説明

Fターム[4K001AA09]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Cu (597)

Fターム[4K001AA09]に分類される特許

561 - 580 / 597


褐鉄鉱およびサプロライトを含有するラテライト鉱石を浸出する手順である。十分な無機酸が褐鉄鉱スラリーに添加され、これは大気圧で浸出され、大部分の可溶性非鉄金属および可溶性鉄を溶解する。サプロライトの添加後、スラリーは更に標準沸点を上回る温度および大気圧を上回る圧力で、サプロライト中に含有されたニッケルの大部分を浸出し、および溶液中の鉄の大部分を沈殿させるのに十分な時間浸出される。その後スラリーの圧力は低下し、ニッケルおよび/またはコバルトが引き続き溶媒抽出、レジン-イン-パルプ法、もしくは他のイオン交換、硫化物もしくは水酸化物沈殿、または他の回収法により、浸出液から回収される。

(もっと読む)


【課題】 土壌中の重金属、例えばCdなどを超集積(ハイパーアキュムレーション)又は高吸収する植物であって、土壌中の重金属の除去回収率が向上すると共に、低コストで容易なファイトレメディエーションによる土壌中重金属の除去及び回収方法を提供する。
【解決手段】 アブラナ科ハタザオ属スズシロソウ(Arabis flagellosa)を用いて、土壌中の重金属を吸収、蓄積させた後、これを収穫し、前記土壌中の重金属を回収することを特徴とする。 (もっと読む)


【課題】自熔炉内の精鉱粒子同士の衝突および成長現象を考慮した燃焼現象を予測する手法を提供する。
【解決手段】ガス相と、精鉱粒子の粒径に従って分類された複数の粒子相とからなるオイラー法の多相流モデルを解いて燃焼解析を行い、それぞれの粒子相の少なくとも体積分率を計算する燃焼解析部100と、複数の粒子相のうちの2つの粒子相で構成される粒子相の組み合わせの全てについて、それぞれの組み合わせ毎に、当該組み合わせ内のそれぞれの粒子相の燃焼解析の出力を利用して、粒径の大きい方の粒子相であるα相と粒径の小さい方の粒子相であるβ相との間の衝突確率ηαを求める衝突確率算出部102と、β相の燃焼解析によって計算された体積分率の一部または全部を、求められた衝突確率ηαに従って、α相の燃焼解析によって計算された体積分率に加える体積分率変更部104とを含む。 (もっと読む)


本発明は、製錬溶鉱炉などの懸濁溶鉱炉で、銅を回収するために、精鉱から直接的に加工される粗銅の産出中に形成されるスラグを処理する方法に関するものであり、スラグの少なくとも一部を、少なくとも一段階で浸出する。
(もっと読む)


【課題】 銅製錬自溶炉ではシャフト直下の煉瓦の侵食が特に激しいこと、及び従来技術ではこの問題に対応できないことに着目し、自溶炉の定期修理の間隔を長くすることができる自溶炉シャフト部冷却ジャケットを提供することを目的とする。
【解決手段】自溶炉シャフト直下領域の耐火物を冷却する銅製水冷ジャケット10において、炉内に面する側の該ジャケットに凹凸11,12を形成し、凹部11に炉内壁耐火物とは別種の耐火物25を充填した炉体水冷ジャケット。 (もっと読む)


【課題】金属および非金属を含む複合廃棄物を破砕・選別して残ったシュレッダーダスト中の有害物である塩ビを分解せしめ、かつ、鉄、銅、および樹脂主体物とを高度に分離することができる複合廃棄物の再資源化方法を提供する。
【解決手段】金属および非金属を含む複合廃棄物を破砕・選別して、鉄、非鉄、ならびに樹脂主体物を回収する複合廃棄物の再資源化方法において、前記破砕・選別して残ったシュレッダーダスト中の金属類と樹脂を主体とする有機系非金属とを混合する工程と、該混合物を押出し成形により固形化する工程と、該固形化物を粉砕する工程と、該粉砕した物を比重差選別および/または磁力選別する工程とを有することを特徴とする複合廃棄物の再資源化方法。 (もっと読む)


