説明

Fターム[4G077BA03]の内容

結晶、結晶のための後処理 (61,211) | 材料(元素状、合金) (2,007) | 元素状 (1,983) | 炭素 (291) | ダイヤモンド(ダイヤモンド状炭素を含む) (267)

Fターム[4G077BA03]に分類される特許

41 - 60 / 267


【課題】ダイヤモンド半導体膜へのV族元素のドーピング効率を向上させて、電子素子への実用に供することが可能なダイヤモンドのn型半導体膜を提供する。
【解決手段】気体におけるAsと炭素Cとの比率(As/(As+C))が2ppm〜500000ppmの範囲になるように炭素を含む原料ガスとAsドーパントガスを用い、マイクロ波パワーが350Wから750Wの範囲にあり、基板表面温度が700℃から900℃の範囲にあり、As流量が1マイクロモル毎分から750マイクロモル毎分までの範囲にあるマイクロ波プラズマ化学気相堆積(CVD)法によりn型ダイヤモンドが得られる。マイクロ波パワーが350Wから750Wの範囲で、移動度は200cm2/(Vs)程度になり、n型伝導が実現さる。ドーパントとしてAsの代わりにSbを用いても同様の効果が得られる。 (もっと読む)


【課題】ナノおよびマイクロマシン(N/MEMS)デバイスに単結晶ダイヤモンドを利用することは困難であり、報告例がなかった。それは、犠牲層である酸化物上に単結晶ダイヤモンドを成長させることが困難なためである。従来技術では、犠牲層酸化物上に多結晶或いはナノダイヤモンドを作製することによって、カンチレバー等を作製しているが、機械性能、振動特性、安定性及び再現性は不十分であった。
【解決手段】本発明は、ダイヤモンド基板101内の高濃度イオン注入領域がグラファイトに改質されることを利用し、改質されたグラファイト層104を犠牲層として電気化学エッチング除去し、その上に遺されたダイヤモンド層を可動構造体とする。作製されたカンチレバー106は高い周波数の共鳴振動を示した。単結晶ダイヤモンドを使用することによって、N/MEMSデバイスの機械性能、安定性および電気特性を改良することができる。 (もっと読む)


【課題】表面に結晶粒界がない高配向ダイヤモンド膜を、一定の形状及び寸法で規則的に配列することができ、意図せぬ方位の結晶が発生しないようにした低コストの高配向ダイヤモンド膜の製造方法を提供する。
【解決手段】(001)オフ面基板上に、[100]方向に成長するように、第1の高配向ダイヤモンド膜1を成長させる。次いで、格子状のマスク2を第1の高配向ダイヤモンド膜1上に形成し、その後、平坦化膜としての第2の高配向ダイヤモンド膜をステップフロー成長により成長させる。その後、マスクを除去する。 (もっと読む)


本発明は、平均粒子径が10nm以下のダイヤモンド粒子を含有する凝集構造体からダイヤモンド粒子を得るための方法であって、前記凝集構造体をガス雰囲気下で加熱することにより当該凝集構造体から前記ダイヤモンド粒子を得る方法に関する。枢要な点は、前記凝集構造体は少なくとも80%の割合の水素ガスを含む反応性ガスのガス雰囲気下で加熱されることである。
(もっと読む)


【課題】積層欠陥及び貫通転位の密度が十分に低いダイヤモンド薄膜構造とその製造方法を提供する。
【解決手段】本発明のダイヤモンド薄膜構造は、基板と、基板の主方位面の一部を覆うマスク材と、基板の主方位面の表面からエピタキシャル成長するダイヤモンド薄膜とで構成されるダイヤモンド薄膜構造であって、ダイヤモンド薄膜は、マスク材の上に形成され、ダイヤモンド薄膜の結晶方位は基板の結晶方位とそろっており、基板の主方位面の一部にストライプ状の溝が形成され、マスク材は、ストライプ状の溝を覆うように配置されている。 (もっと読む)


【課題】光デバイス若しくは素子中に、又は光デバイス若しくは素子として、使用するのに適したCVD単結晶ダイヤモンド材料を提供する。
【解決手段】低く均一な複屈折性、均一で高い屈折率、歪みの関数としての低い誘起複屈折性又は屈折率変動、低く均一な光吸収、低く均一な光散乱、高い光(レーザ)損傷閾値、高い熱伝導率、高度な平行度及び平坦度を有しながら高度の表面研磨を示す加工性、機械的強度、磨耗抵抗性、化学的不活性等の特性の少なくとも1つを示すCVD単結晶ダイヤモンド材料であって、前記CVD単結晶ダイヤモンド材料の製造方法は実質上結晶欠陥のない基板を提供するステップと、原料ガスを提供するステップと、原料ガスを解離して、分子状窒素として計算して300ppb〜5ppmの窒素を含む合成雰囲気を作るステップと、実質上結晶欠陥のない前記表面上にホモエピタキシャルダイヤモンドを成長させるステップとを含む。 (もっと読む)


