説明

Fターム[4D040BB63]の内容

嫌気、嫌気、好気又は生物に特徴ある処理 (8,667) | 嫌気と好気の組合せ処理 (4,973) | 嫌気と好気の組合せによる処理装置 (1,884) | 硝化脱窒処理 (1,119) | 硝化脱窒を単一槽で行うもの (337)

Fターム[4D040BB63]の下位に属するFターム

Fターム[4D040BB63]に分類される特許

41 - 60 / 145


電気式プラズマアーク装置及び方法により、装置の近傍で抽出される周囲空気のみを用いて窒素化合物が製造される。この窒素化合物は水処理系と接触して、硝酸塩を現場で生成する。水処理系に硝酸塩を導入することによって、それにより脱窒素微生物が、その硝酸塩を利用して、利用可能な炭素栄養分を求めての硫酸塩還元細菌(SRB)との競合に打ち勝つことによって、つまりSRBが硫化水素を産生するのを防止することによって、水処理系中に存在している硫化水素が除去され、また、その硫酸塩還元細菌による硫化水素産生も解消される。脱窒素微生物を含有している水処理系中に作出された硝酸イオンは、微生物増進油回収機序により、油回収を増進し得る。さらには、この電気式プラズマアーク装置及び方法は、硝酸塩の輸送と貯蔵、及び、天然ガス及び水の途切れない供給の必要性を含めて、従来の処理技術にかかる大きなコストを解消する。 (もっと読む)


【課題】同一の処理槽に共存する硝化細菌及び嫌気性アンモニア酸化細菌により、廃水処理を迅速かつ安定して行うことができる廃水処理方法及び廃水処理装置を提供する。
【解決手段】処理槽20に、硝化細菌が優占化された硝化担体22と、嫌気性アンモニア酸化細菌が優占化された脱窒担体24とを混在させる。これにより、処理槽20において、硝化担体22による硝化反応及び脱窒担体24による脱窒反応の両方を行い、廃水中のアンモニア性窒素を窒素ガスに分解する。硝化細菌と嫌気性アンモニア酸化細菌とを互いに異なる担体(硝化担体22及び脱窒担体24)に固定化することで、硝化担体22と脱窒担体24との体積比(投入量比)の調節により、硝化細菌及び嫌気性アンモニア酸化細菌の菌量比を容易にコントロールすることができる。 (もっと読む)


【課題】同一の処理槽に共存する硝化細菌及び嫌気性アンモニア酸化細菌を用いて、迅速な廃水処理を行うことができる廃水処理方法及び廃水処理装置を提供する。
【解決手段】処理槽20は、硝化細菌が集積された硝化担体22と、嫌気性アンモニア酸化細菌が集積された脱窒担体24とを含む。これにより、処理槽20において、硝化担体22による硝化反応及び脱窒担体24による脱窒反応の両方を行い、廃水中のアンモニア性窒素を窒素ガスに分解する。脱窒担体24の嫌気性アンモニア酸化細菌は、亜硝酸に対する半飽和定数が6.1mgN/L以上である菌を用いる。このように半飽和定数が高い嫌気性アンモニア酸化細菌は、溶存酸素量が高い条件下でも脱窒活性を維持可能であることから、処理槽20に共存する硝化細菌及び嫌気性アンモニア酸化細菌の両方の活性を容易に維持することができる。 (もっと読む)


【課題】気体供給管が1つで散気管の長さを長くしても、効率的に満遍なく均一に微細気泡を発生させることができる微細気泡散気管を用いた浸漬型膜分離装置を提供する。
【解決手段】被処理液を貯留した処理槽8内に浸漬設置される浸漬型膜分離装置において、複数の平膜型分離膜エレメントが膜面平行に並列に配置されてなる分離膜モジュール23と、該分離膜モジュールの鉛直下方に設置され、1つの気体供給管10に連接された複数の微細気泡散気管6とを備え、該複数の微細気泡散気管が、分離膜エレメントの膜面に交差する方向に延びており、少なくとも、筒状の支持管と、弾性シートが該支持管の外周を覆うように配置され、該支持管の内側に供給した気体が、該支持管の表面に設けられた複数の孔から該支持管と該弾性体の間隙に流入し、該弾性シートの微細スリットが開くことにより、微細気泡が散気管外に発生する微細気泡散気管を有する浸漬型膜分離装置。 (もっと読む)


