説明

Fターム[4G146BC22]の内容

炭素・炭素化合物 (72,636) | 製造−製造工程、製造条件 (14,091) | 雰囲気 (2,893) | ガス組成の特定 (2,326)

Fターム[4G146BC22]の下位に属するFターム

Fターム[4G146BC22]に分類される特許

21 - 40 / 83


【課題】種々の炭素質膜に対応して、親水性の炭素質膜を容易に製造できるようにする。
【解決手段】親水性炭素質膜の製造装置は、炭素質膜を成膜するための炭素源となるガスのプラズマ及び酸素のプラズマを発生させるプラズマ生成部11と、炭素源となるガスのプラズマを用いて基材21の表面に炭素質膜を成膜し、成膜した炭素質膜へ酸素を含むプラズマを照射するためのチャンバ12と、酸素を含むプラズマの照射中に、炭素質膜の赤外吸収を測定する赤外吸収測定部13とを備えている。 (もっと読む)


【課題】基板の表面に複数のカーボンナノチューブを備えたカーボンナノチューブ集合体であって、該基板と該カーボンナノチューブとの密着力が非常に高いカーボンナノチューブ集合体を提供する。また、そのようなカーボンナノチューブ集合体を含む粘着部材を提供する。
【解決手段】本発明のカーボンナノチューブ集合体は、シリコン基板の表面に複数のカーボンナノチューブを備えたカーボンナノチューブ集合体であって、該複数のカーボンナノチューブの片端が該シリコン基板の表面に密着しており、該複数のカーボンナノチューブと該シリコン基板の表面との密着力が25℃において10N/cm以上である。 (もっと読む)


【課題】従来技術と比較して、室温で十分に高いキャリア濃度を有するダイヤモンド半導体及び作製方法を提供すること。
【解決手段】ダイヤモンド基板11(図5(a))上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとし、基板温度700℃でダイヤモンド薄膜12を1ミクロン積層する(図5(b))。ダイヤモンド薄膜12にイオン注入装置を用い、不純物1(VI族又はII族元素)を打ち込む(図5(c))。その後、不純物2(III族又はV族元素)を打ち込んだが(図5(d))、注入条件は、打ち込んだ不純物がそれぞれ表面から0.5ミクロンの厚さの範囲内で、1×1017cm-3となるようにシミュレーションにより決定した。その後、2種類のイオンが注入されたダイヤモンド薄膜13をアニールすることにより(図5(e))、イオン注入された不純物の活性化を行い、ダイヤモンド半導体薄膜15を得た(図5(f))。 (もっと読む)


固体有機材料を炭素または活性炭素へ変換するための方法および装置である。固体有機材料の処理は、無酸素かる完全に吸熱状態下でなされる。装置は、圧力釜(1)、圧力釜の保護被服断熱(2)、有孔または無孔回転ドラム(3)、密封皿状端(4)、回転シャフト(5)、ベルトまたはチェーン駆動を有するギヤモータ(6)、超高温スチームを生成するスチーム超高温ヒータ(7)、超高温スチームを制御する少なくとも1つの入口弁(8)、少なくとも1つの供給パイプ(9)、傾斜または回転支持体(10)、少なくとも1つの円筒状ローラ(11)、開口または閉口扉端(12)、供給または除去ポート(13)、連結シュート(14)、少なくとも1つの圧力安全弁(15)、ガス排出パイプ(16)、少なくとも1つの出口弁(17)、生成された反応ガスを処理するガス処理ユニット(18)、少なくとも1つの圧力計(19)、および、少なくとも1つの温度計(20)を備える。圧力釜は、傾斜または回転支持体上に支持されたその付属品とともに傾斜し、固体有機材料が、回転ドラム内に供給され再びまっすぐにされる。ガスまたはスチームが、圧力釜内の全雰囲気が排出されるまで圧力釜内に供給され、超高温スチームが回転ドラム内に継続的に供給される。回転ドラムは、ギヤモータにより定速回転され、生成された反応ガスが圧力釜から固体有機材料が炭素または活性炭素へ変換されるガス処理ユニットへ移される。
(もっと読む)


【課題】カーボン部品を高純度に効率よく精製する。
【解決手段】多結晶シリコンの製造に用いられるカーボン部品を処理炉内に収容して、処理炉内を不活性ガス等で置換後、処理炉内を乾燥温度まで昇温し不活性ガス等を流通させてカーボン部品を乾燥する乾燥処理と、乾燥処理後に処理炉内を乾燥温度よりも高い純化温度に消音するとともに、処理炉内に塩素ガスを流通させる塩素流通処理(ステップ2)と、塩素流通処理の後に処理炉内部を減圧する減圧処理(ステップ3)と、減圧処理により生じた減圧状態に処理炉内を保持する減圧保持処理(ステップ4)と、減圧保持処理後の処理炉に塩素ガスを導入して処理炉内を加圧状態とする塩素加圧処理(ステップ5)とを複数回繰り返した後、処理炉内を冷却する。 (もっと読む)