化学気相堆積(CVD)を用いて製造される単結晶ダイヤモンド材料、特に、レーザーのような光学的用途における使用に適する特性を有するダイヤモンド材料が、開示される。特に、室温で測定した場合に、最長長さ内部寸法、複屈折及び吸収係数の好ましい特性を有するCVD単結晶ダイヤモンド材料が、開示される。ラマンレーザーを含めて、前記ダイヤモンド材料の使用、及び前記ダイヤモンドの製造方法もまた開示される。 (もっと読む)


【課題】従来技術と比較して、室温で十分に高いキャリア濃度を有するダイヤモンド半導体及び作製方法を提供すること。
【解決手段】ダイヤモンド基板11(図5(a))上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとし、基板温度700℃でダイヤモンド薄膜12を1ミクロン積層する(図5(b))。ダイヤモンド薄膜12にイオン注入装置を用い、不純物1(VI族又はII族元素)を打ち込む(図5(c))。その後、不純物2(III族又はV族元素)を打ち込んだが(図5(d))、注入条件は、打ち込んだ不純物がそれぞれ表面から0.5ミクロンの厚さの範囲内で、1×1017cm-3となるようにシミュレーションにより決定した。その後、2種類のイオンが注入されたダイヤモンド薄膜13をアニールすることにより(図5(e))、イオン注入された不純物の活性化を行い、ダイヤモンド半導体薄膜15を得た(図5(f))。 (もっと読む)


成長単結晶ダイヤモンド基板の製造方法であって、以下の工程:(a)(001)主要表面(この主要表面は、少なくとも1つの<100>稜で境界が定められ、前記少なくとも1つの<100>稜の長さは、前記少なくとも1つの<100>稜に直交する表面のいずれの寸法をも少なくとも1.3:1の比で超えている)を提示する第1のダイヤモンド基板を準備する工程;及び(b)化学蒸着(CVD)合成条件下で前記ダイヤモンド材料表面の(001)主要表面上でダイヤモンド材料をホモエピタキシャル成長させる工程(このダイヤモンド材料は主要(001)表面に垂直、及び主要(001)表面から横方向の両方に成長する)を含む方法。 (もっと読む)


合成環境内にて基板上でダイヤモンド材料を合成するための化学蒸着(CVD)方法であって、以下の工程:基板を供給する工程;原料ガスを供給する工程;原料ガスを溶解させる工程;及び基板上でホモエピタキシャルダイヤモンド合成させる工程を含み;ここで、合成環境は約0.4ppm〜約50ppmの原子濃度で窒素を含み;かつ原料ガスは以下:a)約0.40〜約0.75の水素原子分率Hf;b)約0.15〜約0.30の炭素原子分率Cf;c)約0.13〜約0.40の酸素原子分率Ofを含み;ここで、Hf+Cf+Of=1;炭素原子分率と酸素原子分率の比Cf:Ofは、約0.45:1<Cf:Of<約1.25:1の比を満たし;原料ガスは、存在する水素、酸素及び炭素原子の総数の原子分率が0.05〜0.40で水素分子H2として添加された水素原子を含み;かつ原子分率Hf、Cf及びOfは、原料ガス中に存在する水素、酸素及び炭素原子の総数の分率である、方法。 (もっと読む)


【課題】
超硬合金を始めとする工具材料、或いは鉄族金属から成る構造材料などの基礎部材上に、部材成分等の影響を受けない状態でダイヤモンド膜を形成する技術を提供すること。
【解決手段】
本発明に係る析出用基体は、硬質材料からなる基礎材に、種子ダイヤモンド結晶をマトリックス中に保持含有する被覆層が表面に接合されたCVDダイヤモンド析出用基体であって、(1) 前記種子ダイヤモンド結晶としてのダイヤモンド粒子の平均粒径が1μm以下であり、(2) マトリックスがSi、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Wからなる第一金属群から選ばれる1種以上の第一金属種及び/又は、該第一金属種とホウ素、炭素又はチッ素から選ばれる非金属物質との化合物である第一金属化合物を含有し、上記ダイヤモンド粒子は該マトリックス中に分散され、(3) 上記硬質材料と被覆層との接合部に、上記第一金属種の金属原子及び硬質材料を構成する金属原子、或いはその一方の拡散によるに拡散層が形成されていることを特徴とする。 (もっと読む)


【課題】酸素または水素雰囲気中でのレーザーアブレーションにより金属などの異種基板に対して良好なダイヤモンド膜を形成できる方法を提供する。
【解決手段】酸素または水素雰囲気中で、グラファイト、アモルファスカーボン、グラッシーカーボン、またはダイヤモンドからなる炭素ターゲットに、50ns以下のパルス幅でレーザー光を照射し、レーザーアブレーションによって前記ターゲットから炭素粒子を飛散させて基板上に堆積させ、パルス毎に堆積粒子の過飽和状態を形成して前記基板上にダイヤモンド膜を形成する方法において、前記基板に負バイアスを印加した状態で前記レーザー光を照射する。 (もっと読む)


