説明

Fターム[3G384BA03]の内容

内燃機関の複合的制御 (199,785) | 制御対象又は関連する機関、部位 (32,549) | 出力 (2,295) | 回転数 (1,146)

Fターム[3G384BA03]に分類される特許

101 - 120 / 1,146


【課題】燃料噴射量と回転数から出力補正に応じたEGR開度を演算することで、EGR開度と出力の関係におけるずれを防止し、補正後の出力に対して適正なEGR開度となるように制御できる電子制御式エンジンを提供する。
【解決手段】回転数設定手段17と、回転数検知手段13と、燃焼後の排気ガスの一部を吸気側に再循環させるEGR装置6と、エンジン制御装置5を備え、該EGR装置の再循環量を回転数に応じて変更制御可能とする電子制御式エンジンにおいて、実エンジン回転数と、燃料噴射量を検知し、実エンジン回転数と、燃料噴射量と、出力補正後のEGR開度との関係を表すマップより、実エンジン回転と燃料噴射量に対応する出力補正後のEGR開度を演算し、EGR開度を制御する。 (もっと読む)


【課題】機関の運転状態が過渡運転状態となったこと等に起因して下流側空燃比センサの出力値がリッチとなったとき、空燃比のフィードバック制御と触媒の反応とに起因して空燃比を更にリッチに設定することを防止する。
【解決手段】空燃比制御装置は、下流側空燃比センサ56の出力値Voxsがリッチ判定閾値以上となったときに触媒43に流入するガスがリーン空燃比となり、且つ、出力値Voxsがリーン判定閾値以下となったとき触媒流入ガスがリッチ空燃比となるように空燃比のフィードバック制御を行う。更に、上流側空燃比が所定値以下となり、且つ、その後に取得される下流側空燃比センサ56の出力値Voxsの極大値がある範囲内の値であるとき、下流側空燃比センサ56の出力値Voxsが「触媒43の状態が酸素過剰状態となる前」に低下すると予測し、酸素過剰状態であると判定するためのリーン判定閾値を通常値よりも小さくする。 (もっと読む)


【課題】内燃機関の回転変動量に基づいて高精度に燃料圧力を推定し、推定した燃料圧力に基づいて圧力センサの異常を判定する燃料噴射制御装置を提供する。
【解決手段】燃料噴射制御装置は、噴射運転状態であり(S400:Yes)、エンジン回転数が所定回転数を超えている場合(S402:Yes)、エンジン回転速度の加速度を積算する検出範囲の終了時期を早め(S404)、設定した検出範囲で加速度を積算する(S406)。燃料噴射制御装置は、吸入空気量、EGRガス量等のエンジン運転環境に基づいて補正した加速度積算値から噴射量を推定し(S408、S410)、推定噴射量から燃料圧力を推定する(S422)。燃料噴射制御装置は、燃料圧力の推定圧力と圧力センサによる検出圧力との圧力差が異常判定値を超えている気筒がある場合(S426:Yes)、圧力センサの仮異常であると判定する(S428)。 (もっと読む)


【課題】エンジン回転数を記憶部に記憶させる操作や記憶されたエンジン回転数による制御を実行させる操作などのエンジン回転数メモリ制御の操作を簡単にする技術の提供。
【解決手段】第1スイッチング状態を作り出す第1操作位置と第2スイッチング状態を作り出す第2操作位置とを有するスイッチと、スイッチング状態を検出するスイッチ検出モジュールと、エンジン回転数を表示する表示部とが備えられている。第1・第2スイッチング状態の少なくとも1つの状態が所定時間以上継続すると現状のアクセル位置に対応するエンジン回転数が記憶部に記憶され、第1スイッチング状態が所定時間未満である限界時間だけ継続すると記憶部から読み出されたエンジン回転数に基づいてエンジンの回転数が調整され、第2スイッチング状態が限界時間だけ継続すると記憶部に記憶されたエンジン回転数が表示される。 (もっと読む)


