説明

Fターム[4K001AA30]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Zn (341)

Fターム[4K001AA30]に分類される特許

41 - 60 / 341


【課題】 ニッケル酸化鉱石の湿式精錬プラントにおいて、原料となるニッケル酸化鉱石を処理して得られる鉱石スラリーから、クロマイトを効率的に回収する方法を提供する。
【解決手段】 ニッケル酸化鉱石からニッケル及びコバルトを回収する際に、ニッケル酸化鉱石から得られた鉱石スラリーからクロマイトを分離回収するクロマイトの回収方法であって、供給される鉱石スラリー中に含有される粒子の粒径差によって、所定の分級点に基づき鉱石スラリーを分離する粒径分離工程と、粒径分離工程において分離されたオーバーサイズの鉱石スラリーを、目標とする分級点に基づいて沈降濃縮し、クロマイトを回収する沈降分離工程とを有し、粒径分離工程において分離されるオーバーサイズの鉱石スラリー中の粗粒子含有率を30〜50%に調整する。 (もっと読む)


【課題】高品位のゲルマニウムを、高い回収率で、効率よく且つ安価に、ゲルマニウムを含有する中間物から回収する方法の提供。
【解決手段】金属回収工程における、ゲルマニウムを含有する中間物から、塩酸と過酸化水素とを併用して、ゲルマニウムを塩化物として回収するゲルマニウム塩化物回収工程を含むゲルマニウムの回収方法である。中間物が亜鉛製錬における中間産物であり、更に過酸化水素の添加量が、ゲルマニウムに対して2モル当量以上である態様が好ましい。 (もっと読む)


【課題】プラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及び繊維状のガラス繊維等の各種有価物を回収する方法を提供すること。
【解決手段】嫌気性ガス雰囲気中にて、過熱水蒸気を導入させると共に反応器内に収容したプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物をアルカリ塩と接触させて前記プラスチックを水蒸気ガス化させるプラスチック層を有し、回路基板を組み込んだ電気電子機器又は電子部品の廃棄物から金属及びガラス繊維を回収する。前記アルカリ塩が、(1)融点が水蒸気ガス化反応温度以上の固体状のアルカリ塩、又は(2)融点が水蒸気ガス化反応温度以下の液体状のアルカリ塩である。 (もっと読む)


【課題】
Znの溶媒抽出に使用し、Feを800mg/L以上含むりん酸エステル系抽出剤から、Feを除去して再生する方法を見出すことが課題である。
【解決手段】
Znの溶媒抽出に使用したりん酸エステル系抽出剤であって、Feを800mg/L以上含む抽出剤を
苛性ソーダ溶液によりスクラビングし、次いで希硫酸によりストリッピングを行うことで、抽出剤を再生する劣化抽出剤の再生方法。 (もっと読む)


【課題】亜鉛めっき廃液中の亜鉛を安価に効率よく鉄と分離し、経済的に再資源化可能な亜鉛濃度40%以上の高濃度亜鉛ケーキを得る。
【解決手段】亜鉛イオンを10,000mg/L以上、かつ、2価の鉄イオンを3,000mg/L以上含有する亜鉛めっき廃液に水を加えて2〜6倍に希釈した後、希釈廃液にアルカリを添加してpHを4.5〜5.5に調整するとともに、空気を吹き込み、2価の鉄イオンを3価の鉄イオンに酸化した後、水酸化第二鉄として析出させる空気酸化処理工程と、得られた処理液を固液分離する第一固液分離工程と、得られた分離液にアルカリ(とあるいはさらに硫化剤)を添加してpHを9.5〜11に調整し、水酸化亜鉛(とあるいはさらに硫化亜鉛)を析出させるpH調整処理工程と、得られた処理液を固液分離する第二固液分離工程と、得られた固形物を洗浄して、乾燥重量あたり亜鉛を40%以上含有する亜鉛組成物を回収する。 (もっと読む)


【課題】鉛電解殿物から有価金属を効率的に回収しつつ、高純度のビスマスを精製する方法を提供する。
【解決手段】ビスマスの精製方法は、少なくとも銀を含有するビスマス溶湯に亜鉛を添加し、亜鉛と銀との化合物を生成してドロスとして回収する工程と、亜鉛と銀との化合物のドロスを回収した後のビスマス溶湯を塩化処理して鉛及び残亜鉛をそれぞれ塩化鉛及び塩化亜鉛として回収する工程と、塩化鉛及び塩化亜鉛を回収した後に残ったビスマス溶湯をアノードに鋳造する工程と、鋳造したアノードを用いて電解処理によりビスマスを精製する工程とを含む。 (もっと読む)