【課題】 メソサイズの細さと十分な長さとを有する金属細線を効率良く且つ確実に製造することを可能とし、しかも、メソ多孔体薄膜の細孔内において金属結晶を一方向に異方的に成長させることを可能として結晶成長の方向性を向上させて所望の範囲内に金属結晶を成長させることを可能とする金属細線の製造方法を提供すること。
【解決手段】 連続した細孔構造を有するメソ多孔体薄膜の表面上に非多孔膜を形成せしめる工程と、前記非多孔膜の特定部位に、メソ多孔体薄膜中の細孔と外部とを導通させる原料溶液供給口を形成せしめる工程と、前記原料溶液供給口に金属イオンを含有する原料溶液を供給し、毛管現象により前記原料溶液を前記原料溶液供給口から前記細孔内に導入せしめる工程と、前記細孔内に導入された原料溶液中の前記金属イオンを還元することにより、前記細孔内に金属細線を形成せしめる工程と、を含むことを特徴とする金属細線の製造方法。 (もっと読む)


【課題】 1価銅を含有する溶液から電解操作により金属銅を回収する方法に使用する1価銅を含有する溶液の精製法の提供。
【解決手段】 銅(I)イオン及び貴金属イオン及び銅(I)イオン以外の金属イオンを含む水溶液を処理して銅(I)イオンを含有する水溶液を取り出す方法において、銅(I)イオン及び貴金属イオン及び銅(I)イオン以外の金属イオンを含む水溶液を金属銅と接触させて、貴金属を析出させて分離除去した後、有機溶剤と接触させて銅(I)イオン以外の金属イオンを選択的に有機溶剤中に移動させ、銅(I)イオンを含有する水溶液を水相の状態とし、水相を有機溶剤から分離した後、銅(I)イオンを含有する水溶液とし、銅(I)イオン以外の金属イオンを含有する有機溶剤を水により洗浄し、必要に応じて有機溶剤中の金属イオンを還元した後、有機溶剤を酸溶液と接触させて、銅(I)イオン以外の金属イオンを逆抽出し、有機溶剤を再生し、循環使用する。 (もっと読む)


【課題】鉛製錬工程で発生する精製ドロスのような金属間化合物Cu3Snと金属Pbを主体としたSn含有原料の処理に特に適した湿式処理方法を提供する。
【解決手段】 [1] Sn含有原料を熱濃硫酸中で攪拌してスラリーとする工程、[2] このスラリーに水または硫酸を加えることによりSnの溶解した浸出后液を得る工程、を有し、あるいはさらに、[3] 前記浸出后液を60℃以上に加熱してSn含有沈殿物を得る工程、を有するSn含有原料からのSn回収方法。前記[1]工程において、熱濃硫酸は硫酸濃度80%以上の濃硫酸(ただしSn含有原料と混合前)を使用し、60℃以上の温度で攪拌することができる。また、前記[2]工程において、浸出を50℃以下の温度で行うことができる。 (もっと読む)


【課題】炭素含有量の少ない高純度銅鋳塊の製造方法を提供する。
【解決手段】純度:99.999質量%以上の高純度銅カソードを、真空または不活性ガス雰囲気中、温度:1084〜1150℃未満で溶解したのち鋳造する。必要に応じて高純度銅カソードを大気中あるいは酸化性雰囲気中、温度:700〜1050℃に加熱保持する前処理を施し、必要に応じて溶湯中に酸化銅を添加するかまたは酸素を含有するガスを吹き込んだのち鋳造する。 (もっと読む)


【課題】鉄やアルミニウムをできるだけ灰中に残留させ、銅、鉛、亜鉛、カドミウムなどの有用金属を選択的かつ安価に抽出可能な灰類処理方法と灰類処理設備を提供する。
【解決手段】硫酸の存在下において、塩素イオンを含む水溶液中で灰類を溶解し、この灰類中の金属を抽出する灰類処理方法。 (もっと読む)


【課題】鉛製錬の乾式プロセスから発生する脱Cuドロスや脱Sbドロスなどの、Cu3Sb含有物質を低コストで処理する方法を提供する。
【解決手段】Cu3Sb含有物質を溶融状態とし、その融体を構成する金属相に空気などの酸化性ガスを接触させることにより、金属相中にCuを濃化させ、この金属相を残部から分離して回収する。融体を酸化性ガスと接触させる際の温度は890〜1200℃とすることができる。回収する金属相のCu含有量は50〜95質量%の範囲で調整することができる。 (もっと読む)


