説明

Fターム[4G075EB21]の内容

Fターム[4G075EB21]の下位に属するFターム

Fターム[4G075EB21]に分類される特許

101 - 120 / 623


【課題】合流直後の反応基質間の接触面積を増やし、且つ濃度不均一による反応生成物の収率低下が抑制された管型流通式反応装置を提供する。
【解決手段】反応に使用する2種以上の流体をそれぞれに流入させるための複数の流入路;該流体を合流させ且つ合流した流体を流通させながら反応させることができる内腔を有する反応管;反応生成物を反応管から流出させるための流出路;および前記反応管内腔内の合流部に設置された棒状超音波放射体;を有し、前記の流入路および流出路は各内腔と前記反応管内腔とが連通するように反応管にそれぞれ接続されていて、且つ前記棒状超音波放射体から、反応管内腔内を通過する流体に、超音波を照射することができる管型流通式反応装置。 (もっと読む)


【課題】酸素を含む流体の反応の進行状況等を正確に且つ速やかに評価することができる反応解析方法及び装置を提供する。
【解決手段】反応解析装置1は、酸素を含む反応ガスを改質する触媒層11を有する含む反応管10と、酸素分圧を測定可能な参照電極と複数の測定電極とを備える計測部201を有し、触媒層11内に配置される酸素センサ20と、酸素センサ20の出力を取得する計測装置30とを備える。酸素センサ20の複数個の前記測定電極は、一定間隔を置いて一の方向に配列され、この配列方向が反応ガスの流通方向に沿うように、酸素センサ20が触媒層20内に配置される。 (もっと読む)


デバイス1は、紫外線を放射するための供給源20と、当該デバイス1に流体を入れるための入口30と、当該デバイス1から流体を出すための出口40と、当該デバイス1を通る流体フローに対して矯正動作を実行するための手段51,52とを有する。前記フロー矯正手段は、一方側に流体を入れるための入口開口部をもち、他方側に流体を出すための出口開口部をもつ少なくとも1つのフロー矯正要素51,52を有し、各入口開口部は、複数の出口開口部と連通しており、前記要素51,52は、ランダムに設けられ相互接続された穴の迷路を有する。斯様な構造において、前記要素51,52の一方側から他方側に移動する水要素は、種々の経路のうち1つをとり、その結果として、入口条件の変化が抑制され得る。
(もっと読む)


【課題】 多量の反応ガスを流しながらX線回折で試料(亜鉛フェライト脱硫剤)の反応過程(炭素析出)をその場で観察する。
【解決手段】 試料を流通する前と流通した後の反応ガスの組成が変化しない状態に試料21を保持する微分反応評価試料保持部15を備え、検証条件を保持した状態でX線回折装置(X線発生手段25、二次元X線検出手段26)により試料21の組成の形態変化をその場で直接解析し、炭素の析出が生じる過程での形態変化を検証する。 (もっと読む)


【課題】火力発電所又は製鉄所で発生し、液化処理され専用の貯蔵用タンクに溜め置かれた液化CO2を、液化CO2タンク輸送船で回収し、それに接続する事で、輸送船の液化CO2が、一気に50気圧の深海に放出されることにより、CO2ガスの海底処理が可能になる液化CO2海上投棄基地の技術を提供する。
【解決手段】火力発電所又は製鉄所と,CO2液化処理施設と、液化CO2貯蔵用タンクと、海面4と、液化CO2タンク輸送船5と、大陸棚の海底6と浮きドック(液化CO2海上投棄基地)7と、水深500M,水圧50気圧の境界面9の下にまで伸びたパイプ8と、液化CO2の放出口10と深海底11から成る。 (もっと読む)