【課題】 本発明はこのような事情に鑑みてなされたもので、亜硝酸型硝化工程と嫌気性アンモニア酸化工程を単一の処理槽で行なうことができる廃水処理装置及び処理方法を提供する。
【解決手段】 廃水処理装置20は、原水ライン2を介してアンモニアを含有する窒素含有廃水が送水される処理槽3を備え、処理槽3が硝化細菌4と嫌気性アンモニア酸化細菌5を有し、かつ溶存酸素濃度が1.5〜5.0mg/Lに制御されている。 (もっと読む)


本発明は、脱アンモニア化活性汚泥設備でのアンモニウム含有廃水(3)の処理方法に関する。この方法では、最初にアンモニウムが好気性酸化細菌(AOB)により亜硝酸塩に転換され、続いてアンモニウムおよび亜硝酸塩を嫌気性酸化細菌(AMOX)、特にプランクトミケス門により元素状窒素に転換される。このプロセスで発生した余剰汚泥が引き抜かれ、嫌気性アンモニア酸化細菌(AMOX)を大部分含む重い相と、軽い相とに分離される。重い相は設備(1)または槽(2)内に戻され、および/または集めて別の設備に供給され、軽い相は廃棄される。余剰汚泥の非特異的な引き抜きを伴う窒素除去用の単一汚泥システムではバイオマスの10%未満である嫌気性アンモニア酸化細菌(AMOX)の割合を、本発明に基づく方法により30%超に上げることができる。したがって槽(2)の反応容積をそれに対応して小さくすることができ、設備(1)のプロセス安定性を高めることができる。

(もっと読む)


本発明は、尿素含有水を処理するための装置に関する。本発明はまたそのような装置を備えた家庭用トイレに関する。本発明はまたそのような装置を備えた動物収容設備に関する。さらに、本発明は尿素含有水を処理するための方法を含む。装置は、尿素を酸化してニトレートと二酸化炭素にするのに適した硝化ユニットを備え、硝化装置はまた、酸素供給部、ガス放出部及び硝化ユニットに接続された濾過ユニットへ硝化ユニットにより硝化される廃液の供給のためのスルー供給部が備えられる。硝化ユニットは好ましくは硝化バクテリアを含む。
(もっと読む)


【課題】亜硝酸型硝化反応を低コストで確実に行うことのできる亜硝酸型硝化反応担体の製造方法、製造装置、排水処理方法、及び、排水処理装置を提供する。
【解決手段】亜硝酸型硝化反応担体の製造装置90は、アンモニア酸化細菌及び亜硝酸酸化細菌を含む硝化性能を有する複合微生物系の汚泥を担体材料に付着させて形成される付着固定化担体、複合微生物系の汚泥を担体材料に包括させて形成される包括固定化担体、又は、複合微生物系の汚泥の自己造粒力により形成される硝化グラニュール担体を、アルカリ水によって洗浄する洗浄装置94を備え、アンモニア性窒素を亜硝酸に酸化するアンモニア酸化細菌が優占的に集積された亜硝酸型硝化反応担体を製造する。 (もっと読む)


【課題】槽本体の全体にエアーレーションが拡散して汚水浄化作用の向上が図れる水処理装置を提供する。
【解決手段】汚水等の処理対象水が流入・排出されるとともに微生物が混在する処理槽の槽本体1と水平方向に回転自在に設けられる攪拌回転体8と回転駆動させる駆動手段とを有し、攪拌回転体は円環状で水平方向に対向する側面カバーリング10と給排口13を配備され、その上部が処理対象水の上に一部を現出させた状態で水中に没しながら一定方向に回転するものとされており、持ち回し部は処理対象水の上のエアーを取り込んで処理対象水の中の下回りの下端まで持ち回す間に該エアーを給排口を通じてエアーレーションとして順次処理対象水の中に放出することで好気処理ゾーンを形成する一方、下回りの下端から上回りに至る間には処理対象水を取り込んで水上に放出し攪拌することにより無酸素処理ゾーン・嫌気処理ゾーンを形成することを特徴とする。 (もっと読む)