【課題】簡便な方法によりカドミウム濃度を上げることができ、多少の不純物が存在しても比較的純度の高い(Cd>90%)の粗カドミウムを容易に安定的に得ることを課題とする。
【解決手段】 カドミウム水溶液にアルカリ剤を添加し、得られたカドミウム水酸化物を、再度酸に溶解し、アルカリ添加し、pH5.5〜7.0で脱銅処理を行い、Cd濃度の高い電解液を得る粗カドミウムの製造方法。 (もっと読む)


【課題】銅製錬において転炉から排出されるスラグを製鉄原料に変換するための処理方法を提供する。
【解決手段】 銅製錬過程で発生するCuを1質量%以上含む転炉スラグの処理方法であって、転炉スラグを還元炉に装入し、還元炉において、該スラグ中に含まれる亜鉛分及び銅分の加熱還元と、還元亜鉛の揮発除去とを行うことを含み、還元亜鉛の揮発除去を、還元剤投入量に対して空気吹き込み量を空燃比0.25〜1.0に制御しながら行う方法。 (もっと読む)


【課題】金属イオンの吸着性及び溶離性、更には耐久性に優れた材料、及びそれに用いることができる組成物を提供する。
【解決手段】ポリエチレンイミン(A)15〜40質量%と、エチレン含量30〜50モル%のエチレン−ビニルアルコール共重合体(B)60〜85質量%とを含む組成物、及び、ポリエチレンイミン(A)と、前記エチレン−ビニルアルコール共重合体(B)と、1級アミノ基を数平均分子量1000あたり10〜35個有するアミン系ポリマー(C)を含み、ポリエチレンイミン(A)とアミン系ポリマー(C)の合計含有量が15〜40質量%、エチレン−ビニルアルコール共重合体(B)の含有量が60〜85質量%であり、ポリエチレンイミン(A)とアミン系ポリマー(C)の合計に対する、ポリエチレンイミン(A)の質量比が、20%以上である組成物、ならびにこれらを用いた金属イオン吸着材である。 (もっと読む)


【課題】金属イオンの吸着性及び溶離性、更には耐久性に優れた材料、及びそれに用いることができる組成物を提供する。
【解決手段】1級アミノ基を数平均分子量1000あたり10〜35個有するアミン系ポリマー(A)と、エチレン含量30〜50モル%のエチレン−ビニルアルコール共重合体(B)と、4級アンモニウム基を有するポリマー(C)とを含み、前記アミン系ポリマー(A)と前記4級アンモニウム基を有するポリマー(C)の合計含有量が15〜40質量%、前記エチレン−ビニルアルコール共重合体(B)の含有量が60〜85質量%であり、前記アミン系ポリマー(A)と前記4級アンモニウム基を有するポリマー(C)の合計に対する前記アミン系ポリマー(A)の質量比が、55〜85%である組成物、及びこれを用いた金属イオン吸着材である。 (もっと読む)


【課題】廃電子基板等に含有される、銅、亜鉛等の主要金属を効率良く回収することが可能で、レアメタルも高度に回収することが可能な浸出方法を提供する。
【解決手段】廃電子基板の粉砕粉、廃電子基板の焼却灰及び電子部品の粉砕粉のうち、少なくともいずれかである廃電子基板粉末と鉄化合物とを、水及び酸性液のうち、少なくともいずれかに加えて、温度が120℃以上、酸素分圧が1MPa〜3MPaの条件下で、2種以上の金属を浸出させる。 (もっと読む)


【課題】酸化インジウムを含む排水泥から、効率よくインジウムを分離回収する方法を見出すことである。
【解決手段】希硫酸により酸化インジウムを含む排水泥から不純物を浸出して分離し、インジウムを含む残渣を回収する希硫酸浸出工程、硫酸により希硫酸浸出残渣からインジウムを浸出して回収する硫酸浸出工程を有することを特徴とするインジウムの回収方法。 (もっと読む)


【課題】自溶炉工程において発生する自溶炉ダストから鉛、亜鉛等の有価金属を回収し資源化する。 また、鉛、砒素等を選択的に揮発させた該処理ダストを自溶炉へ投入することにより、自溶炉で発生するスラグ中へ移行する鉛、砒素等の重金属を減少させ、重金属濃度の低い好ましいスラグを製造する。
【解決手段】自溶炉ダストに還元剤、塩化物を添加して不活性ガス雰囲気で乾式熱処理し、ダスト中の重金属を揮発させ、銅を揮発させずに、その他重金属を選択的に揮発させ、該処理ダストを自溶炉へ投入することを特徴とする自溶炉の操業方法。 (もっと読む)


