説明

Fターム[3J552MA13]の内容

伝動装置(歯車、巻掛け、摩擦)の制御 (81,513) | 伝動装置の形式 (11,172) | 発進装置 (3,282) | メインクラッチ (1,118)

Fターム[3J552MA13]の下位に属するFターム

Fターム[3J552MA13]に分類される特許

41 - 60 / 1,106


【課題】機体の急減速に起因する油圧クラッチ切断時や接続時の変速ショックを低減する。
【解決手段】制御装置29は、主変速装置5の次変速段の油圧クラッチC1〜C4を昇圧制御する一方、変速指令に基づいて主変速装置5の油圧クラッチC1〜C4とともに高低変速装置8の油圧クラッチCL、CHを断続制御する際は、主変速装置5の現変速段の油圧クラッチC1〜C4を切断して所定の時問が経過した後、高低変速装置8の現変速段の油圧クラッチCL、CHを切断し、その後、高低変速装置8の次変速段の油圧クラッチCL、CHを接続すると共に、主変速装置5の次変速段の油圧クラッチC1〜C4を昇圧制御するにあたり、高低変速装置8の現変速段の油圧クラッチCL、CHを切断する際の車速が変速目標とする速度に対して所定の割合を乗算した速度以下に減速しているか否かに応じて制御内容を切換える。 (もっと読む)


【課題】走行抵抗に依存することなく良好な変速フィーリングを得ることが可能なデュアルクラッチ式自動変速機およびその変速制御方法を提供する。
【解決手段】変速制御装置は、クラッチトルク−作動量記憶部3aと、クラッチ制御部3bと、車両が平坦路を走行するときの基準走行抵抗を記憶する基準走行抵抗記憶部3cと、走行抵抗演算部3dと、目標クラッチトルクTcaを基準クラッチトルクTcbとして演算する基準クラッチトルク演算部3eと、現在の車速Vに対応する基準走行抵抗Rbpと現在走行抵抗Rpとの差を演算する差演算部3fと、現在走行抵抗Rpと基準走行抵抗Rbpとの差に応じ、現在走行抵抗Rpの方が大きければ、目標クラッチトルクTcaを基準クラッチトルクTcbより差に応じて大きくなるよう補正制御し、現在走行抵抗Rpの方が小さければ、目標クラッチトルクTcaを基準クラッチトルクTcbより差の絶対値に応じて小さくなるよう補正制御するクラッチトルク補正制御部3gと、を備える。 (もっと読む)


【課題】変速時のエンジンからの入力トルクの大きさに関わらず常に両クラッチの断接状態をショックなく円滑に逆転でき、もって良好な変速フィーリングを実現できるデュアルクラッチ式自動変速機の制御装置を提供する。
【解決手段】クラッチC1,C2の断接状態を逆転させる変速中において、エンジン1から両クラッチC1,C2への入力トルクを合計したクラッチ合計トルクが大であるほど両クラッチC1,C2の伝達トルクの変化率を増加方向に設定し、その変化率に基づきクラッチ制御を実行して断接状態を逆転させる。入力トルクが小のときには、小さな伝達トルクの変化率に基づき両クラッチC1,C2を緩やかに制御することにより、クラッチ系の制御遅れに起因して接続側のクラッチC1,C2が急接されるのを防止する。 (もっと読む)


【課題】要求ギヤ段が成立していないときでも運転者の加速要求を満足させることが可能なデュアルクラッチ式自動変速機およびその変速制御方法を提供する。
【解決手段】デュアルクラッチ式自動変速機1の変速制御装置3は、現在ギヤ段検出部111と、要求ギヤ段演算部112と、アクセル踏込検出部114と、アクセルの踏込みが検出されたときの要求ギヤ段に向かってシフト中である第1または第2シフト機構のシフト進行度を演算するシフト進行度演算部115と、シフト進行度が予め設定されたシフト変更閾値Eより大きい場合は第1または第2シフト機構によって要求ギヤ段Gdを成立させ要求ギヤ段Gdに対応するクラッチを接続して走行し、シフト進行度がシフト変更閾値Eより小さい場合には第1または第2シフト機構によって成立している現在ギヤ段に対応するクラッチを接続し走行することを可能にする走行ギヤ段選択制御部116と、を備える。 (もっと読む)


