説明

Fターム[4G073UA06]の内容

珪酸塩及びゼオライト、モレキュラーシーブ (22,942) | 機能用途 (1,332) | 吸着(分離)剤 (462)

Fターム[4G073UA06]に分類される特許

121 - 140 / 462


【課題】
水に対する特殊な取扱を必要としない耐水性を有し、なおかつ合成後の固液分離操作が容易となる大粒子径のSAPO−34を提供する。
【解決手段】
少なくともリン酸、アルコキシドを含まないアルミニウム源、シリカ源、テトラエチルアンモニウムイオン及び水を含み、なおかつP/Alモル比が1.1より小さい組成物を、180℃を超える温度、静置下で結晶化することにより、飽和水和耐久処理時におけるアンモニア昇温脱離法により測定される酸量が0.7mmol/g以上であり、且つ平均結晶径が1.0μm以上のSAPO−34を得る。 (もっと読む)


【課題】結晶構造安定性や水熱安定性が向上したベータ型ゼオライトを製造する方法を提供すること。
【解決手段】本発明のリン含有ベータ型ゼオライトの製造方法は、以下に示すモル比で表される組成の反応混合物となるように、シリカ源、アルミナ源、アルカリ源、4級アルキルホスホニウム化合物、テトラエチルアンモニウム化合物、アルカリ金属源及び水を混合し、
SiO2/Al23=10〜1000
4PX/SiO2=0.01〜1
TEAX/SiO2=0〜0.5
OH-/SiO2=0.1〜0.8
+/SiO2=0〜0.5
2O/SiO2=3〜50
(式中、R4Pは4級アルキルホスホニウムイオンを表し、Xは一価のアニオンを表し、TEAはテトラエチルアンモニウムイオンを表し、M+はアルカリ金属イオンを表す。)
次いで、得られた反応混合物を、密閉容器中で100〜250℃の温度で加熱する工程を有することを特徴とする。 (もっと読む)


【課題】 経済性良く得られるN,N,N−トリメチルアダマンタンアンモニウム塩からなるゼオライト製造用の構造指向剤、及びそれを用いたゼオライトの製造法を提供する
【解決手段】 シリカ源、アルミニウム源、アルカリ源、水、及び構造指向剤を含有する合成原料混合物を水熱合成してゼオライトを製造する際に、構造指向剤として下記式(1)
【化1】


で表される化合物を使用する。 (もっと読む)


【課題】 分離性能に優れ、耐酸性を有するゼオライト膜およびこれを用いた分離膜を提供する。
【解決手段】2以上の異なる種類のゼオライト結晶が混在する層を有するゼオライト膜であって、前記2以上の異なる種類のゼオライト結晶は、いずれも(A)X線の出力を1.2kWとすること、(B)銅(Cu)のX線管球を用いること、(C)X線の波長を1.54058オングストロームとすること、を条件とするX線回折により得られるX線パターンにより検出されることを特徴とするゼオライト膜。または、ゼオライト結晶を含む第一の層と前記第一の層とは種類が異なるゼオライト結晶を含む第二の層を有するゼオライト膜であって、前記第一の層と前記第二の層は積層構造を形成し、前記積層構造の厚みは20μm以下であることを特徴とするゼオライト膜。 (もっと読む)


少なくとも10のシリカ対アルミナのモル比を有するゼオライトYを700から1000℃までの温度での焼成にさらすステップを含む変性ゼオライトYを調製するための方法であって、(i)水蒸気の分圧が700から800℃までの温度で最大で0.06バールであり、(ii)水蒸気の分圧が800から850℃までの温度で最大で0.08バールであり、(iii)水蒸気の分圧が850から900℃までの温度で少なくとも0.03バールであり、(iv)水蒸気の分圧が900から950℃までの温度で少なくとも0.05バールであり、(v)水蒸気の分圧が950から1000℃までの温度で少なくとも0.07バールである上記方法、上記方法によって得られる変性ゼオライトY、少なくとも10のシリカ対アルミナのモル比を有しており、その赤外線スペクトルが、3700cm−1にピークを有するが、3605及び3670cm−1には実質的にピークがないゼオライトY、及びゼオライトYが、過重水素化ベンゼンとの交換により測定して最大で20マイクロモル/グラムの酸性度を有する少なくとも10のシリカ対アルミナのモル比を有するゼオライトY。 (もっと読む)