【課題】ISC装置のISC弁が開弁状態で固着する等の異常時にエンジン回転数の過度の上昇を防止できること。
【解決手段】吸気通路に設置されたスロットル弁の上流側と下流側を接続する吸気バイパス通路に設置され、アイドリング運転時に吸気バイパス通路を流れる空気流量を調節することでアイドリング回転数を制御するISC装置を備えたエンジンのエンジン制御装置100であって、前記スロットル弁の開度を検出するスロットル開度センサ103と、前記吸気通路の吸気負圧を検出する吸気圧センサ102と、エンジンの出力を制御するコントロールユニット104とを有し、このコントロールユニットは、スロットル開度センサ103にて検出されたスロットル弁の開度が所定範囲内の場合で、且つ吸気圧センサ102にて検出された吸気負圧が閾値よりも小さいときに、ISC装置のISC弁が異常であると判定してエンジン出力抑制制御を実行するものである。 (もっと読む)


【課題】 コースト走行時に安定した減速を達成可能なハイブリッド車両の制御装置を提供すること。
【解決手段】 エンジンとモータジェネレータとからなる動力源と、動力源と駆動輪との間に介装され、複数の変速段を達成すると共に、1速をワンウェイクラッチの係合により達成する自動変速機と、自動変速機を変速する変速手段と、コースト走行中の減速の時は、動力源により負トルクである目標コーストトルクを発生させ、変速手段により1速へのダウンシフトが終了する前に、目標コーストトルクを0または正トルクとするコーストトルク制御手段と、を備えた。 (もっと読む)


【課題】各気筒に対する故障判定精度を高めることができる内燃機関の故障診断装置を提供する。
【解決手段】ECUは、各気筒に対する仕事量相当値Sneflt(#k)を算出すると(ステップS1)、判定閾値th1と比較し(ステップS3)、判定閾値h1未満であると判定した場合には(ステップS3でYES)、正常復帰後の継続時間算出処理を実行し(ステップS4)、正常復帰後の継続時間Txr(#k)を算出する。そして、ECUは、正常復帰後継続時間Txr(#k)が所定値以上となった場合、異常継続時間カウンタecrhidl(#k)の積算を行い(ステップS6)、異常継続時間カウンタecrhidl(#k)が2秒以上になったと判定すると(ステップS9でYES)、異常気筒フラグexdcyl(#k)をONにする(ステップS10)。 (もっと読む)


【課題】始動性を向上させる一方でエンジン回転数の上昇を抑えることのできる小型エンジンおよびそれを備えたエンジン作業機を提供する。
【解決手段】2サイクルエンジン1は、始動時にシリンダボア内に供給される燃料の濃度を高めるリフトアップ式の気化器5の始動操作レバー12の操作を検出する始動操作検出スイッチ13と、エンジン1の回転数を検出するイグニッションコイル10と、始動操作検出スイッチ13によりリフトアップ式の気化器5の始動操作レバー12の操作が検出された場合に、エンジン回転数を所定の回転数以下に抑制する点火時期制御回路とを備える。 (もっと読む)


【課題】オゾン供給手段の故障を判定するための専用のセンサを設けなくてもよい、内燃機関の制御装置を提供する。
【解決手段】ノッキングを検出するノッキング検出手段18と、内燃機関の燃焼室11内に供給されるオゾンを発生するオゾン発生手段23と、ノッキング検出手段18とオゾン発生手段23とを制御する制御手段100と、を備え、制御手段100は、オゾン発生手段23によるオゾンを燃焼室11内に供給し、火花点火燃焼により燃焼している状態で、ノッキング検出手段18により検出されるノッキングの出力に応じて、オゾン発生手段23の故障を判定する。 (もっと読む)