【課題】余剰汚泥の減容及び処理水質の向上を図る。
【解決手段】生物処理槽1が、上から下に向かって、好気性領域A、通性嫌気性領域B、嫌気性領域Cの三層を有する構成とすることで、当該槽1に導入した有機性排水中の生物分解可能な有機物を三層A,B,Cに従って全て分解可能とし、性質の違う微生物の協業を可能として、余剰汚泥の減容及び処理水質の向上を図る。加えて、有機性排水を有機性排水導入部6により生物処理槽1の底部側から導入することで、底部の嫌気性汚泥に十分に有機物を与えて当該嫌気性汚泥の活性を十分に維持し、嫌気性領域Cの維持を可能として上記三層A,B,Cを維持する結果、余剰汚泥の減容及び処理水質の向上を一層図る。 (もっと読む)


【課題】単槽の処理槽からなる排水の処理方法、及び処理装置を提供する。
【解決手段】ろ過膜20が挿入された処理槽16内に活性汚泥14とともに被処理水12を貯水し、前記ろ過膜20の膜面の下部から前記被処理水12を曝気させつつ前記被処理水12から処理水18をろ過する排水の処理方法であって、前記被処理水12及び前記活性汚泥14を前記曝気により前記処理槽16内で対流させ、前記被処理水12の上昇流28及び下降流30の前段で硝化処理し、前記硝化処理により前記被処理水12の溶存酸素を低減させて前記被処理水12の下降流30の後段に無酸素領域32を形成し、前記無酸素領域32において、前記被処理水12を外部から新たな被処理水13を導入しつつ脱窒処理してなる。 (もっと読む)


【課題】余剰汚泥の減容及び処理水質の向上を図る。
【解決手段】有機性排水を生物処理槽1に導入し、上下方向の軸線周りに回転可能なインペラ3の有機性排水Rに対する浸漬度及び回転速度の少なくとも一方を制御することで、生物処理槽1内に、上から下に向かって、好気性領域A、通性嫌気性領域B、嫌気性領域Cの三層を形成するようにし、この三層A,B,Cに従って、生物分解可能な有機物を全て分解すると共に、好気性領域Aで蛋白質が分解して生じたアンモニア性窒素をさらに酸化して亜硝酸性窒素、硝酸性窒素としてこれらの窒素酸化物を通性嫌気性領域Bで窒素に還元することや、好気性領域Aで生じた多量の余剰汚泥を嫌気性領域Cで分解に供すること等を可能とし、性質の違う微生物の協業を可能とする。 (もっと読む)


【課題】効果的に槽内の全液体を充分攪拌することができる水処理装置を提供する。
【解決手段】槽15内に導入された液体中に含まれる混入物を除去するための水処理装置であって、槽15は、液体を流動させるための水流を発生させる水流発生領域49と、液体中に含まれる混入物を除去する除去領域50とを有し、水流発生領域49と除去領域50とは、水流発生領域49と除去領域50との間で少なくとも液体が移動可能に接続されており、水流発生領域49内には、ナノバブル発生部51またはマイクロナノバブル発生部52によって作製されるナノバブル含有水またはマイクロナノバブル含有水を吐出する吐出口と、気体を吐出する散気管19とが設けられており、除去領域50内には、細孔を有するとともに表面に微生物が固定化された、ポリビニルアルコールからなる担体16が設けられている。 (もっと読む)


【課題】糸状細菌の繁殖を防止しつつ廃水から効率よく窒素及びリンを除去し、廃水へのリンの再放出が防止される廃水の活性汚泥処理技術を提供する。
【解決手段】処理槽10で廃水Wに活性汚泥Sを作用させて硝酸態窒素の脱窒及びアンモニア態窒素の硝化を行う汚泥処理を施し、その一部を第1分離槽30に分取して活性汚泥を沈降させ、廃水の溶存酸素が枯渇する前に沈降した活性汚泥を廃水から分離する。分離された廃水は第2分離槽60で好気性条件下で残留する活性汚泥を分離し、第1分離処理で分離した活性汚泥は下処理槽40で新たな廃水を供給して嫌気性条件下においた後、処理槽に還流して、汚泥処理、分離操作、下処理及び還流を繰り返し行う。更に、下処理後の廃水を還流する際に、アナモックス処理を施して窒素を除去できる。 (もっと読む)