【課題】より簡便に製造可能であり、かつ吸着能に優れた吸着材を提供する。
【解決手段】本発明に係る吸着材は、水相中又は気相中に含まれる有機物を吸着するための吸着材であって、多孔質金属酸化物と界面活性剤との複合体を含むことを特徴とする。この複合体は、界面活性剤を鋳型として金属酸化物を生成させることにより得ることができる。多孔質金属酸化物としては多孔質酸化チタンや多孔質酸化ケイ素等が挙げられ、界面活性剤としてはカチオン性界面活性剤等が挙げられる。 (もっと読む)


【課題】炭酸ガスと水及び微量有害気体を同時に吸着除去することが可能な吸着材の提供。
【解決手段】ケイ酸植物を不活性雰囲気中、400℃以上に加熱し、焼成して炭化物を作製する工程、次いで、得られた炭化物中のケイ素含量を調べ、Si:Al=1:0.1〜1.2(モル比)の範囲にあるアルミノケイ酸塩が生成するように、Al化合物とアルカリ金属化合物又はアルカリ土類金属化合物と水とを加えて混合物を作製する工程、及び、次いで、得られた混合物に水熱反応を施して、多孔性アルミノケイ酸塩−炭素複合体を得る工程を有することを特徴とする多孔性アルミノケイ酸塩−炭素複合体の製造方法。 (もっと読む)


【課題】2種以上の細孔周期を有するメソポーラスシリカ粒子の効率的な製造方法、及び該メソポーラスシリカ粒子を提供する。
【解決手段】第一界面活性剤を鋳型として用いて製造された複合シリカ粒子を含む分散液(A)に、シリカ源(c)及び第二界面活性剤を経時的に添加して反応を行う工程を含むメソポーラスシリカ粒子の製造方法であって、第一界面活性剤及び第二界面活性剤は、下記式(1)及び(2)のいずれかで表される第4級アンモニウム塩であり、かつ第一界面活性剤と第二の界面活性剤とが異なるものである、メソポーラスシリカ粒子の製造方法、及び2種以上の細孔周期を有するメソポーラスシリカ粒子である。
[R1(R33N]+- (1)
[R12(R32N]+- (2)
(式中、R1及びR2は、それぞれ独立に炭素数4〜22のアルキル基を示し、R3は炭素数1〜3のアルキル基を示し、Xは1価陰イオンを示す。) (もっと読む)


【課題】本発明は、水酸化物媒介ゲルを使用して結晶性モレキュラー・シーブSSZ−74を合成するための、新規な方法を提供すること。
【解決手段】本発明の方法は、(1)4価元素の少なくとも1種の酸化物の少なくとも1種の供給源と、(2)任意選択で、3価元素、5価元素、及びこれらの混合物の酸化物からなる群から選択される1種又は複数の酸化物の1種又は複数の供給源と、(3)水酸化物イオンと、(4)1,6−ビス(N−メチルピロリジニウム)ヘキサンジカチオンとを、結晶化条件下で且つフッ化物イオンが実質的に存在しない状態で接触させるステップを含む。 (もっと読む)


(1)シリカ又はこの前駆体、層構造シリケートの結晶化を可能とするための少なくとも1種の構造指向剤(SDA)、及び水を提供する工程、(2)熱水的な条件下で、工程(1)に従って得られた混合物を加熱する工程、(3)同形置換のために適切な、少なくとも1種の元素の少なくとも1種の供給源を加える工程、(4)工程(3)に従い得られた混合物を、熱水的な条件下で加熱する工程、を含むことを特徴とする同形置換された層構造のシリケートを製造する方法。 (もっと読む)