【課題】シフトアップ方向への変速中に駆動輪側に伝達されるトルクの瞬断をモータトルクにより適切に補償し、もってトルク抜けなどに起因する運転者の違和感を確実に防止して加速フィーリングを向上できるハイブリッド車両の制御装置を提供する。
【解決手段】シフトアップ方向への変速に伴うクラッチ切断によりエンジン7の前輪1側へのトルク伝達が一時的に中止されたとき、モータ3の運転によりモータトルクを前輪1側に伝達してトルク補償する。このときの補償トルクTを次変速段を介して伝達されるエンジントルクと略一致するように制御してトルク抜けを防止する。 (もっと読む)


【課題】クラッチ異常と判断されたとき、原動機の駆動トルクを抑制するフェールセーフ機能を備えた自動変速機を提供する。
【解決手段】クラッチアクチュエータ25が、最大トルク伝達できる位置にあるときに、原動機11の駆動軸12の回転と変速装置17の入力軸31の回転とが同期できないときは、クラッチ20の異常と判断するクラッチ異常判断部(S106)と、クラッチ異常判断部によってクラッチ異常と判断されたとき、原動機の駆動トルクを低減するトルク抑制制御部(S112、S114)とを有する。 (もっと読む)


【課題】AMTを搭載した車両において、バッテリ残量が低下した場合に変速作動に伴う電力の消費を抑制することができるものを提供すること。
【解決手段】この車両の動力伝達制御装置では、「車速」と「アクセル開度」との組み合わせが、変速マップ上におけるどの変速段の領域に対応するかによって、達成すべき1つの変速段(選択変速段)が選択され、変速機にて現在の選択変速段が実現(確立)される。車両のバッテリの残量が所定値以上の場合、図中の破線で示す変速マップが使用され、車両のバッテリの残量が所定値未満の場合、図中の実線で示す変速マップが使用される。バッテリ残量が低下した場合、6速(最も高速側の変速段)に対応する領域が拡大する。従って、6速が一度選択されると、その後において変速作動が行われる頻度が減少し、変速作動に伴うシフトアクチュエータ等の駆動に要する電力の消費を抑制することができる。 (もっと読む)


【課題】ハイブリッド車両の要求駆動力が最小燃料消費率相当の内燃機関の駆動力に近い場合でも、走行モードを適切に選択でき、ハイブリッド車両の燃費を向上させることができるハイブリッド車両の制御装置および制御方法を提供する。
【解決手段】車速VPおよび駆動輪への要求トルクTRQに対して、内燃機関の動力の変速段ごとに、走行モードの中でエンジン走行モードのときに小さな総合燃料消費率が得られるエンジン走行領域と、アシスト走行モードのときに小さな総合燃料消費率が得られるアシスト走行領域と、充電走行モードのときに小さな総合燃料消費率が得られる充電走行領域が設定されている。車速VPと要求トルクTRQとの組み合わせが属する走行領域に対応する走行モードを選択し、内燃機関の動力の変速段として、総合燃料消費率が最も小さな変速段を選択する。 (もっと読む)


【課題】変速段の変更の可否を予測した充電量に基づいて適切に判定でき、ひいては、車両の燃費を向上させることができる車両の制御装置および制御方法を提供する。
【解決手段】車両の減速走行中、変速段を保持した状態で車両の停止まで回生を行ったと仮定した場合における充電量である第1充電量CH1が推定され(ステップ1)、車両の停止までに変速段を目標変速段に変更するとともに車両の停止まで回生を行ったと仮定した場合における充電量である第2充電量CH2を推定し(ステップ3)、第1および第2充電量CH1、CH2を用いて変速段を保持すべきかまたは変更すべきかを判定した(ステップ4)結果に基づいて、変速段が設定される(ステップ5、6)。 (もっと読む)


【課題】AMTを搭載した車両において、発進制御中において加速操作部材の操作量が急激に減少された場合に発生し易い減速方向のショックの発生を抑制すること。
【解決手段】車両が発進する際、エンジントルクTeはアクセル開度に基づいて決定される値に調整される。クラッチトルクTcは、通常、エンジンの出力軸の回転速度Neと変速機の入力軸の回転速度Niとの差(ΔN=Ne−Ni)に基づいて決定される値に調整される(通常発進制御)。通常発進制御中において、アクセル開度の急激な減少が検出されたとき、Tcは、「回転速度差ΔNに基づいて決定される値」から(ΔNとは無関係に)減少させられる。これにより、アクセル開度の急激な減少後、Tcが直ちに減少し得る。従って、エンジンの出力軸に発生している減速トルクに基づく大きな減速トルクが駆動輪に伝達され得なくなり、減速方向のショックの発生が抑制される。 (もっと読む)


