説明

車両用操舵装置

【課題】旋回性に優れ且つ車両姿勢が安定した車両用操舵装置を提供すること。
【解決手段】車両の幅方向Xに延びる第1の被動ラック9Aと第2の被動ラック9Bに、共通の駆動ピニオン10が噛み合う。トレッド幅変更アクチュエータ11が駆動ピニオン10を駆動すると、第1および第1の被動ラック9A,9Bが互いに反対方向に移動する。第1および第2の転舵輪3A,3Bをそれぞれ転舵する第1および第2の転舵アクチュエータ4A,4Bが、それぞれ、第1の被動ラック9Aおよび第2の被動ラック9Bと同行移動する。転舵角センサにて検出された転舵角等に応じて、トレッド幅変更アクチュエータ11を駆動制御し、トレッド幅WTを変更する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は荷役車両のための車両用操舵装置に関するものである。
【背景技術】
【0002】
フォークリフト等の荷役車両は、旋回性(小回り性)を向上するため転舵輪として、単独の後輪を用いられる場合があり、また、その後輪の最大転舵角が、例えば80度のように大きく設定されている。
また、左右一対の転舵輪を用いる場合もある。例えば、左右の転舵輪のそれぞれを各別の転舵アクチュエータにて転舵する車両用操舵装置が提案されている(例えば特許文献1,2を参照)。
【0003】
また、ラック軸長を変更して左右輪のトー角を調整するトー角調整装置であって、左右輪の一方と連結された第1のラック軸と、左右輪の他方と連結された第2のラック軸と、両ラック軸が操舵時に一体となって同じ方向に移動する状態と、両ラック軸が独立して反対方向にそれぞれ移動する状態とを切り換える切替手段とを備えるトー角調整装置が提案されている(例えば特許文献3を参照)。
【0004】
また、モータによりアームを介してリンクを駆動することで左右の後輪を操舵する後輪操舵装置が提案されている(例えば特許文献4を参照)。
また、手動操作可能な設定操作部の設定位置に応じて、左右の車輪をトレッド方向に移動させる油圧装置と、左右の車輪の実トレッド幅をフィードバックして設定操作部の設定可能範囲を規制するトラクタのトレッド調整装置が提案されている(例えば特許文献5を参照)。
【0005】
また、操舵部材の操作に応じて、転舵アクチュエータとしての転舵輪を転舵するステアバイワイヤ式のフォークリフトにおいて、転舵輪の転舵中心上に配置された転舵アクチュエータとしての電動モータを駆動制御するフォークリフトが提案されている(例えば特許文献6を参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003−170849号公報(図1、明細書の第16段落および第19〜20段落)
【特許文献2】特開昭60−53469号公報(図2、図3、第1頁右下欄第20行〜第2頁右上欄第8行)
【特許文献3】特開2005−297782号公報(要約、明細書の第18〜21段落および第25段落)
【特許文献4】特開昭63−17181号公報(図1、図2、第3頁右上欄第4〜9行)
【特許文献5】特開平10−44707号公報(図10、図12、図19および図20、明細書の第13〜14段落、第23段落および第35段落)
【特許文献6】特開2005−263392号公報(要約)
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献5では、車輪をトレッド方向に油圧シリンダの動力で移動させるものの、移動に際してのトレッド幅の設定は手動で行っている。
一方、旋回性(小回り性)と車両姿勢の安定性を考慮した場合、転舵輪の転舵角の大小、車速の大小等によって、最適なトレッド幅が異なるので、手動での設定では、最適なトレッド幅に設定することができない。
【0008】
また、荷役車両では、積載荷重の大小によっても、最適なトレッド幅が異なる。
本発明は上記課題に鑑みてなされたものであり、旋回性に優れ且つ車両姿勢が安定した車両用操舵装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するため、本発明は、操舵部材(2)と左右に配置された第1および第2の転舵輪(3A,3B)との間の機械的な連結が断たれた車両用操舵装置(1)において、上記第1および第2の転舵輪をそれぞれ転舵する第1および第2の転舵アクチュエータ(4A,4B)と、転舵角(δh )を検出する転舵角検出手段(20)と、上記第1および第2の転舵輪のトレッド幅(WT)を変更するトレッド幅変更アクチュエータ(11)と、上記転舵角検出手段にて検出された転舵角に応じて、上記トレッド幅変更アクチュエータを駆動制御する制御装置(24)と、を備える車両用操舵装置を提供する。