本発明は、(1)少なくとも一種の層状ケイ酸塩を供給し、(2)上記層状ケイ酸塩を水と次式で表わされる少なくとも一種のケイ素含有化合物:
4-mSi[−(SiR2n−R]m
(式中、少なくとも一つの基Rは脱離基であり、残渣RのいずれもSiを含まず、mが0,1、2,3、あるいは4であり、nが0以上の整数である)と混合することからなるケイ酸塩化合物の製造方法に関する。 (もっと読む)


ネットワーク形成元素としてシリコンと任意選択でアルミニウムとを含有する水反応分散液へと移動するアルミニウム含有基板上に、アルミノケイ酸塩−ゼオライト層を形成する方法であって、前記水反応分散液中にアルミニウムが存在するかしないかにかかわらず、前記水反応分散液中に含まれる前記指定のネットワーク形成元素の合計に対する前記水反応分散液中のアルミニウムのモル比が、任意選択で0、0〜約0.4の範囲とされ、前記アルミニウム含有基板を含む前記水反応分散液が加熱され、アルミノケイ酸塩−ゼオライト形成プロセスに向けて前記アルミニウム含有基板からアルミニウムが抽出され、その場での直接結晶化によって前記アルミニウム含有基板上アルミノケイ酸塩−ゼオライトの層が形成される方法が記載される。この方法は、5より低いSi/Al比を成立させるために十分な量のSi源と、モル準化学量論値の要件を満たすAl源と、前記アルミニウム含有金属基板とを前記水反応分散液に導入することによって、前記アルミニウム含有基板上にSi/Al比が5より低いアルミニウムリッチのアルミノケイ酸塩−ゼオライトの層が形成され、前記水反応分散液のpH値がアルカリ化され、前記アルミニウムリッチのアルミノケイ酸塩−ゼオライトの前記層が、前記アルミニウム含有金属基板上に結晶化されることを特徴とする。
アルミニウム含有金属基板上のアルミニウムリッチのアルミノケイ酸塩−ゼオライトの有利なコーティングが、本発明によって得られる。この生成物は、有益な用途向けに、特に、不均一触媒に関してなど、収着に基づく応用分野において、分離および洗浄プロセスにおいて、固定化触媒と併用する収着熱ポンプにおいて、また微量反応技術において提供することできる。
(もっと読む)


本発明は、少なくともシリコンと酸素を含む、層構造のシリケートを製造する方法であって、
(1)シリカ及び/又は少なくとも1種のシリカ前駆体、水、ジエチルジメチルアンモニウム化合物、トリエチルメチルアンモニウム化合物、及びジエシルジメチルアンモニウムとトリエチルメチルアンモニウム化合物の混合物から成る群から選ばれる、少なくとも1種のテトラアルキルアンモニウム化合物、及び少なくとも1種の塩基、及び任意に、少なくとも1種の適切な種材料を含む混合物を準備する工程;及び(2)工程(1)に従い得られた混合物を、自己生成の圧力下(熱水条件)下に、120〜160℃の範囲の温度に、5〜10日間加熱し、層構造のシリケートを含む懸濁液を得る工程、を含む方法に関する。 (もっと読む)


本発明は、(1)シリカ、好ましくは非晶質シリカ、及び/又は少なくとも一種のシリカ前駆体と、水と、少なくとも一種の適当な構造指向剤とを含む混合物を供給し、(2)(1)で得られる混合物を水熱条件下で加熱してRUB−36ケイ酸塩を含む懸濁液を与え、(3)該RUB−36ケイ酸塩を分離することからなる同形置換されたRUB−36ケイ酸塩の製造方法であって、(1)の混合物が同形置換に好適な少なくとも一種の元素を含み及び/又は(b)分離された(3)のRUB−36ケイ酸塩が同形置換にかけられることを特徴とする製造方法に関する。 (もっと読む)