【課題】レゾルバやその周辺回路に異常が発生したとき、代替センサであるクランク角センサの検出角度の精度(分解能)に影響しないモータ回転角の推定方法を提供し、インバータやその周辺機器の故障を招くことなく、モータ制御(弱め界磁制御)を行うことを目的とする。
【解決手段】車両駆動用のモータと、前記モータのロータ回転角を検出するレゾルバと、前記ロータ回転角情報、及びトルク指令値に基づいて前記モータを制御するモータ制御回路と、クランク軸を介して前記モータと接続されるエンジンと、前記クランク軸の回転数を検出するクランク軸センサと、を有し、前記モータ制御回路は、前記レゾルバの異常が検知された場合、前記クランク軸の回転数の変化率に基づいてロータ回転角を推定し、当該推定されたロータ回転角に基づいて弱め界磁制御をすることを特徴とする車両システムが提供される。 (もっと読む)


【課題】複数の燃焼形態における燃焼変動をそれぞれ正確に検出可能な内燃機関の制御装置を得ること。
【解決手段】燃焼形態を切り替えて運転可能な内燃機関の制御装置が、燃焼形態に応じてクランク角センサ10のセンサ信号を検出する検出時期および検出期間を設定し、その設定した検出時期および検出期間においてクランク角センサ10で検出したセンサ信号に基づいて燃焼変動の有無を判定する。 (もっと読む)


【課題】燃料噴射弁に関する情報の精度を保証しつつ、記憶機器への書込み回数を抑制することのできる情報記憶装置を提供する。
【解決手段】情報記憶装置は、エンジンの燃料噴射弁10に関する情報を書込み回数に制限のあるEEPROM25aに記憶させる。ECU30は、燃料噴射弁10の噴射特性を示す特性値を学習するとともに、特性値を学習する時の燃料噴射弁10の状況を取得する。ECU30は、学習された特性値とEEPROM25aに記憶された特性値との相違が所定度合よりも大きいことを条件として、学習された特性値と共に、取得された上記状況をEEPROM25aに記憶させる。 (もっと読む)


【課題】ハイブリッド型パワーユニットの発電動機が内燃機関の補助駆動を行っている最中でも、失火誤検出を抑制できる失火検出装置を提供する。
【解決手段】内燃機関を補助的に駆動可能な発電動機と、この発電動機の制御トルクを検出可能なトルク検出手段とを備えたハイブリッド型パワーユニットの内燃機関の失火検出装置において、発電動機により補助的に駆動されている状態下の内燃機関の回転角速度を合成駆動角速度として検出可能な角速度検出手段を設け、発電動機の制御トルクから発電動機駆動成分の角速度変化量を算出し、合成駆動角速度と発電動機駆動成分の角速度変化量とに基づいて内燃機関駆動成分の角速度変化量を算出し、この内燃機関駆動成分の角速度変化量に基づいて失火判定を行う。 (もっと読む)


【課題】この発明は、すべり軸受およびそれを備える内燃機関の制御装置に関し、外部からの電力供給を必要とせずに、摺動面を加熱してフリクションを低減可能とすることを第1の目的とし、また、すべり軸受の性能を損なうような不具合の発生を予測して、当該不具合を速やかに回避可能とすることを第2の目的とする。
【解決手段】クランクジャーナル部10aやクランクピン部10bを回転自在に支持するすべり軸受16であって、すべり軸受16の内部に配置された圧電素子20および熱電素子22と、圧電素子20と熱電素子22とを電気的に接続する電子回路24とを備える。また、圧電素子20が発生させる電圧が所定値β以上である場合に、内燃機関60の負荷が低減されるように内燃機関60を制御する。 (もっと読む)


【課題】燃料性状判定装置に関し、エンジンに供給される燃料の燃料性状を正確に把握する。
【解決手段】エンジン10の排気空燃比を検出する空燃比検出手段1aと、エンジン10のスロットル弁9の開度量を検出する開度量検出手段1cとを備える。また、開度量検出手段1cで検出された前記開度量の減少時に、空燃比検出手段1aで検出された前記排気空燃比に基づき、エンジン10に供給される燃料の燃料性状を判定する判定手段3を備える。 (もっと読む)