【0010】
本発明によれば、検出された転舵角に応じた最適なトレッド幅を実現することができるので、旋回性(小回り性)と車両姿勢の安定性とを両立することができる。
また、上記制御装置は、基準トレッド幅(WT)に、所定の重み係数(k1 ,k2 ,k3 )を乗じて、目標トレッド幅(WT* )を演算する目標トレッド幅演算部(44)と、を含む場合がある(請求項2)。例えば転舵角、車速、積載荷重等に応じて設定される所定の重み係数を、基準トレッド幅に乗じて、最適なトレッド幅を実現することができる。
【0011】
また、上記所定の重み係数は、上記検出された転舵角に応じた第1の重み係数(k1 )を含む場合がある(請求項3)。転舵角が大きいほど、車両が横方向に振られる傾向にある。そこで、本発明では、基準トレッド幅に乗じるべき第1の重み係数を、転舵角の増大に応じて、例えば段階的または連続的に増大させることにより、転舵角の大きさに応じた最適なトレッド幅を実現することができる。
【0012】
また、車速(V)を検出する車速検出手段(21)を備え、上記所定の重み係数は、上記車速検出手段にて検出された車速に応じた第2の重み係数(k2 )を含む場合がある(請求項4)。車速が大きいほど、旋回時に車両が側方に振られる傾向にある。そこで、本発明では、基準トレッド幅に乗じるべき第2の重み係数を、車速の増大に応じて、例えば段階的にまたは連続的に増大させることにより、車速の大きさを加味した最適なトレッド幅を実現することができる。
【0013】
また、積載部の積載荷重(W)を検出する積載荷重検出手段(22)を備え、上記所定の重み係数は、上記積載荷重検出手段にて検出された積載荷重に応じた第3の重み係数(k3 )を含む場合がある(請求項5)。荷役車両の場合、積載荷重を大きいほど、旋回時に積荷が側方に振られ、ひいては車両が側方に振られる傾向にある。そこで、本発明では、基準トレッド幅に乗じるべき第3の重み係数を、積載荷重の増大に応じて、例えば段階的にまたは連続的に増大させることにより、積載荷重の大きさを加味した最適なトレッド幅を実現することができる。
【0014】
また、上記制御装置は、車速がゼロでないことを条件として、上記トレッド幅変更用アクチュエータの駆動を開始する場合がある(請求項6)。仮に車速がゼロのとき(停止中)にトレッド幅を変更しようとすると、大型で大出力のトレッド幅変更アクチュエータが必要となるのに対して、本発明では、車両の走行中にトレッド幅を変更するので、トレッド幅変更アクチュエータの小型化と省エネルギ化を図ることができる。
【0015】
なお、上記において、括弧内の英数字は、後述する実施形態における対応構成要素の参照符号を表すものであるが、これらの参照符号により特許請求の範囲を限定する趣旨ではない。
【図面の簡単な説明】
【0016】
【図1】本発明の一実施の形態の車両用操舵装置を含む荷役車両としてのフォークリフトの概略構成を示す模式的側面図である。
【図2】トレッド幅変更機構の概略斜視図である。
【図3】トレッド幅変更機構の断面図である。
【図4】トレッド幅変更機構の模式的平面図であり、(a)はトレッド幅が最大と最小の間の中間のときを示し、(b)はトレッド幅が最大のときを示し、(c)は最小のときを示している。
【図5】トレッド幅変更アクチュエータの制御に関わる構成を主に示すブロック図である。
【図6】(a)は転舵角−第1の重み係数マップを示し、(b)は車速−第2の重み係数マップを示し、(c)は積載荷重−第3の重み係数マップを示している。
【図7】制御装置による主たる制御の流れを示すフローチャートである。
【発明を実施するための形態】
【0017】
本発明の好ましい実施の形態の添付図面を参照しつつ説明する。
図1は本発明の一実施の形態の車両用操舵装置の概略構成を示す模式図である。図1を参照して、本車両用操舵装置1は、ノブ2a付きの手回しハンドルである操舵部材2と後輪である第1および第2の転舵輪3A,3Bとの機械的な結合が解除された、いわゆるステアバイワイヤシステム式の車両用操舵装置として構成されている。
【0018】
