説明

Fターム[4C082AN02]の内容

放射線治療装置 (15,937) | 放射線治療装置全体の制御 (502) | 治療計画 (359) | 空間的照射条件の設定、シミュレーション (168)

Fターム[4C082AN02]に分類される特許

21 - 40 / 168


【課題】粒子線治療装置におけるIMRTの過照射問題を解決することを目的としたものである。
【解決手段】荷電粒子ビーム1を走査する走査照射系34と、荷電粒子ビーム1のブラッグピークを拡大し、柱状の照射野を生成する柱状照射野生成装置4とを備えた粒子線治療装置に対する治療計画を作成する治療計画装置であって、荷電粒子ビーム1が照射される照射対象40のディスタル形状に応じて柱状の照射野44を配置するとともに、照射対象40の内側に柱状の照射野45を敷き詰めて配置する照射野配置部と、照射野配置部により柱状の照射野44、45が敷き詰められた状態を初期状態として、照射対象40への照査線量が所定の範囲に入るように柱状の照射野44、45の配置を調整する最適化計算部とを有する。 (もっと読む)



【課題】本発明は、信号にノイズが入力された場合、測定した線量値が変化して差動増幅器に治療計画に適うビーム強度値との正確な差分値を出力することができないという問題を解消できるフィードバックシステムを提供することを課題とする。
【解決手段】本発明のフィードバックシステム1は、イオンビーム照射装置100から照射されるイオンビームの線量を測定する線量測定部10と、線量測定部10から出力される信号が入力され、線量の値に対応する周波数に変換して出力する周波数変換部20と、周波数変換部20から入力される所定時間あたりの周波数をカウントし、そのカウントされた所定時間あたりの周波数に対応するカウント値を出力するカウンタ部30と、ビーム強度値と指令値との差分値を求めて、差分値をRF―KO電極間の印加電圧を制御するRF―KO電極コントローラに出力する差動増幅部40と、を備えることを特徴とする。 (もっと読む)


【課題】放射線治療を効率よく行うための放射線治療プランニング装置を提供する。
【解決手段】プランニング情報、治療工程情報、各治療工程のカレンダー情報、治療工程の制約情報、プロトコール情報、患者情報、パターン情報をそれぞれ記憶する第1〜第7記憶部と、第1乃至第4の記憶部の情報により基点の治療工程のスケジュールを作成する第1スケジュール作成部と、第1〜第4記憶部の情報と基点の治療工程のスケジュールにより基点以外の治療工程の照射開始日までのスケジュールを作成する第2スケジュール作成部と、第5〜第7記憶部の情報により割当てパターンの初期解を生成するパターン初期解生成部と、第1〜第7記憶部の情報に基づいてパターンの評価値を算出するパターン評価部と、評価値を用いて割当てパターンを改善するパターン改善部と、第1〜7記憶部の情報と改善パターンにより照射の2日目以降のスケジュールを作成する第3スケジュール作成部と、治療スケジュールを表示する表示部と、を具備する。 (もっと読む)


磁気共鳴画像(MRI)システムは、ギャップにより分離するMRIマグネットハウジングの対を有する分割磁気システムを含む。メインMRIマグネットの対は、個々のMRIマグネットハウジング内部に配置される。複数の強化アセンブリはMRI磁気ハウジングに付属する。強化アセンブリの一部若しくは全部は、MRIマグネットハウジングと取外し自在に接続し得る。このことにより、MRIシステムを再配置するための輸送性及び操縦性を改良するべくMRIシステムの部分的な分解が可能となる。MRIシステムは、放射線治療システムを支持するための、ギャップ内のガントリを含み得る。更に、取外し自在の強化アセンブリは、MRI磁気ハウジングの対の間で、電気コンジット及び流体管などの、コンジットを収容するために用いられてもよい。
(もっと読む)


【課題】複数の段階を経て放射線治療を行うときに発生する照射録情報を管理する治療情報管理システムを提供する。
【解決手段】放射線治療の各工程において照射録情報が入力されるクライアント端末と、ネットワークを介して前記クライアント端末に接続され、前記クライアント端末に入力された照射録情報を記録するサーバと、放射線治療の各工程において、各工程で必要となる照射録情報を前記サーバから受信し、前記クライアント端末に表示する表示装置とを具備する。 (もっと読む)


【課題】 大型の成型品が室温で容易に形成でき、透明性が高い固体ファントムを提供する。
【解決手段】 アルコールなどの極性溶媒または極性溶媒と水との混合溶媒の媒体中で、(A)アルキルシリケートまたは(B)カルボニル基含有樹脂、特にアセチル基含有樹脂および多価カルボン酸ヒドラジド化合物を硬化し、前記媒体をゲル化した固体ファントムであり、透明性が高いので、可視光線の透過率が高く線量測定に有利であり、室温で容易にゲルとなるので、大型の固体ファントムが容易に形成できる。 (もっと読む)