【課題】一酸化炭素とフッ素との反応によって生じる反応容器内の局所的かつ急激な温度上昇を抑制し、反応温度の均一化を可能にするとともに、半導体CVD用の洗浄ガス等として有用な二フッ化カルボニル(COF2)を、高純度、高収率で、かつエネルギー効率
よく得ることができる、工業的に有利な製造方法を提供すること。
【解決手段】本発明の二フッ化カルボニルの製造方法は、循環している二フッ化カルボニルガスに一酸化炭素ガスとフッ素ガスとを供給し、一酸化炭素ガスとフッ素ガスとを反応させて二フッ化カルボニルを生成させるとともに、二フッ化カルボニルガスを取り出す工程を有することを特徴とする。 (もっと読む)


本発明は、新たなカーボンナノチューブ合成用担持触媒を提供する。前記担持触媒は、Fe、CoまたはNiから選択される一つ以上の金属触媒を有し、それらがアルミナ、酸化マグネシウムまたはシリカ担体に担持されており、前記担持触媒は平均直径が約30〜約100μmの平均直径を有する。 (もっと読む)


【課題】カーボンナノチューブ等の有用性の高い繊維状のナノカーボンをナノカーボン生成温度領域に合わせて段階的にその特性を変えることにより効率的に製造すること等を目的とする。
【解決手段】有機物を原料とするナノカーボン生成において、低温レベルの第1のナノカーボン生成装置11と、内部温度を前記第1のナノカーボン生成装置11における内部設定温度以上に設定した高温レベルの第2のナノカーボン生成装置31とを具備し、ナノカーボン生成を低温レベルでのナノカーボン生成、高温レベルでのナノカーボン生成の2段階で行い、第1のナノカーボン生成装置11で排出される未反応炭化水素を第2のナノカーボン生成装置31に入れることにより、低温レベルで生成するナノカーボン、高温レベルで生成するナノカーボンの両方を回収することを特徴とするナノカーボン生成システム。 (もっと読む)


高品質なカーボン単層ナノチューブ(SWNT)を合成する方法およびプロセスを提供する。前記方法により、触媒単位重量当たりの炭素前駆体量および輸送ガス量を最適化する手段を提供する。780℃にて、約4.2×10−3モルCH/秒−g(Fe)の流量で、炭素前駆体ガスを担体に担持した触媒に接触させたとき、約20%の変換効率を達成できる。また、炭素前駆体ガスの流量を約1.7×10−2モルCH/秒−g(Fe)以上にすると、品質が向上し、より速くカーボンSWNTが成長する結果になった。一方、炭素原子の供給速度を遅くすると(約4.5×1020C原子/秒−g、すなわち6.4×10−4モルCH/秒−g(Fe))、欠陥の多いナノチューブが生成する結果になった。 (もっと読む)


【課題】低抵抗の複数本のカーボンナンチューブからなるカーボンナノチューブネットワークを有する導電性膜、透明導電性フィルムおよびこれらの製造方法を提供すること。
【解決手段】基板上に複数本のカーボンナノチューブからなるカーボンナノチューブネットワークが形成され、前記カーボンナノチューブネットワークのカーボンナノチューブ同士がグラファイト膜で連結された導電性膜に関する。 (もっと読む)


【課題】 鋳造型を用いて製品を成形加工する鋳造成形において、成形材料の鋳造型への焼き付きを抑制し、製品の離型抵抗を低減する離型効果をより一層長く持続させる。
【解決手段】鋳造型の表面をカーボンナノコイル、カーボンナノチューブ、カーボンナノフィラメントからなる群から選ばれる少なくとも1種のナノカーボン類を含む炭素膜で被覆し、さらにその表面にフラーレン類を塗布する表面処理方法。鋳造型のキャビティ面等のアルミニウム等の成形材料の溶湯が接触する面に対してこの表面処理方法を行うと、成形材料の溶湯が型に焼き付きが抑制され、製品の離型抵抗が低減されて、離型効果が向上する。従来の炭素膜よりも離型効果がより一層長寿命化する。 (もっと読む)


【課題】非常に高導電性、高品質、分散性が良好な2層カーボンナノチューブ集合体およびその製造方法を得ることを課題とする。
【解決手段】以下の(1)〜(4)の条件を満たすカーボンナノチューブ集合体。
(1)体積抵抗率が1×10−4Ω・cm以上、1×10−2Ω・cm以下。
(2)カーボンナノチューブ集合体の50%以上が2層カーボンナノチューブ。
(3)カーボンナノチューブ集合体の測定波長532nmにおけるラマンG/D比が30以上、200以下。
(4)燃焼ピーク温度が550℃以上、700℃以下。 (もっと読む)