車両用操舵装置1は、上記操舵部材2と、操舵部材2の操作に応じて第1および第2の転舵輪3A,3Bをそれぞれ転舵する第1および第2の転舵アクチュエータ4A,4Bと、操舵部材2に操舵反力を付与する反力アクチュエータ5と、第1および第2の転舵輪3A,3Bのトレッド幅を変更するトレッド幅変更機構6とを備えている。
第1およひ第2の転舵輪3A,3Bは、トレッド幅変更機構6を介して車体7に支持されている。図1および図2に示すように、トレッド幅変更機構6は、車体7に固定された支持部材としてのハウジング8と、ハウジング8によって車体7の幅方向W1に移動可能に支持され、第1および第2の転舵アクチュエータ4A,4Bとそれぞれ同行して幅方向W1に移動可能な第1および第2の被動ギヤとしての第1および第2の被動ラック9A,9Bと、第1および第2の被動ラック9A,9Bに噛み合う共通の駆動ギヤとしての駆動ピニオン10と、駆動ピニオン10を駆動することにより、各被動ラック9A,9Bを幅方向W1に駆動してトレッド幅WTを変更するトレッド幅変更アクチュエータ11とを備えている。
【0019】
図2に示すように、ハウジング8は、幅方向W1に平行に延び前後方向X1に対向する第1板31および第2板32と、第1板31および第2板の対向端部間をそれぞれ連結する一対の側板としての第3板および第4板34とを有する矩形フレームにより構成されている。
第1の被動ラック9Aは、幅方向W1に延び、第1板31の内面に摺動可能に沿わされている。第2の被動ラック9Bは、幅方向W1に延び、第2板32の内面に摺動可能に沿わされている。駆動ピニオン10は、鉛直な軸線を有している。トレッド幅変更アクチュエータ11は、例えばブラシレスの電動モータからなり、車体7に固定された本体11aと、駆動ピニオン10を同軸上に一体回転可能に連結した回転軸11bと有している。
【0020】
図3に示すように、ハウジング8の第1板31の内面に、幅方向W1に延びるガイド溝35が形成されており、そのガイド溝34に、第1の被動ラック9Aの裏面に形成されたガイドバー36が、幅方向W1に摺動可能に嵌め合わされている。また、ハウジング8の第2板32の内面に、幅方向W1に延びるガイド溝37が形成されており、そのガイド溝37に、第1の被動ラック9Aの裏面に形成されたガイドバー38が、幅方向W1に摺動可能に嵌め合わされている。
【0021】
図1および図2を参照して、第1の転舵アクチュエータ4Aは、例えばブラシレスの電動モータからなり、本体12Aと、鉛直な軸線C1を有する回転軸13Aを有している。本体12Aは、第1の被動ラック9Aの端部(ハウジング8の第3板33に近い側の端部)に固定されている。その回転軸13Aの下端に、ブラケット14Aが、軸線C1の回りに回転軸13Aと同行回転可能に連結されている。ブラケット14Aは、第1の転舵輪3Aを水平な車軸15A回りに回転可能に支持している。
【0022】
第2の転舵アクチュエータ3Bは、例えばブラシレスの電動モータからなり、本体12Bと、鉛直な軸線C2を有する回転軸13Bを有している。本体12Bは、第1の被動ラック9Bの端部(ハウジング8の第4板34に近い側の端部)に固定されている。その回転軸13Bの下端に、ブラケット14Bが、軸線C2の回りに回転軸13Bと同行回転可能に連結されている。ブラケット14Bは、第2の転舵輪3Bを水平な車軸15B回りに回転可能に支持している。
【0023】
トレッド幅変更アクチュエータ11が駆動ピニオン10を回転駆動すると、第1の被動ラック9Aおよび第2の被動ラック9Bが、幅方向W1の互いに反対方向に移動し、これに伴って、第1の転舵輪3Aおよび第2の転舵輪3Bも幅方向W1の互いに反対方向に移動する。これにより、トレッド幅WTが変更されるようになっている。
図4(b)はトレッド幅WTが最大となる状態を示し、図4(c)はトレッド幅WTが最小となる状態を示し、例えば図4(a)はトレッド幅WTが最大と最小の中間の状態を示している。トレッド幅WTが最大のときには、図4(b)に示すように、第1の被動ラック9Aの一端部が、第2板33の内面に当接して移動を規制されるとともに、第2の被動ラック9Bの一端部が、第4板34の内面に当接して移動を規制される。すなわち、第3板33および第4板34が、トレッド幅WTの最大値を機械的に規制するストッパの機能を果たしている。
【0024】