放射線治療システムは、診断用画像スキャナ(12)を含み、その診断用画像スキャナは、被験者の多次元のデータセットを取得し、そのデータセットは、関心対象の少なくとも1つの表示へ再構成される。放射線治療システムの画像処理装置(72)は、セグメンテーションユニット(74)を含み、そのユニットは、関心対象又は他の重要な構造の表面輪郭を識別する。マスキングユニット(82)は、非均一な周縁部を決定するが、その決定は、識別された表面輪郭に基づいて行われ、その決定した非均一な周縁部をその識別された表面輪郭に加える。その非均一な周縁部は、異方性の動き、表面形態、位置の不確実性、他の器官への近接性、及び線量分布の確率のうちの少なくとも1つに基づく。プランニングプロセッサ(70)は、放射線治療プランを生成し、そのプランは、表面輪郭と非均一な周縁部に関連づけられた組織への治療放射線の供給を制限する。放射線供給システム(40)は、その生成されるプランに応じて、治療放射線を供給する。
(もっと読む)


【課題】放射線治療の前に、治療装置と患者或いは他の治療装置との物理的干渉の有無をチェックする干渉チェックシミュレーションの精度を向上させる事を目的とする。
【解決手段】患者24を光学ステレオカメラ23により撮影した光学画像と放射線治療の治療計画に用いるCT画像とを関連付けされた患者3Dモデル15を生成する患者3Dモデル撮影部5と、患者3Dモデル15と治療装置の3Dモデルに基づいて物理的干渉の有無をチェックする干渉チェックシミュレーション部2とを備えた。 (もっと読む)


【課題】機能の特化と分散により効率よく採算性のよい粒子線治療装置の導入を可能にする粒子線治療ネットワークシステムを得る。
【解決手段】粒子線治療装置本体24を有する粒子線治療センター5と、この粒子線治療センター5と提携する窓口病院1a、1b、1cに、それぞれ粒子線治療装置本体24の線源データ及びジオメトリデータを有する放射線治療計画装置16、21を設置し、窓口病院1a、1b、1cの放射線治療計画装置16にて治療計画を立案し、この立案した治療計画を粒子線治療センター5に送り、粒子線治療センター5では、放射線治療計画装置21にて、送られた治療計画を確認し、確認された治療計画に基づき、粒子線治療を行うようにした。 (もっと読む)


【課題】粒子線ビームの照射中に線量プロファイルをモニタリングし、実際の照射状況を視覚的かつ定量的に確認することができる粒子線ビーム照射装置を提供する。
【解決手段】本発明に係る粒子線ビーム照射装置は、ビーム生成部と、粒子線ビームの出射を制御するビーム出射制御部と、照射対象の患部を粒子線ビームの軸方向に分割した各スライスに対して、粒子線ビームの位置を2次元で順次指示するビーム走査指示部と、ビーム走査指示部からの指示信号に基づいて粒子線ビームを2次元で走査するビーム走査部と、ビーム走査部と患者との間に配置され、透過する前記粒子線ビームの粒子線線量に応じた光量で発光する蛍光体板と、蛍光体板をスライス毎に撮像する撮像部と、撮像部で撮像された画像データからスライス毎の照射線量の分布を求め、求めた照射線量の分布を前記粒子線ビームの走査位置と関連付けて表示する表示部と、を備えたことを特徴とする。 (もっと読む)


イオン又はプロトンの放射線ビームを使用する放射線治療のための補償器を構成するとき、コンピュータを利用した補償器編集方法は、患者にある標的質量(例えば腫瘍)の解剖学的画像の上に、放射線の線量分布の情報と共に、最初の3Dの補償器モデルを重畳することを含む。ユーザは表示装置上の補償器モデルにおけるピクセル又はボクセルを操作し、処理器はユーザの編集に従って自動的に前記線量分布を調節する。ユーザは、線量分布が最適化されるまで、前記補償器モデルを繰り返し調節し、最適化したとき、最適化した補償器モデルは、メモリに記憶される及び/又は最適化したモデルから補償器を構成するマシン装置に出力される。
(もっと読む)


2次元画像データスライスから、組織表面、例えば、心臓の内側表面の3次元モデルを生成する、システム。本表面上では、1つ以上のパターン線が、例えば、医師によって、ユーザインターフェースを使用して、描写され、表面上の所望の病変を指定する。パターン線から、病変の3次元体積が、既知の制約を使用して、決定可能である。有利には、3次元体積によって生成される一連の境界は、個々のCTスキャン上に逆投影され、次いで、標準的放射線外科手術計画ツールに転送されてもよい。また、線量分布図が、モデル上に投影され、計画を評価するのを支援してもよい。
(もっと読む)