【課題】粒子径が均一なメソポーラスシリカ粒子を高濃度で効率的に製造する方法を提供する。
【解決手段】メソ細孔構造を有するメソポーラスシリカ粒子の製造方法であって、水を含有する反応溶媒(A)に、陽イオン界面活性剤及び非イオン界面活性剤から選ばれる1種以上の界面活性剤(a)とシリカ源(b)とを経時的に添加して反応を行う工程を含む、メソポーラスシリカ粒子の製造方法である。 (もっと読む)


【課題】鉄鋼スラグから、簡易かつ安価な方法で、吸着剤として有用なハイドロキシアパタイトとゼオライトとの複合体を合成する製造方法を提供する。
【解決手段】(i)鉄鋼スラグに、リン酸またはリン酸塩を添加して、リン酸またはリン酸塩と鉄鋼スラグとの混合物を得る工程、(ii)前記混合物に、アルカリを添加して、ハイドロキシアパタイトとゼオライトとを生成させる工程、を有するハイドロキシアパタイトとゼオライトとの複合体の製造法。 (もっと読む)


本発明は、水溶性シリカーを組成成分として含有する硬度降下用組成物に関する。本発明の硬度降下用組成物は、大規模浄水設備を揃えない地域で小規模で簡単に硬度の高い上水原水の硬度を飲用に適する水準に低下させることができる効果を奏する。 (もっと読む)


【課題】高強度、低かさ密度、及び低熱伝導率を兼ね備えたシリカ構造体及びその製造方法、並びに、このようなシリカ構造体を用いた断熱材を提供すること。
【解決手段】球状メソポーラスシリカと、金属酸化物からなり、前記球状メソポーラス間を連結する連結部とを備えたシリカ構造体、及びこれを用いた低熱伝導体。このようなシリカ構造体は、細孔内にマスキング物質が充填された球状メソポーラスシリカと反応性結合剤を含む液体とを混合し、得られた混合物を成形し、反応性結合剤を反応させて前記球状メソポーラスシリカ間に連結部を形成し、前記細孔内から前記マスキング物質を除去することにより得られる。 (もっと読む)


【課題】空孔容積及び表面積が大きく、粒径が小さくかつ均一な疎水性多孔質酸化物粒子及び多孔質酸化物粒子の疎水化方法を提供する。
【解決手段】本発明の疎水性多孔質酸化物粒子は、少なくとも表面に開口端を有する多数の空孔が形成された疎水性の酸化物粒子であり、この酸化物粒子の外表面及び空孔の内壁の表面における水酸基の数(N−OH)に対する有機置換基の数(NRO−)の比(NRO−/N−OH)は、1以上である。 (もっと読む)


【課題】メソポーラスシリカナノ粒子の製造方法であって、従来法よりも粒子径及びメソ孔の大きさが制御し易く、しかも球形・単分散で均質性の高いメソポーラスシリカナノ粒子が得られ易い製造方法を提供する。
【解決手段】下記工程を含むことを特徴とするメソポーラスシリカナノ粒子の製造方法:
(1)界面活性剤、水及び疎水性溶媒を含むエマルション溶液中において、下記工程A及び工程Bを同時又は順次に行うことにより、ポリマー粒子とシリカ粒子の複合粒子であるポリマー・シリカ複合粒子を得る工程1、
・モノマーと重合開始剤を加えてポリマー粒子を形成する工程A、
・加水分解によりシラノール化合物を生成するシリカ源と塩基性触媒を加えて前記シラノール化合物を加水分解・脱水縮合させることによりシリカ粒子を形成する工程B、
(2)前記ポリマー・シリカ複合粒子から有機成分を除去する工程2。 (もっと読む)


121 - 140 / 462