【課題】プライミング、洗浄が容易で、任意の粒径を持った乳化や高効率の液−液反応が可能な装置の提供。
【解決手段】第1の液体の流路と、第1の流路の方向の直交方向に他の液体が通流する第2以降の流路が同一平面上に備えられ、この第1の流路と第2以降の流路の交差部分で、第1の液体と他の液体が合流して乳化、反応が行なわれる処理部を複数備え、これらの処理部に液体を供給する流路より十分大きな断面積を持つ各液体の主流路が貫通する構造を備えた処理デバイス10を核とした化学生産装置1であり、各液体と洗浄液を処理デバイスへ送液するためのポンプ71−74と、それらポンプにどの液体を供給するかを制御するためのバルブ81、82と、主流路の処理デバイス出口側と生成した乳化液・反応液の吐出口に設けられプライミング・洗浄時にそれぞれの流路を開閉するバルブ83−85と、乳化液・反応液の状態を監視するモニタリング装置30を設けた。 (もっと読む)


パワー源及び水素化物反応器が提供される。ここで、パワー・システムは、(i)ハイドリノを形成する原子水素の触媒作用のための反応セルと、(ii)触媒又は触媒の源; 原子水素又は原子水素の源; 触媒又は触媒の源及び原子水素又は原子水素の源を形成する反応物; 原子水素の触媒作用を開始させる1つ以上の反応物;及び触媒作用を可能にする支持体、から選択される少なくとも2つの成分を含む化学燃料混合物と、(iii)反応生成物から熱的に燃料を再生するために交換反応を逆転すための熱システムと、(iv)パワー生産反応からの熱を受け取るヒートシンクと、そして、(v)パワー変換システムと、を備える。ある実施例において、触媒作用反応は、触媒の金属ともう1つの金属の間で水素化物−ハロゲン化物交換反応のような1つ以上の他の化学反応によって活性化され、開始され、伝播した。これらの反応は、逆交換において金属蒸気の除去により、熱的に可逆である。ハイドリノ反応は維持されて、熱的に連結した束にアレンジされたマルチ−セルを用いて、バッチ・モードで再生されるが、サイクルのパワー−生産フェーズのセルが再生フェーズのセルを熱する。この断続的セル・パワー設計において、セル数が大きくなると、或いは、セル・サイクルが定常パワーを達成するように制御されると、熱的パワーは統計学的に一定になる。もう1つのパワー・システム実施例において、ハイドリノ反応は維持されて、各々のセルで、連続的に再生されるが、ここで、熱的に可逆なサイクルのパワー生成フェーズからの熱が、生成物からからの最初の反応物の再生のためにエネルギーを供給する。各々のセルで同時に両方のモードを反応物が受けるので、各々のセルからの熱的パワー出力は一定である。ランキン、ブレイトン、スターリング、又は蒸気機関サイクルのようなサイクルを利用している熱機関によって熱的パワーが電気パワーに変換される。もう1つの実施例において、直接の電気パワーがハイドリノを形成するための水素の反応によって開放されるエネルギーでもって展開されるところ、交換反応は半電池反応で、ユニークな燃料電池の基礎として、構成される。
(もっと読む)


【課題】
微小構造体の製造方法およびマイクロリアクターに関して、液体同士が接触により比較的短時間に反応や固化する様な液体の組み合わせや、3種類以上の液体を用いて微小構造体を製造する場合において、製造歩留まり良く、所望の粒子径サイズで、かつ粒子径サイズのばらつきが小さい微小構造体を製造する方法を提供する。

【解決手段】
本発明の微小構造体の製造方法は、メイン流路と複数のサブ流路を備えたマイクロリアクターを用いて微小構造体を製造する方法において、
メインの流路に液体を供給する工程と;
メイン流路に出口を有する複数のサブ流路に異なる液体を供給する工程と;
複数のサブ流路の出口からメイン流路に供給される液体が、メイン流体中で実質上交点をもつ方向に供給され、層流状態で接触させる。

(もっと読む)


本発明は水性媒体中での無機前駆体の加熱分解を用いて無機粒子を連続調製するための方法に関係し、該方法は、無機前駆体をその転換温度より低い温度で含む反応性流れ、および、前記反応性流れに向流で、該前駆体をその転換温度より高い温度にするのに十分な温度の水を含有する冷却剤流れを接触させることを含み、前記反応性流れと前記冷却剤流れに由来する混合物流れが次に管状反応器に搬送され、その内部で前駆体を徐々に転換することにより粒子が形成され、そしてそこでは反応性流れと冷却剤流れが混合チャンバ内で互いに接触して置かれ、その内部では反応性流れと冷却剤流れが供給パイプによって供給され、供給パイプの出口断面積は前記混合チャンバの最大断面積よりも小さい。本発明は、前記方法を実行するための装置にも関係する。 (もっと読む)