本発明は運動する目標体積を照射する照射装置を制御するための装置に関するものであり、この装置は、代替運動信号を評価するための評価装置と、運動する目標体積の画像データを記録するための画像形成装置とを有し、画像形成装置のための制御装置が、画像形成装置を代替運動信号の評価に依存して作動または非作動にするよう構成されており、さらに画像形成装置により記録された画像データを評価するための画像評価装置と、画像データの評価に依存して照射制御装置により作動または非作動にされる照射装置とを有する。本発明はさらにこの種の装置で実施される、照射装置の制御方法に関する。
(もっと読む)


【課題】本発明の実施の形態は、物体を第1の姿勢から第2の姿勢に位置決めするためのシステム及び方法を提供する。
【解決手段】本方法は、第1の画像及び第2の画像を表示装置上に同時に表示し、第1の画像は物体の第1の姿勢を表し、第2の画像は物体の第2の姿勢を表す。本方法は、表示装置上の第1の画像及び第2の画像の位置合わせが該表示装置の姿勢の変化に依拠するように、該表示装置の該姿勢の変化に応じて第2の画像を更新し、該表示装置の該姿勢の変化に基づいて物体を第1の姿勢から第2の姿勢に位置決めする。 (もっと読む)


本発明は、目標体積の照射計画方法に関するものであり、この方法では、個別に走査可能な目標点を備える目標領域が設定され、目標領域が繰り返しスキャンされる再スキャン試行の数が、該目標領域の目標点が再スキャン試行中に異なる頻度で走査されるように設定され、これにより該目標点の少なくとも一部が各再スキャン試行の際に走査されないようにされ、ここで目標点の走査は、各再スキャン試行で走査されない少なくとも1つの目標点において、この目標点が走査される最後の再スキャン試行の前に、この目標点が走査されない少なくとも1つの別の再スキャン試行が行われるように分散される。本発明はさらに、対応する照射方法、対応する照射計画装置、照射装置を制御するための対応する制御装置、ならびにこの種の照射装置に関する。
(もっと読む)


【課題】粒子線の侵入位置や照射方向の自由度を高めつつ、かつ被検体から発生するガンマ線を検出するPET検出部を備えることを課題とする。
【解決手段】粒子線照射部103は、天板100に載置された被検体に向けて粒子線を照射する。すると、PET検出部201は、被検体から発生するガンマ線を検出素子にて検出する。また、天板110およびPET検出部201は、照射に応じて移動する。このため、補正係数算出部300は、減弱マップの原点とPET検出部201の検出素子との相対的な位置関係を示す座標を、天板110およびPET検出部201の移動量を用いて算出し、算出した座標を用いて吸収補正係数を算出する。そして、画像生成部202は、PET検出部201によって検出されたガンマ線と補正係数算出部300によって算出された吸収補正係数とを用いて画像を生成する。 (もっと読む)


移植可能なデバイスは実質的に堅くて、画像形成可能な形状を有する本体を備える。該本体は更に生体吸収性であり、該本体の画像形成に役立つよう恒久的な金属要素を有してもよい。該デバイスが軟組織内の切除された腔内に移植されると、該デバイスは該腔を既知の画像形成可能な形状へ実質的に適合させる。該移植可能なデバイスは、該予め決められた形状に対応する該組織の境界が決定されるよう、軟組織の減衰特性と異なる該デバイスの減衰特性のために更に画像形成可能である。 (もっと読む)


この発明は、少なくとも部分的に照射されているか、または照射されることになっている物質に対する粒子ビーム(34a)の効果を決定するための方法であって、前記粒子ビーム(34a)を特徴付ける少なくとも1つのパラメータおよび物質の少なくとも1つの特性から、前記物質内の前記粒子ビームの前記効果が微視的ダメージ相関を基礎として少なくとも部分的に決定される方法に関する。さらにこの発明は、目標ボリュームについての照射プラン、及び粒子ビーム(34a)用いて目標ボリュームを照射する方法に関する。また本発明は、本発明による方法(200)を実行するために構成された特に能動的ビーム修正装置、および/または受動ビーム修正装置を備えた少なくとも1つのビーム修正装置(32,70)を有する照射装置(30,66)に関する。 (もっと読む)


【課題】シンクロトロンの出射ビーム電流の増強と安定化により、高い線量率が安定に得られる粒子線治療システム及びシンクロトロンの運転方法を提供する。
【解決手段】粒子線治療システム100は、シンクロトロン200と、ビーム輸送系300と、照射装置500から構成される。制御装置600は、シンクロトロン200で荷電粒子ビームを所定のエネルギーまで加速したのち、加速空胴25に印加した高周波電圧を少なくとも一度OFFしたのち再びONし、基本波成分とその整数倍の周波数を有する高調波成分を合成した高周波電圧を加速空胴25に印加した状態で、荷電粒子ビームを出射装置26と出射偏向装置27を用いてビーム輸送系300へと出射する。 (もっと読む)


21 - 40 / 168