【課題】本発明は、燃費を向上させる技術を提供することを目的とする。
【解決手段】本発明は、内燃機関20によって駆動される発電機を制御する発電制御装置を提供する。本発電制御装置は、内燃機関20が所定の回転速度で作動しているときの各サイクルにおけるクランク角毎の回転速度を表す波形である第1回転速度波形と、所定の回転速度よりも低い回転速度で内燃機関20が作動しているときの各サイクルにおけるクランク角毎の回転速度を表す波形である第2回転速度波形と、を検出する波形検出部と、第2回転速度波形が第1回転速度波形の波形に近づくように発電機に接続されている電気的負荷を操作する負荷操作部と、を備える。 (もっと読む)


【課題】エンジンからの動力を駆動輪へ出力し差動用電動機により差動状態が制御される差動機構を備えた車両用駆動装置において、車両のスリップ時にも非スリップ時にもエンジンの駆動制御を適切に行うことができる車両用駆動装置の制御装置を提供する。
【解決手段】ハイブリッド制御手段86は、基本的には、出力回転部材19の実回転速度である差動部実出力回転速度に基づいてエンジン8を制御する。そして、車両6のスリップ時には、上記差動部実出力回転速度に替えて、実際の車速Vに対応する車速基準出力回転速度に基づいてエンジン8を制御する。従って、上記スリップ時にエンジンパワーが不必要に大きくならないようにエンジン8の駆動制御を適切に行うことができる。また、基本的にはエンジン8は出力回転部材19の実回転速度に基づいて制御されるので、車両6のスリップ時以外でもエンジン8の駆動制御を適切に行うことができる。 (もっと読む)


【課題】エンジンの熱効率を低下させることなくエンジン出力を変更させ、電力負荷での要求電力に応じて発電装置の発電出力を可変させてエネルギー効率の向上を図る。
【解決手段】エンジン出力制御手段101は、エンジン出力を低下させる場合に、まずEGR制御を行い、次にEGR率をゼロとして回転速度制御を行う制御サイクルを、回転速度制御を行う毎に繰り返し行う形態で、EGR制御及び回転速度制御を実行自在とし、且つ、エンジン出力を低下させる制御において、制御サイクルの夫々では、EGR制御を行う場合の熱効率が回転速度制御を行う場合の熱効率よりも低くなる移行条件が満たされるまではEGR率を増加させる形態でEGR制御を継続し、移行条件が満たされるとEGR制御を行う制御状態からEGR率をゼロとして回転速度制御を行う制御状態に移行するように構成されている。 (もっと読む)


【課題】エンジン停止要求に応じてエンジン回転を停止させる際に点火時期等の制御状態に左右されずに実エンジン回転挙動を目標軌道に精度良く制御できるようにする。
【解決手段】エンジン11の燃焼停止前に目標軌道上の目標回転速度と実エンジン回転速度とのエネルギ偏差を0にするように点火時期を制御する点火時期制御とオルタネータ33のトルクを制御するオルタ制御を実行する。その際、点火時期制御の調整可能エネルギとオルタ制御の調整可能エネルギを算出し、これらの調整可能エネルギに基づいて、実エンジン回転速度に対して回転低下側の目標回転速度と回転上昇側の目標回転速度のうちの一方を選択すると共に、目標回転速度と実エンジン回転速度とのエネルギ偏差を0にするのに必要なエネルギ操作量を点火時期制御とオルタ制御に割り当てることで、調整可能エネルギを越えないように点火時期制御とオルタ制御のエネルギ操作量を設定する。 (もっと読む)


【課題】エンジンの始動時に於ける急激な高回転をなくし、潤滑油の供給量不足によるエンジンの焼き付き及び破損を防止する。
【解決手段】コントローラ14によりスロットルボリューム12の設定電圧値を演算して目標回転数となるようにエンジン11の運転を制御するエンジン保護制御装置において、前記エンジン11の潤滑油の圧力を計測する潤滑油圧力検出手段17を備え、エンジン始動時には前記コントローラ14の指令信号により前記エンジン11をアイドルモードで始動させ、前記潤滑油圧力検出手段17による計測値が規定値よりも高くなった場合には前記アイドルモードを解除するように構成した。 (もっと読む)


101 - 120 / 1,146