本発明は、第1の電極(106)と第2の電極(107)と機能媒体を有するそれらの間の電極間ギャップ(11)とを有するエネルギ変換システムに関し、第1の電極(106)が、全長L、湾曲断面及び曲率半径Rを有し、多少の開口パターンを有する頑丈な組み立て構造に構成され、任意の場所で同じ電位を有し得ることで前記第1の電極(106)を構成する少なくとも1の細長い導電手段で作成される。このシステムは、Rが40×10−6m(40マイクロメートル)よりも小さく、電極間ギャップが1×10−9m乃至5×10−3m(1ナノメートル乃至5ミリメートル)の厚さを有し、第1の電極(106)の前記少なくとも1の導電手段の全長Lが1×10m(1キロメートル)よりも長く、L/R比が10(100万)よりも大きく、第1の電極(106,306)が、ナノメートル乃至ミリメートル規模で、第2の電極(107)によって感知される電場の顕著な増加を発生させる。 (もっと読む)


【課題】分子拡散とせん断を利用した流体の混合をそれぞれ効果の比率を一定に行うことができるとともに、混合の反応時間を制御することができるマイクロ向流送液装置及びマイクロ向流送液方法を提供する。
【解決手段】マイクロ向流送液装置1は、水系流体6を導入する第1の導入管3Aと、有機溶剤系流体7を導入する第2の導入管3Bと、水系流体6と有機溶剤系流体7の混合流体8を排出する排出管4A及び4Bと、第1の導入管を一端3Aに、第2の導入管3Bを他端に設けて、第1の導入管3Aと、他端において第1の導入管3Aと対面する位置に設けられた第1の排出管4Aとをつなぐ壁面に対して親水膜5を設け、第2の導入管3Bと、一端において第2の導入管3Bと対面する位置に設けられた排出管4Bとをつなぐ壁面を疎水壁20aで構成し、水系流体6と有機溶剤流体7とをそれぞれ交互に向流で流す流路20とを有する (もっと読む)


本発明の対象は、マイクロ波発生器、内部にマイクロ波透過性管があるマイクロ波アプリケータ、及び等温反応区域を含む、化学反応を連続的に行うための装置であって、前記マイクロ波透過性管内の反応物が、加熱ゾーンとして機能するマイクロ波アプリケータ中を通って誘導され、前記マイクロ波アプリケータ中では、マイクロ波発生器から前記マイクロ波アプリケータへ誘導されるマイクロ波を使って、該反応物が反応温度まで加熱され、そして加熱され、そして場合によっては圧力下にある該反応物が、前記加熱ゾーンから出た直後に前記加熱ゾーンに直接つながる等温反応区域中に移され、そしてその等温反応区域から出た後に冷却されるように、前記マイクロ波発生器、前記マイクロ波アプリケータ、及び前記等温反応区域が配置されている装置である。
(もっと読む)


【課題】微細気泡の発生方法および微細気泡発生装置において、簡単かつ小型の機器構成で、液体の物性による制約が少なく広範囲の種類の液体に適用可能とし、微細気泡を安定的に発生可能とする。
【解決手段】本方法は、弾性表面波Wを励振するための複数の櫛歯状の電極21を表面Sに備えた圧電基板2を液体10中に配置し、電極21によって表面Sに弾性表面波Wを励振し、液体10中で表面Sを伝播する弾性表面波Wによって液体10中に微細気泡Bを発生させる。液体10中の圧電基板2の表面Sを伝播する弾性表面波Wによって微細気泡Bを発生させるので、旋回流を起して剪断力を発生させるために用いる高圧ポンプなどの機械的な動作を行う機器が不要であり、簡単かつ小型の機器構成で微細気泡を安定的に発生させることができる。 (もっと読む)