【課題】アクセルオフ操作によるコースト走行時、車両トータルとしてのエネルギ回収率の改善を図ること。
【解決手段】ハイブリッド車両の回生発電制御装置は、副変速機付き無段変速機CVTと、モータ/ジェネレータMGと、統合コントローラ10と、を備える。副変速機付き無段変速機CVTは、左右タイヤLT,RTに対して動力を伝達する。モータ/ジェネレータMGは、動力伝達経路からの動力により発電を行う。統合コントローラ10は、アクセルオフ操作によるコースト走行時に、ip=1近傍制御を実施することにより、副変速機付き無段変速機CVTへの変速油圧の元圧であるライン圧PLを低下させた上で回生発電制御を行う(図4)。 (もっと読む)


【課題】ハイブリッド車両を電動機および内燃機関の少なくとも一方の動力で走行させる場合において、燃料消費を抑制することができ、燃費を向上させることができるハイブリッド車両の制御装置および制御方法を提供する。
【解決手段】内燃機関および電動機の動作を制御するハイブリッド車両の制御装置はECUを備える。ECUは、EV走行モードの実行中、エンジン走行モードおよびEV走行モードをそれぞれ実行したときのエンジン燃料消費量およびEV燃料消費量を、要求トルクおよび車速に応じて算出し(ステップ41)、エンジン燃料消費量がEV燃料消費量よりも少ないときにはエンジン走行モードを選択し、EV燃料消費量がエンジン燃料消費量よりも少ないときにはEV走行モードを選択して実行する(ステップ42,43)。 (もっと読む)


【課題】 車両の停止中に噛合い係合手段および前進用クラッチを係合して前進変速段を確立する際に、噛合い係合手段のスムーズな係合を可能にする。
【解決手段】 所定の前進変速段を確立すべくシンクロ装置S1を作動させるとき、エンジンEのトルクが係合解除した第1クラッチC1の引きずりトルクとして入力軸11に設けたシンクロ装置S1に作用するため、シンクロ装置S1により入力軸11に1速ドライブギヤ21をスムーズに結合することが困難になるが、シンクロ装置S1が作動する過程でリバースクラッチCRを一時的に係合することで1速ドライブギヤ21に後進方向にトルクを作用させて1速ドライブギヤ21および駆動輪W間の動力伝達経路を捩じりを加え、リバースクラッチCRの係合を解除した瞬間に前記捩じりが解除される反発力でシンクロ装置S1および1速ドライブギヤ21間にガタを発生させ、シンクロ装置S1のスムーズな作動を可能にすることができる。 (もっと読む)


【課題】変速機構の選択機構を作動させるモータや当該モータに駆動電流を供給するモータドライバの過熱を防止することができるデュアルクラッチ式自動変速機を提供する。
【解決手段】デュアルクラッチ式自動変速機の制御部は、変速機構を作動させる各モータに供給される駆動電流に基づき、所定の「演算期間」の「駆動電流量」を演算し、当該「駆動電流量」が上限値を越えたと判定した場合には、「プレシフト禁止制御」に切り替え、プレシフトを禁止し、各モータドライバや各モータの過熱を防止する。 (もっと読む)


【課題】AMTを搭載した車両に適用される車両の動力伝達制御装置であって、車両のユーザーがクラッチの適切な交換時期を容易に知ることができるものを提供すること。
【解決手段】この装置では、「内燃機関の出力軸と有段変速機の入力軸との回転速度差と、クラッチのクラッチトルクとを乗じて得られる、微小時間毎のクラッチ仕事量」を逐次積算していくことによって、クラッチの累積仕事量が逐次算出・更新されていく。このクラッチの累積仕事量に基づいて、クラッチの摩擦板の摩耗量が逐次推定されていく。逐次推定されるクラッチの摩擦板の摩耗量が第1所定値を超えたとき、「クラッチが摩耗した」との判定がなされる。第1所定値は、「クラッチの摩擦板を交換すべき時期」に対応する摩耗量に設定される。この判定がなされると、ユーザーに警告がなされる。 (もっと読む)