同様に、トレッド幅WTが最小のときには、図4(c)に示すように、第1の被動ラック9Aの他端部が、第4板34の内面に当接して移動を規制されるとともに、第2の被動ラック9Bの他端部が、第3板33の内面に当接して移動を規制される。すなわち、第3板33および第4板34が、トレッド幅WTの最小値を機械的に規制するストッパの機能を果たしている。
【0025】
再び図1を参照して、操舵部材2は、車体7に対して回転可能に支持された回転シャフト16に連結されている。この回転シャフト16には、操舵部材2に操作反力を与えるための上記反力アクチュエータ5が付設されている。反力アクチュエータ5は、回転シャフト16と一体の出力シャフトを有するブラシレスモータ等の電動モータを含む。
回転シャフト16の操作部材2とは反対側の端部には、例えば渦巻きばね等からなる弾性部材17が車体7との間に結合されている。この弾性部材17は、反力アクチュエータ5が操舵部材2にトルクを付加していないときに、その弾性力によって、操舵部材2を直進操舵位置に復帰させる。
【0026】
操舵部材2の操作入力値を検出するために、回転シャフト16に関連して、操舵部材2の操舵角δh を検出するための操舵角センサ18が設けられている。また、回転シャフト16には、操舵部材2に加えられた操舵トルクTを検出するためのトルクセンサ19が設けられている。また、例えば第1および第2の転舵アクチュエータ4A,4Bの回転軸13A,13Bの何れかの回転角に関連して、転舵輪3A,3Bの転舵角δW (タイヤ角)を検出する転舵角検出手段としての転舵角センサ20が設けられている。
【0027】
また、車速Vを検出する車速検出手段としての車速センサ21が設けられている。また、積載部としてのフォーク(図示せず)の積載荷重Wを検出する荷重検出手段としての荷重センサ22が設けられている。また、例えば第1および第2の被動ラック9A,9Bの何れかの位置に関連して、トレッド幅WTを検出するトレッド幅検出センサ23が設けられている。
【0028】
上記のセンサ類18〜23の各検出信号は、マイクロコンピュータを含む構成の電子制御ユニット(ECU)からなる車両制御手段としての制御装置24に入力されるようになっている。
制御装置24は、操舵角センサ18によって検出された操舵角δh および車速センサ21によって検出された車速Vに基づいて、目標転舵角を設定し、この目標転舵角と転舵角センサ20によって検出された転舵角δW との偏差に基づいて、対応する駆動回路(図示せず)を介し、両転舵用アクチュエータ4A,4Bを駆動制御(転舵制御)する。
【0029】
一方、制御装置24は、センサ類18〜22が出力する検出信号に基づいて、操舵部材2の操舵方向と逆方向の適当な反力が発生されるように、対応する駆動回路(図示せず)を介して、反力アクチュエータ5を駆動制御(反力制御)する。
また、制御装置24は、転舵角センサ20によって検出された転舵角δW 、車速センサ21によって検出された車速Vおよび荷重センサ22によって検出された積載荷重Wに基づいて、目標トレッド幅WT* を設定し、この目標トレッド幅WT* とトレッド幅検出センサ23によって検出されたトレッド幅WTとの偏差に基づいて、対応する駆動回路(図示せず)を介して、トレッド幅変更アクチュエータ11を駆動制御する。
【0030】
図5は、トレッド幅変更アクチュエータ11の制御に関わる構成を主に示す制御装置24のブロック図である。制御装置24は、第1の重み係数算出部41と、第2の重み係数算出部42と、第3の重み係数算出部43と、目標トレッド幅算出部44と、トレッド幅変更アクチュエータ11を駆動する駆動回路45とを備えている。
第1の重み係数算出部41は、転舵角センサ20から入力した転舵角δh に基づき、予め記憶された転舵角−第1の重み係数マップM1(δh −k1 マップ)を用いて、第1の重み係数k1 を算出する。
【0031】
第2の重み係数算出部42は、車速センサ21から入力した車速Vに基づき、予め記憶された車速−第2の重み係数マップM2(V−k2 マップ)を用いて、第2の重み係数k2 を算出する。
第3の重み係数算出部43は、荷重センサ22から入力した積載荷重Wに基づき、に示すような、予め記憶された積載荷重−第3の重み係数マップ(W−k3 マップ)を用いて、第3の重み係数k3 を算出する。
【0032】