【課題】水熱処理の処理条件の簡便な維持や処理効率向上を図ること、或いはその両立を図ること、および水熱処理された被処理物から分離された液体を嫌気性細菌と好気性細菌を含む活性汚泥を用いて生分解処理すること。
【解決手段】(a)亜臨界条件下で被処理物を水熱処理する工程、
(b)水熱処理された被処理物から液体を分離する工程、および
(c)分離された液体を嫌気性細菌と好気性細菌を含む活性汚泥を用いて生分解処理する工程
を含む、被処理物の処理方法。 (もっと読む)


【課題】処理水中に含まれる混入物(例えば、有機物など)を効果的に除去し得る水処理装置および水処理方法を提供する。
【解決手段】液体中にナノバブルまたはマイクロナノバブルを発生させる第1バブル発生部42と、ナノバブルまたはマイクロナノバブルが発生した後の液体が導入されるとともに、当該液体中に微生物を含有させる第1処理槽70と、第1処理槽70内に設けられるとともに、第1処理槽70内の液体を濾過して前処理水を作製するフィルター45と、前処理水中にナノバブルまたはマイクロナノバブルを発生させる第2バブル発生部43と、ナノバブルまたはマイクロナノバブルが発生した後の前処理水を導入する第2処理槽15と、第2処理槽15内に導入される前処理水と接触可能に設けられる、ポリビニルアルコールからなる担体16と、を備え、担体16は細孔を有するとともに、担体16上には微生物が固定化されている。 (もっと読む)


【課題】被処理水の硝酸性窒素濃度が変動した場合であっても、被処理水の硝酸性窒素濃度を常時目標濃度以下に低減する方法を提供する。
【解決手段】少なくとも脱窒菌が担持されている担体と、非多孔性膜を少なくとも一部に備える密封構造の容器内に脱窒菌のエネルギー源となる電子供与体6が充填されている電子供与体供給装置とを含み、担体が電子供与体供給装置の非多孔性膜部分の周りに配置されているバイオリアクター8を被処理水10に浸漬し、バイオリアクター8では電子供与体6が脱窒菌に供給されて脱窒処理が行われ、被処理水10に含まれる硝酸性窒素の濃度が低減される排水処理方法において、被処理水10の硝酸性窒素濃度がバイオリアクター8の脱窒処理能力を超えたとき、電子供与体供給装置からの電子供与体6の供給とは別に、電子供与体6を被処理水10に直接添加し、被処理水10の硝酸性窒素濃度を目標濃度以下に低減するようにした。 (もっと読む)


【課題】処理水中に含まれる混入物(例えば、有機物など)を効果的に除去し得る水処理装置および水処理方法を提供する。
【解決手段】処理水中にマイクロナノバブルを発生させるマイクロナノバブル発生部43またはナノバブルを発生させるナノバブル発生部42と、マイクロナノバブルまたはナノバブルが発生した後の処理水を導入する第2槽15と、第2槽15内に導入される処理水と接触可能に設けられる、ポリビニルアルコールからなる担体16と、を備え、担体16は細孔を有するとともに、担体16上には微生物が固定化されている。 (もっと読む)


【課題】放射線管理区域内に設置され、且つ高い硝酸塩濃度の廃液を効率的に微生物処理することができる放射性硝酸塩廃液処理装置を提供する。
【解決手段】硝酸と放射性物質とを含む硝酸塩廃液11中の該放射性物質を吸着または吸収すると共に、前記硝酸を窒素ガスに還元する嫌気性微生物が生育する活性汚泥を収容する脱窒槽12と、該脱窒槽12で処理された脱窒処理液24を、好気性微生物が生育する活性汚泥と曝気混合する再曝気槽14とを有する放射性硝酸塩廃液処理装置であって、前記脱窒槽12及び前記再曝気槽14から排出される余剰汚泥26A、26Bを溶解する汚泥溶解槽81を有してなり、該汚泥溶解槽81に汚泥溶解剤として過酢酸80を供給して余剰汚泥を溶解させ、汚泥溶解物を炭素源22として前記脱窒槽12に供給する。 (もっと読む)


【課題】微量のアンモニア性窒素等の有害成分を効率よく処理できる水処理方法および水処理装置を提供する。
【解決手段】ろ過機能を有する上部ろ材部54近傍に水中ポンプ型マイクロナノバブル発生機65を配置して、上部ろ材部54で処理した水と、水中ポンプ型マイクロナノバブル発生機65で発生させたマイクロナノバブルを含有する水とを混合して、淡水魚6の飼育のための上部展示水槽2に供給する。 (もっと読む)


41 - 60 / 145