【課題】車両の旋回走行中に変速機の変速が行われるときに、車両の旋回走行の状況に応じて、運転者の運転嗜好に合った良好なユーザフィーリングが得られる変速を行うことが可能な自動クラッチ制御装置を提供する。
【解決手段】自動クラッチ制御装置1は、エンジン10のイナーシャに変速におけるエンジン10の目標回転数変化速度を乗算した目標慣性トルクを演算し、エンジン10の現出力トルクから目標慣性トルクを減算した値を、第1、第2クラッチ2a、2bの目標伝達トルクとして演算し、目標伝達トルクが得られる第1、第2クラッチ2a、2bの第1係合量基準値Caを設定する第1基準値設定部5cと、車速V及び旋回半径Rに基づいて第1係合量基準値Caを補正して第2係合量基準値Cbを設定する第2基準値設定部5dとを備えている。そして、第1、第2クラッチ2a、2bの係合量Cを、車両の直進走行中の変速時において第1係合量基準値Caに制御すると共に、車両の旋回走行中の変速時において第2係合量基準値Cbに制御する。 (もっと読む)


【課題】エンジン出力制限手段による徐変制御移行後に速やかに変速機の変速禁止を解除して変速機の変速を許可することで、変速機を適切に変速できる自動変速制御装置を提供する。
【解決手段】自動変速制御装置が、車両の走行状態に応じて、エンジン出力を制限するエンジン出力制限手段30と、エンジン出力制限手段30によるエンジン出力の制限中は、変速機T/Mの変速を禁止する変速禁止手段31と、エンジン出力制限手段30がエンジン出力の制限を徐々に解除する徐変制御を行っていると判定したときには、エンジン出力制限手段30によるエンジン出力の制限中であっても、変速禁止手段31による変速機T/Mの変速禁止を解除して変速機T/Mの変速を許可する変速禁止解除手段32とを備える。 (もっと読む)


【課題】エンジン始動用変速段と加速用変速段とを自由に選択して、ショックの小さいエンジン始動と、エンジン始動後の速やかな加速とを実現することが可能なハイブリッド車両を提供する。
【解決手段】T/M5は、電気モータ4の駆動力を変速機構7,8の変速段13〜15,23〜25を介さずに駆動輪2a,2bへ伝達する構成とする。そして、T/MECU6は、車速vに応じて変速機構7,8の何れか一方に属する変速段のうちの1つをエンジン始動用変速段として選択し、変速機構7,8の何れか他方に属し且つエンジン始動用変速段として選択した変速段よりも変速比の大きい変速段のうちの1つを加速用変速段として選択し、前記一方の変速機構を構成するクラッチ16又は26を接続状態にすることによりエンジン3をクランキングして始動し、エンジン始動後に前記接続状態は解除し、前記他方の変速機構を構成するクラッチ26又は16を接続状態にする。 (もっと読む)


【課題】比較的単純な処理内容で、第一係合装置の温度上昇の抑制を迅速に行うことができる制御装置を実現する。
【解決手段】車輪の駆動力源に駆動連結される入力部材と、車輪に駆動連結される出力部材と、変速機構とを備えた車両用駆動装置用の制御装置。制御装置は、入力換算速度が入力部材の実回転速度よりも低い低出力回転状態で第一係合装置をスリップ係合状態とする係合制御部と、第一係合装置の温度又は発熱量を主監視対象量M1として取得する対象量取得部と、主監視対象量M1が第一判定閾値Th1以上となった場合に、第一係合装置をスリップ係合状態から解放状態へと移行させると共に第二係合装置をスリップ係合状態へと移行させて第1の変速段から第2の変速段へ変速段を移行させる変速制御部と、を備える。 (もっと読む)


【課題】エンジン回転数吹き上げ中の駆動力が変速開始時点の駆動力を下回らないような目標エンジン回転数変化速度となるようにクラッチトルクを制御するデュアルクラッチ式自動変速機を提供する。
【解決手段】クラッチの係合制御を行う変速制御装置が、パワーオンダウン変速開始時点での原動機の出力トルクを変速開始時トルクとして演算する変速開始時トルク演算部と、原動機の現出力トルクから変速開始時トルクを減算した差を原動機のイナーシャトルクで除算して原動機の目標回転増速度を演算する目標回転増速度演算部と、原動機の回転数が低速段側の入力軸の回転数に同期するまでの間は、原動機の回転増速度が目標回転増速度以下となるように、高速段側のクラッチの伝達トルクを制御し、原動機の回転数が前記低速段側の入力軸の回転数に同期すると、低速段側の入力軸に対応する低速段側のクラッチを接続状態にするパワーオンダウン変速制御部とを備える。 (もっと読む)


41 - 60 / 1,106