本発明は、概して、液体の制御のためのシステムおよび方法に関し、ある場合には、他の流体中に流入する、および/またはそこから流出するためのシステムおよび方法に関する。実施例として、液体は、流体チャネル内に含有される液滴中に注入されるか、または液体は、流体チャネル内に注入されて液滴を生成してもよい。一部の実施形態では、電極は、例えば、少なくとも2つの流体チャネルの交点の近傍において、電場を1つ以上の流体チャネルに印加するために使用されてもよい。例えば、第1の流体は、電場によって促進される第2の流体中に付勢される、および/またはそこから流出されてもよい。電場は、ある場合には、第1の流体と少なくとも1つの他の流体との間の界面を分断してもよい。
(もっと読む)


本装置は、ラブ・オン・ア・チップ・システム内の流体流を制御する役目を果たす。この装置は、n個の列Snおよびm個の行Zmに配置され、フローチャネル(4)内の流体流を制御するようにそれぞれ設計された複数のバルブからなるバルブアレイを有している。アレイは少なくとも2つのバルブを含み、各列Snは最多でも1つのバルブを有し、各行Zmは0〜n個のバルブを有している。バルブの操作機構(13)が設けられている。バルブは押圧力を介して操作される。本装置を製造するために、バルブの配置に応じてフローチャネル(4)が配置される。 (もっと読む)


【課題】合流直後の反応基質間の接触面積を増やし、且つ濃度不均一による反応生成物の収率低下が抑制された管型流通式反応装置または化学反応プロセスを提供する。
【解決手段】(1)反応に使用する2種以上の流体をそれぞれに流入させる流入路、(2)該流体を合流させ且つ合流した流体を流通させながら反応させることができる内腔を有する外管、(3)反応生成物を外管から流出させる流出路、および(4)外管の内腔内に配置された内管を備えており、各流入路は流入路の内腔と外管の内腔とが連通するように外管に接続され、且つ外管に前記流体が交互に流入するようにされた、管型流通式反応装置。 (もっと読む)


【課題】反応容器の中に超音波と光エネルギーを同時に導入し、協奏効果により効率的に処理を行うことができる超音波・光化学ハイブリッド反応装置を提供する。
【解決手段】超音波・光化学ハイブリッド反応装置100は、反応容器110と、超音波発生手段120と、光発生手段130と、制御手段140とを備える。超音波発生手段120は、超音波発振器121と、超音波振動子122と、超音波放射体123とから構成され、超音波放射体123は、超音波振動子122の先端に取り付けられ、超音波エネルギーを放射する円柱状または円筒状の放射体であり、反応容器110の内部に挿入され、超音波振動子122から発生する超音波が、超音波放射体123の先端面および側面が放射面として反応容器110の内部へ超音波を放射する。制御手段140は、超音波発生手段120と光発生手段130を単独または同時に超音波と光を発生するように制御する。 (もっと読む)


【課題】恒温水槽を用いる浸漬方式よりも熱効率が良く、かつ、ハイドレートスラリーを冷却する外部循環式のような大型の熱交換器を必要としないコンパクトなガスハイドレート製造装置。
【解決手段】たて型のガスハイドレート生成塔1の下部に原料ガスGの気泡を含んだ原料水WGを供給する原料供給部3を設ける一方、前記ガスハイドレート生成塔1の上部にガスハイドレートスラリーSを塔の外に排出させるガスハイドレートスラリー排出管4を設け、かつ、前記ガスハイドレート生成塔1の側面であって気泡を含んだ原料水供給口の下流に冷却水吹込みノズル2を設け、該冷却水吹込みノズル2から塔内に原料ガスGの気泡が混入していない冷却水WCを直接吹き込む。 (もっと読む)


本発明はマイクロリアクター(20)とマイクロリアクターに封着された少なくとも1つのコネクタ(10’)とを有するマイクロ流体装置(200)に関するものである。また、本発明はそのようなマイクロ流体装置及びコネクタとして適した材料ブロックの製造方法に関するものでもある。
(もっと読む)


本発明は、モジュール式マイクロプロセス技術に適用するためのモジュール混合器に関する。 (もっと読む)


101 - 120 / 623