【課題】通常の非鉄金属鉱石の選鉱に当っては、微粒に磨鉱した後、選鉱用水を使用して磁力選鉱、比重選鉱、浮遊選鉱等で濃縮するのが現在までの濃縮方法であったが、選鉱用水を使用せずに空気の移動、つまり気送と風力よって選鉱が可能な気送風力選鉱方法を提供する。
【解決手段】乾燥状態で鉄・非鉄金属鉱石を、破砕から磨鉱へと粉砕し、微粉化する。微粉化した鉱石粉を、重力と風力を使って気送で移動させ、移動中に比重差による分離を行い、分離が行われた後、鉱石粉を重力で落下させ、落下途中に真横から風力で飛翔させる。これで比重差で落下の距離と時間の違いを生ぜしめ、これにより更なる選別・濃縮を行う。 (もっと読む)


【課題】反応排ガスに含まれる亜鉛ガス及び塩化亜鉛ガスを追反応を抑制しつつ液化し、且つ2液を分離して回収する。
【解決手段】傾斜角が10〜30度である本体部10には、450〜550℃の液体亜鉛が充填されている。ガス出口12側を真空ポンプで吸引して、ガス入口11側の液体亜鉛の液面とガス出口12側の液体亜鉛の液面にレベル差を生じさせ、ガス入口11から排ガスを取り込む。排ガスに含まれる亜鉛ガス及び塩化亜鉛ガスを、液体亜鉛内を通過させることにより気液混合させ、急冷凝縮させる。液化した亜鉛は湯溜り20から回収し、液化した塩化亜鉛は液体排出口21から回収する。 (もっと読む)


【課題】高純度の廃酸石膏を低コストで製造する。
【解決手段】廃酸石膏の製造方法は、銅製錬において発生する硫酸を含んだ廃酸に水硫化ソーダを加え、酸化還元電位を20〜150mV(vs.SCE)に調整して硫化反応を行い、砒素を硫化物として除去する廃酸処理工程と、砒素の硫化物を除去した廃酸にアルカリを加えて中和反応を行うことで石膏を作製する工程とを備える。 (もっと読む)


【課題】銅製錬において転炉から排出されるスラグを製鉄原料に変換するためのシステムを提供する。
【解決手段】銅製錬過程で発生する転炉スラグの処理システムであって、転炉スラグ中に含まれる亜鉛分及び銅分を加熱還元するとともに、スラグ中に含まれるFe34をFeOまで加熱還元するための還元炉と、揮発した還元亜鉛を除去するために還元炉に設けられた排気手段と、還元銅をスラグから沈降分離するためのセットリング炉と、還元炉から排出されたスラグをセットリング炉へ移送するための溶体樋と、沈降分離した還元銅をセットリング炉から抜き取るための粗銅樋と、を備えたシステム。 (もっと読む)


【課題】処理対象物(例えば、セメントキルン抽気ダスト)中の回収対象物質(例えば、鉛)の含有率が変動する場合であっても、回収された浮鉱が、常に、回収対象物質の高い含有率及び高い回収率を有し、かつ、少ない浮遊選鉱処理槽によって効率的に処理することが可能な浮遊選鉱処理方法を提供する。
【解決手段】浮遊選鉱処理槽内の回収対象物質の希薄部に設けられたスラリー排出口11からのスラリー排出量が、該浮遊選鉱処理槽内のスラリーの液面4aのレベルが一定の範囲内に保たれるように制御される。これにより、排出されるスラリーS2中の回収対象物質は低い含有率となり、浮遊選鉱処理槽において回収対象物質を高い含有率で含む浮鉱が回収される。該浮鉱は非鉄精錬原料等として用いられ、一方、回収対象物質を実質的に含まない沈鉱はセメント原料等として用いられる。 (もっと読む)


【課題】単位時間当たりの亜鉛と鉛の揮発分離を促進させ、亜鉛と鉛を多く含むダストが得られる生産性に優れたスラグフューミングの操業方法を提供する。
【解決手段】亜鉛及び/又は鉛製錬の熔錬炉から産出されるスラグを電気炉で加熱還元し、亜鉛と鉛を揮発分離するスラグフューミングにおいて、還元剤として添加する炭剤の一辺の長さ若しくは直径を3〜50mmに調製し、その炭剤をスラグ上に略均等に添加してスラグと炭剤を同時に且つ一緒に電気炉に装入すると共に、その装入口から電気炉内の熔体の湯面までの距離(落差)を30cm〜1mとする。 (もっと読む)


【課題】 塩化ニッケル溶液の精製方法において、系内の塩素ロスの低減を図るとともに、新規な塩素の使用量を削減する。
【解決手段】 炭酸ニッケル製造工程S5では、電解採取法により塩化ニッケル溶液17から製造された電気ニッケル18のニッケル電解廃液20とソーダ灰22とから炭酸ニッケル24を製造し、電気ニッケルの製造プロセス系内の保有液量に応じた量の炭酸ニッケル24のろ液26を、浄液工程S3での回収塩素ガス16源、又は、塩素浸出工程S2での回収塩素ガス15源として系内に戻す。これにより、系内の塩素ロスを低減するとともに新規な塩素の使用量を削減することができる。 (もっと読む)


41 - 60 / 341