図6(a)に示すように、転舵角−第1の重み係数マップM1では、転舵角δh (°)が0≦δh <20°の領域で、第1 の重み係数k1 が1とされ、20°≦δh <40°の領域で、第1の重み係数k1 がx(xは例えば1.2)とされ、40°≦δh <60°の領域で、第1の重み係数k1 がy(例えばb=1.5)とされ、60°≦δh の領域で、第1の重み係数k1 がzとされている。転舵角δh の増大に応じて、第1の重み係数k1 が1から段階的に増大するようにされている。
【0033】
図6(b)に示すように、車速−第2の重み係数マップM2では、車速V(km/h)が0≦V<5の領域で、第2の重み係数k2 が1とされ、5≦V<10の領域で、第2の重み係数k2 がaとされ、10≦V<15の領域で、第2の重み係数k2 がb(例えばb=1.5)とされ、15≦Vの領域で、第2の重み係数k2 がcとされている。車速Vの増大に応じて、第2の重み係数k2 が1から段階的に増大するようにされている。
【0034】
図6(c)に示すように、積載荷重−第3の重み係数マップM3では、積載荷重W(Kg)が0≦W<500の領域で、第3の重み係数k3 が1とされ、500≦W<1000の領域で、第3の重み係数k3 がlとされ、1000≦W<1500の領域で、第3の重
み係数k3 がmとされ、1500≦Wの領域で、第3の重み係数k3 がnとされている。積載荷重Wの増大に応じて、第3の重み係数k3 が1から段階的に増大するようにされている。
【0035】
目標トレッド幅算出部44は、第1の重み係数算出部41から入力された第1の重み係数k1 と、第2の重み係数算出部42から入力した第2の重み係数k2 と、第3の重み係数算出部43から入力した第3の重み係数k3 とを、基準トレッド幅WTBに乗算し、下記式(1)を用いて、目標トレッド幅WT* を算出する。
WT* =WTB・k1 ・k2 ・k3 …(1)
例えば、基準トレッド幅WTBが200mmであるとすると、転舵角δが30°で、車速Vが12km/hで、積載荷重Wが1200Kgのときには、式(1)より、
WT* =200・x・b・m
となる。x=1.2、b=1.5、m=1.2であるとすると、
WT* =432
となる。
【0036】
制御装置24は、目標トレッド幅算出部44により算出された目標トレッド幅WT* とトレッド幅検出センサ23から入力したトレッド幅WTとの偏差に基づいて、駆動回路45介して、トレッド幅アクチュエータ11が駆動制御する。
次いで、図7はトレッド幅変更に関する制御装置24の制御の流れを示すフローチャートである。まず、ステップS1において、各センサ(転舵角センサ20、車速センサ21、荷重センサ22等)からの信号を入力し、次いで、ステップS2において、第1重み係数算出部41、第2の重み係数算出部42および第3の重み係数算出部43が、それぞれ、第1の重み係数k1 、第2の重み係数k2 および第3の重み係数k3 を算出する。
【0037】
次いで、ステップS3において、目標トレッド幅算出部44が、上記式(1)を用いて、目標トレッド幅WT* を算出する。
次いで、ステップS4において、車速Vがゼロでない(V≠0)であることを条件として(すなわち車両の走行開始を待って)、目標トレッド幅WT* とトレッド幅検出センサ23によって検出されたトレッド幅WTとの偏差に基づいて、駆動回路45を介して、トレッド幅変更アクチュエータ11を駆動制御することにより、トレッド幅WTを所要の値に変更する。
【0038】
本実施の形態によれば、検出された転舵角δh に応じた最適なトレッド幅WTを実現することができるので、旋回性(小回り性)と車両姿勢の安定性とを両立することができる。
具体的には、基準トレッド幅WTに、検出された転舵角δh に応じた第1の所定の重み係数k1 を乗じて、目標トレッド幅WT* を演算するので、最適なトレッド幅を実現することができる。すなわち、転舵角δh が大きいほど、車両が横方向に振られる傾向にあるのに対して、本実施の形態では、基準トレッド幅WTに乗じるべき第1の重み係数k1 を、転舵角δh の増大に応じて、例えば図6(a)に示すように段階的に、或いは図示していないが連続的に増大させることにより、転舵角δh の大きさに応じた最適なトレッド幅WTを実現することができる。
【0039】
また、車速が大きいほど、旋回時に車両が側方に振られる傾向にあるのに対して、本実施の形態では、基準トレッド幅WTに乗じるべき第2の重み係数k2 を、車速Vの増大に応じて、例えば図6(b)に示すように段階的に、或いは図示していないが連続的に増大させることにより、車速Vの大きさを加味した最適なトレッド幅WTを実現することができる。