【課題】本発明は、少なくとも二つのボンディングパッド間に水平方向の電気接続を確立することを可能にする装置に関する。
【解決手段】本装置はボンディングパッドの垂直壁を接続する水平なカーボンナノチューブを備え、ボンディングパッドは少なくとも二つの物質を積層させることによって形成されていて、その一つはナノチューブ成長に触媒作用をもたらし、他の一つはナノチューブ成長に触媒作用をもたらす物質の層間のスペーサとして機能する。 (もっと読む)


【課題】良質のカーボンナノコイルを高い収率で製造することが可能なカーボンナノコイル製造用触媒を得る。
【解決手段】セラミックス微粒子1の表面に、酸化鉄もしくはオキシ水酸化鉄と、酸化スズとの混合物からなる被膜2を形成する。被膜2の厚みを300nm以上とし、被膜2における鉄とスズの元素比を1:1〜6:1の範囲内とすることを特徴とする。被膜2の厚みは1000nm以上がより好ましく、鉄とスズの元素比は3:1が最も好ましい。 (もっと読む)


【課題】フラーレンに類似した構造を有する構造体を高い生成効率で得る。
【解決手段】ボタン指数が2以上の石炭を粉末にする工程と、前記粉末の石炭を乾留してチャーを生成する工程と、前記チャー及びガス化剤を所定の温度で反応させてフラーレン類似構造体を生成する工程とを備えるフラーレン類似構造体の製造方法。 (もっと読む)


【課題】木質材料等の有機系の処理対象物を原料として用いて、高い比表面積と電気二重層キャパシタに適した細孔構造を有する活性炭、及びその製造方法を提供する。
【解決手段】木質材料を主成分とした処理対象物に対して炭化処理、賦活化処理を過熱水蒸気雰囲気中において連続して行うことで製造され、全比表面積が600m/g以上を有するとともに、外比表面積が全比表面積の20%以上75%以下を占める細孔分布構造を有する活性炭である。 (もっと読む)


【課題】過酷な条件なしに経済的にダイヤモンドを合成することを課題とする。
【解決手段】本発明は、ナノダイヤモンド(n-ダイヤモンド、p−ダイヤモンド
、i-カーボン)の製造方法であって、ナノダイヤモンドを含む活性炭から取り出す
方法に関する。前記活性炭は、炭素中に埋め込まれたナノダイヤモンドを形成させる
のに十分な酸素量の制限条件下での炭素質原料の炭化および/または活性化で合成さ
れる。前記ナノダイヤモンドは活性炭から分離および精製され、酸化剤での処理によ
って濃縮されうる。さらに、炭素源と金属および酸をナノダイヤモンドの生成に至る
条件下で混合することによるナノダイヤモンド、特には、ナノダイヤモンド繊維の製
造方法も提供される。ナノダイヤモンド繊維は、2000ナノメートル以上に製造可
能である。前記ナノダイヤモンド繊維は織り込むことが可能で、または、種々の材料
の構造強化に供するために使用可能である。 (もっと読む)


本発明は、様々な粒径のダイヤモンド−炭素を有する材料の創出のための方法および調合物を提供する。当該材料は、酸化剤として二酸化炭素、および爆轟のための燃料として粉末状マグネシウム等の材料を、使用する、爆発性調合物の爆轟の副生成物である。 (もっと読む)


【課題】半導体材料、電子部品、光学部品、切削・耐磨工具などに用いられる大面積で高品質なダイヤモンド単結晶基板を高速に製造する方法を提供する。
【解決手段】種基板1として、主面の面方位が略<100>方向に揃った複数個のダイヤモンド単結晶基板を並べて配置し、気相合成法により種基板1上にダイヤモンド単結晶を成長させるダイヤモンド単結晶基板の製造方法であって、種基板1の主面の面方位が{100}面に対する傾きが5度以下であり、第一の段階における成長パラメータαが2.0以上3.0未満であり、第二の段階におけるαが3.0以上である。 (もっと読む)


【課題】繊維径が細く繊維径の分布の狭い気相成長炭素繊維を、従来に比し高収率で得ることができ、低コストである気相成長炭素繊維の製造方法および気相成長炭素繊維を提供する。
【解決手段】炭素を含むガスを触媒と接触させて気相成長炭素繊維を製造する方法において、触媒として、担体、活性金属種および助触媒とを、シュウ酸を用いて共沈させた後に、焼成工程および還元前処理工程を経ることなく、乾燥させて得られるものを用いる気相成長炭素繊維の製造方法である。前記触媒が、シュウ酸塩である製造方法である。前記製造方法により製造され、繊維径が5〜50nmである気相成長炭素繊維である。 (もっと読む)


21 - 40 / 83