【課題】 酸性の湧出水から有益な金属を回収する金属回収方法を提供する。
【解決手段】 酸性の湧出水Wに含まれる金属Mを吸着材で吸着する吸着工程11と、吸着工程11により吸着材に吸着した金属Mを酸性水またはアルカリ性水を用いて吸着材から分離して回収する第一金属回収工程12と、を有することを特徴とする金属回収方法により、上記課題を解決する。また、酸性の湧出水Wが硫酸イオンを含有する場合に、酸性の湧出水Wに炭酸カルシウムまたは水酸化カルシウムを添加して中和する中和工程21と、中和工程21により生じた液体L2と沈殿物P2とを分離する分離工程22と、分離工程22により分離された沈殿物P2から金属Mを回収する第二金属回収工程23と、を有することを特徴とする金属回収方法により、上記課題を解決する。 (もっと読む)


【課題】溶融飛灰から金属成分をそれらの金属の製錬に利用可能な濃度で含有する製錬原料として回収し、且つ細骨材や粗骨材として利用可能な成分を清浄なスラグとして回収する溶融飛灰の再資源化処理方法を提供すること。
【解決手段】溶融飛灰と水とアルカリとを含むスラリーを形成し、該スラリーの固液分離操作によってハロゲン濃度が2質量%以下である残渣を回収し、回収した該残渣を還元型灰溶融炉中で1450℃以上で処理することによって、揮発した金属成分をダスト中に濃縮させて回収し、溶融しているが揮発しなかった金属成分を溶融金属中に濃縮させて回収し、残りの成分を清浄なスラグとして回収する、溶融飛灰の再資源化処理方法。 (もっと読む)


【課題】銅共存下スラグフューミング法において、亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグを、銅融体と共存させてスラグフューミングして形成される鉄、鉛、ヒ素その他の不純物金属を含む銅合金を、該銅融体の銅源として再利用することによって銅源コストを低減するために、該銅合金から不純物金属を除去する方法を提供する。
【解決手段】上記銅合金に、フラックスを添加し、次いで酸化処理することを特徴とする、銅合金から不純物金属を除去する方法などによって提供する。

(もっと読む)


【課題】亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグをスラグフューミングする際に、ヒ素及びアンチモン含有量が少ない亜鉛と鉛を含むダストと安定的に土壌環境基準を満足するスラグとを得るとともに、同時に形成される鉄、鉛、ヒ素その他の不純物金属を含む銅合金とマットを、該銅融体の銅源として再利用する方法を提供する。
【解決手段】亜鉛と鉛とともに硫黄を含み、ヒ素又はヒ素とアンチモンを含有するスラグを、スラグフューミング炉中において、銅融体と共存させて還元吹錬する際に、スラグフューミング中に形成される銅合金とマットを所定の手段で処理して、前記銅融体の銅源として繰返し使用することを特徴とする銅合金とマットの再利用方法などで提供する。 (もっと読む)


高純度ニッケルを生成する方法であって、塩酸溶液体系を用いて高純度ニッケルを電着生成する方法に関し、その生成工程は、以下の順であることを特徴とする。塩酸体系を用いて、3N電解ニッケルをアノードとして、pHが1〜3であるNiCl2溶液を電気溶解によって生成し、陰イオン抽出剤を用いて電気溶解溶液に三段の向流抽出を行い、逆抽出後の溶液を脱油した後、順に陰イオン交換樹脂に通してイオン交換浄化を行い、最後に電解槽に通して電着を行い、かつ、通すイオン交換浄化後の溶液量と抽出した電着後の液は同量であり、電着によって高純度ニッケルを得る。本発明の方法で生成された高純度ニッケルのサンプルはグロー放電質量分析法−GDMS分析で、5Nの高純度ニッケルに達している。コストが低く生成過程での汚染も防止する。 (もっと読む)


金属ベース複合材料から成分を分離する方法であって、分離すべき成分のサイズを増加させる工程と、サイズが増加した成分を複合材料の他の成分から分離する工程を含む方法。
(もっと読む)


【課題】鉄を主成分として銅、金・銀などの貴金属を含有する鉄合金屑などの原料から、高回収率・低コストで銅・貴金属を回収することを可能とする。
【解決手段】銅を主成分とする溶体に、銅・貴金属を含み鉄を主成分とする鉄合金などの原料と珪酸鉱・炭酸カルシウムなどの溶剤とを装入し、原料を溶解した溶体に酸素を含むガスを導入して溶体中の鉄を酸化し、酸化鉄を主成分とするスラグ相と貴金属を含み銅を主成分とする溶体相とに分離する。 (もっと読む)


本発明は銅回収工程において銀を塩化物溶液から除去する方法に関する。本方法によれば、細粒化した銅粉および水銀を用いて銀を除去する。銀除去は少なくとも2段階で行い、水銀をこの溶液中の銀に対する一定のモル比で溶液へ投入する。 (もっと読む)


561 - 580 / 597