【0040】
また、荷役車両の場合、積載荷重Wが大きいほど、旋回時に積荷が側方に振られ、ひいては車両が側方に振られる傾向にあるのに対して、本実施の形態では、基準トレッド幅WTに乗じるべき第3の重み係数k3 を、積載荷重Wの増大に応じて、例えば図 6(c)に示すように段階的に、或いは図示いしていないが連続的に増大させることにより、積載荷重Wの大きさを加味した最適なトレッド幅WTを実現することができる。
【0041】
また、仮に車速Vがゼロのとき(停止中)にトレッド幅WTを変更しようとすると、大型で大出力のトレッド幅変更アクチュエータが必要となるのに対して、本実施の形態では、車両の走行開始を待って、車両の走行中にトレッド幅WTを変更するので、トレッド幅変更アクチュエータ11の小型化と省エネルギ化を図ることができる。
本発明は上記実施の形態に限定されるものではなく、本発明の特許請求の範囲で種々の変更を施すことができる。
【符号の説明】
【0042】
1…車両用操舵装置、2…操舵部材、3A…第1の転舵輪、3B…第2の転舵輪、4A…第1の転舵アクチュエータ、4B…第2の転舵アクチュエータ、5…反力アクチュエータ、6…トレッド幅変更機構、7…車体、8…ハウジング(支持手段)、9A…第1の被動ラック(第1の被動ギヤ)、9B…第2の被動ラック(第2の被動ギヤ)、10…駆動ピニオン(駆動ギヤ)、11…トレッド幅変更アクチュエータ、12A,12B…本体、13A,13B…回転軸、14A,14B…ブラケット、15A,15B…車軸、18…操舵角センサ、19…トルクセンサ、20…転舵角センサ(転舵角検出手段)、21…車速センサ(車速検出手段)、22…荷重センサ(積載荷重検出手段)、23…トレッド幅検出センサ、24…制御装置、31…第1板、32…第2板、33…第3板、34…第4板、35,37…ガイド溝、36,38…ガイドバー、41…第1の重み係数算出部、42…第2の重み係数算出部、43…第3の重み係数算出部、44…目標トレッド幅算出部、C1,C2…軸線、k1 …第1の重み係数、k2 …第2の重み係数、k3 …第3の重み係数、δh …転舵角、V…車速、W…積載荷重、WT…トレッド幅、WTB…基準トレッド幅、WT* …目標トレッド幅

【特許請求の範囲】
【請求項1】
操舵部材と左右に配置された第1および第2の転舵輪との間の機械的な連結が断たれた車両用操舵装置において、
上記第1および第2の転舵輪をそれぞれ転舵する第1および第2の転舵アクチュエータと、
転舵角を検出する転舵角検出手段と、
上記第1および第2の転舵輪のトレッド幅を変更するトレッド幅変更アクチュエータと、
上記転舵角検出手段にて検出された転舵角に応じて、上記トレッド幅変更アクチュエータを駆動制御する制御装置と、を備える車両用操舵装置。
【請求項2】
請求項1において、上記制御装置は、基準トレッド幅に、所定の重み係数を乗じて、目標トレッド幅を演算する目標トレッド幅演算部と、を含む車両用操舵装置。
【請求項3】
請求項2において、上記所定の重み係数は、上記検出された転舵角に応じた第1の重み係数を含む車両用操舵装置。
【請求項4】
請求項3において、車速を検出する車速検出手段を備え、
上記所定の重み係数は、上記車速検出手段にて検出された車速に応じた第2の重み係数を含む車両用操舵装置。
【請求項5】
請求項3または4において、積載部の積載荷重を検出する積載荷重検出手段を備え、
上記所定の重み係数は、上記積載荷重検出手段にて検出された積載荷重に応じた第3の重み係数を含む車両用操舵装置。
【請求項6】
請求項1から5の何れか1項において、上記制御装置は、車速がゼロでないことを条件として、上記トレッド幅変更用アクチュエータの駆動を開始する車両用操舵装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−86765(P2012−86765A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2010−236867(P2010−236867)
【出願日】平成22年10月21日(2010.10.21)
【出願人】(000001247)株式会社ジェイテクト (7,053)
【Fターム(参考)】