【課題】大面積で結晶性の良い単結晶ダイヤモンドを成長させることができ、高品質の単結晶ダイヤモンド基板を安価に製造できる単結晶ダイヤモンド成長用基材及びその製造方法を提供する。
【解決手段】単結晶SiC基板11の単結晶ダイヤモンドを成長させる側にヘテロエピタキシャル成長させたイリジウム膜又はロジウム膜12を有する単結晶ダイヤモンド成長用基材10であって、イリジウム膜又はロジウム膜12は、単結晶ダイヤモンド成長時に良好なバッファ層として機能する。単結晶SiC基板11とイリジウム膜又はロジウム膜12の間に、ヘテロエピタキシャル成長させたMgO膜13をさらに有する単結晶ダイヤモンド成長用基材10’であってもよい。基材10’がMgO膜13を有することで、その上のイリジウム膜又はロジウム膜12の結晶性をより良く形成でき、また、成長させた単結晶ダイヤモンドを分離させる場合に良好な分離層として利用できる。 (もっと読む)


【課題】大面積で結晶性の良い単結晶ダイヤモンドを成長させることができ、高品質の単結晶ダイヤモンド基板を安価に製造できる単結晶ダイヤモンド成長用基材及び単結晶ダイヤモンド基板の製造方法を提供する。
【解決手段】単結晶ダイヤモンドを成長させるための基材10であって、単結晶シリコン基板13と、単結晶シリコン基板13の単結晶ダイヤモンドを成長させる側にヘテロエピタキシャル成長させたMgO膜11と、MgO膜11上にヘテロエピタキシャル成長させたイリジウム膜又はロジウム膜12とからなる。 (もっと読む)


ダイヤモンドを処理する方法であって、その方法は、(i)黒鉛析出に関してカーボンで飽和されている液体金属を供給すること、(ii)液体金属がダイヤモンド析出に関してカーボンで飽和されるように、液体金属の温度を降下させること、(iii)ダイヤモンドを液体金属に浸漬すること、および(iv)金属からダイヤモンドを取り出すことを含む。
(もっと読む)


ファンシーな淡い青色又はファンシーな淡い青色/緑色のCVDダイヤモンド材料の製造方法を開示する。本方法は、CVDプロセスで成長した単結晶ダイヤモンド材料に電子を照射して、ダイヤモンド材料中に孤立空孔を導入する工程を含み、照射されたダイヤモンド材料は(又はさらなる照射後処理後に)、全空孔濃度[VT]×経路長Lが少なくとも0.072ppm・cm、多くても0.36ppm・cmになるような全空孔濃度[VT]及び経路長Lを有し、かつダイヤモンド材料はファンシーな淡い青色又はファンシーな淡い青色/緑色になる。ファンシーな淡い青色のダイヤモンドをも開示する。 (もっと読む)


少なくとも5.5eVのエネルギーを有する放射線(典型的にUV線)への曝露及び525℃(798K)での熱処理後にその吸収特性に差異を示すダイヤモンド材料から出発し、ダイヤモンド材料内に欠陥を導入するように制御された照射を施す。制御された照射後、少なくとも5.5eVのエネルギーを有する放射線への曝露及び525℃(798K)での熱処理後の吸収特性の差異が減少する。孤立空孔の特性を示す吸収特徴を有するダイヤモンド材料をも開示する。 (もっと読む)


ファンシーな橙色の合成CVDダイヤモンド材料の製造方法を開示する。本方法は、CVDによって成長した単結晶ダイヤモンド材料を照射して該CVDダイヤモンド材料の少なくとも一部に孤立空孔を導入する工程及び照射されたダイヤモンド材料を次にアニールして、導入された孤立空孔の少なくともいくつかから空孔鎖を形成する工程を含む。ファンシーな橙色のCVDダイヤモンド材料をも開示する。 (もっと読む)


単結晶CVDダイヤモンド材料にNV中心を導入する方法を開示する。方法の一工程は、単置換型窒素を含むダイヤモンド材料を照射してダイヤモンド材料中に少なくとも0.05ppm、多くても1ppmの濃度で孤立空孔を導入することを含む。方法の別の工程は、照射されたダイヤモンドをアニールして、単置換型窒素欠陥及び導入された孤立空孔の少なくともいくつかからNV中心を形成することを含む。ピンクCVDダイヤモンド材料及びスピントロニクス特性を有するCVDダイヤモンド材料についても記述する。 (もっと読む)


【課題】均一で結晶性の高い単結晶ダイヤモンドを再現性良く、低コストで製造することができる単結晶ダイヤモンド層成長用基板及び単結晶ダイヤモンド基板の製造方法を提供する。
【解決手段】単結晶ダイヤモンド層を成長させるための基板12は、材質が単結晶ダイヤモンドである基材10と、基材10の単結晶ダイヤモンド層を成長させる側にヘテロエピタキシャル成長させたイリジウム膜又はロジウム膜11とからなり、基材10の単結晶ダイヤモンド層を成長させる側の面の周端部が、曲率半径(r)≧50μmで面取りされている。 (もっと読む)


41 - 60 / 267