の目標進路を生成する目標進路生成手段30と、自動運転の目標進路又はドライバによる運転操作に基づいて車両を制御する車両制御手段32と、実際の車両進路と自動運転の目標進路とを比較する進路比較手段31と、ドライバのオーバーライドを検出するオーバーライド検出手段12と、手動運転時に進路比較手段31で比較した進路の差が閾値未満でありかつオーバーライド検出手段12でドライバのオーバーライドが検出されていない場合に手動運転から自動運転に切り替える切替手段32とを備えることを特徴とする。 (もっと読む)


【課題】直線と円弧を用いた簡単な軌道計画手法で障害物を回避した目標軌道を求める。
【解決手段】カメラ撮影部2の撮影で検出される障害物αが2円軌道モデルで算出された目標軌道に存在する場合に、軌道計算部5により、例えば目標位置の延長線上に仮位置を設け、開始位置と仮位置の円の円弧及び両円の接線の直線により、障害物を回避するように修正された修正軌道を算出して決定し、障害物αを回避して車両1の自動駐車等を行なう。 (もっと読む)


【課題】低い消費電流を実現すると共に高い安全性を確保した電動パワーステアリングの制御装置を提供することを目的としている。
【解決手段】主電源がオフされている間はバッテリでバックアップされた回路200によりブラシレスモータ6のレゾルバ61を間欠励磁して回転数を計測して操舵角を算出するとともに、ブラシレスモータの起電圧に応じてゾルバ61の間欠励磁の周期を切り替えるようにして消費電流を低くし、また回転数検出回路を二重系にすることにより検出値の信頼性を向上させる。 (もっと読む)


【課題】個々のコントローラの冗長度を必要以上に上げることなく、システム全体でエラーをバックアップすることにより、簡潔なECUの構成で、低コストで、高い信頼性とリアルタイム性と拡張性とを確保した車両制御装置を提供する。
【解決手段】センサ信号を取り込むセンサコントローラと、センサコントローラが取り込んだセンサ信号に基づいて制御目標値を生成する指令コントローラと、指令コントローラから制御目標値を受けて車両を制御するためのアクチュエータを作動させるアクチュエータコントローラがネットワークで接続される車両制御装置であって、アクチュエータコントローラは、指令コントローラが生成する制御目標値に異常が生じたときには、当該アクチュエータコントローラが受信したネットワーク上のセンサコントローラのセンサ値に基づいて制御目標値に生成する制御目標値生成手段を有し、生成した制御目標値によってアクチュエータを制御する。 (もっと読む)


【課題】カーブ進入時だけでなくカーブ内においてもドライバの危険感に合った減速制御を実行することができる車両用挙動制御装置を提供する。
【解決手段】自車がカーブ内に位置すると判定した場合には、減速制御において、接近離間状態評価指標KdBに基づいた第1修正目標相対速度算出式を適正道路境界距離とカーブ内適性道路境界距離との差分をもとに修正した第2修正目標相対速度算出式を用いて第2修正目標相対速度を算出する。 (もっと読む)


【課題】駐車支援システムにおいて、駐車支援の際に、運転者の衣類がステアリングホイールに巻きついたり、ステアリングホイールが運転者の手にぶつかったりする等の予期せぬ事態が発生するおそれをなくすることにある。
【解決手段】ステアリングホイール(7)と操舵輪(15L、15R)とが機械的に切り離され、ステアリングホイール(7)の回転に応じて操舵輪(15L、15R)を操舵する操舵モータ(22、23)を備えたステアバイワイヤシステム(2)であり、自動駐車手段(31)の実行中には、操舵モータ(22、23)により操舵輪(15L、15R)が操舵されてもステアリングホイール(7)は中立位置にある。 (もっと読む)


【課題】道路状態や走行状態に応じた目標舵角を設定し、この目標舵角に近づくように操舵反力トルクの制御や、自動操舵の制御時、ドライバの操舵による負担を低減する操舵制御装置を提供する。
【解決手段】操向輪の転舵角と走行路形状に応じた転舵角である目標転舵角との差が小さくなる方向に、操向輪の転舵角が変化しているときには、操舵量に対して転舵量が大きくなるようにする。 (もっと読む)


101 - 120 / 1,489