説明

Fターム[4K018EA01]の内容

粉末冶金 (46,959) | 成型と焼結を同時に、交互に行うもの (1,683) | ホットプレス (422)

Fターム[4K018EA01]の下位に属するFターム

Fターム[4K018EA01]に分類される特許

121 - 140 / 276


【課題】製造時間を短縮することができ、磁石が大型の場合でも保磁力特性を均一とすることができるのはもちろんのこと、希土類元素の添加量の低減化および高保磁力化の両立を図ることができ、磁化の低下を防止することができる永久磁石およびその製造方法を提供する。
【解決手段】ステップS1で、磁性粉末および希土類元素含有物を準備する。磁性粉末は、希土類元素含有物よりも硬度が高い扁平状の粉末である。ステップS2で、扁平状の磁性粉末の表面に希土類元素含有物を被覆する被覆処理を行う。ステップS3で、希土類元素含有物が表面に被覆された磁性粉末に熱間圧縮成形を行い、成形体を作製する。ステップS4で、成形体に熱間塑性加工を行い、成形体に異方性を付与する。ステップS5で、異方性が付与された成形体に機械加工を行い、その後に、必要に応じて、所望の形状に加工された成形体に熱処理を行う。 (もっと読む)


本発明は、第1型部分(2a)と少なくとも1つの第2型部分(2b)とを有する耐熱性型(2)を真空化可能なチャンバ(1)内に提供するステップと、該耐熱性型(2)に金属含有材料を充填するステップと、真空化可能なチャンバ(1)内に真空を生成するステップと、金属含有材料を加熱するステップと、耐熱性型(2)内の加熱された金属含有材料を真空条件下でホットプレスにより圧縮するステップとを含む、工作物、特に成形工具、または成形工具部分を製造する方法に関する。さらに、本発明は、工作物、特に成形工具、または成形工具部分を製造する装置に関する。
(もっと読む)


【課題】結晶組織が粗くコスト高となる溶湯金属の急冷によるバルク金属ガラスに替えて、焼結法による高密度の極微細で均一な組織を有するターゲットを提供する。
【解決手段】非晶質又は平均結晶子サイズが50nm以下の組織を備えている焼結体パッタリングターゲット、特に3元系以上の合金からなり、Zr、Pd、Cu、Co、Fe、Ti、Mg、Sr、Y、Nb、Mo、Tc、Ru、Rh、Ag、Cd、In、Sn、Sb、Te、希土類金属から選択した少なくとも1元素を主成分とする焼結体パッタリングターゲットに関し、該ターゲットを、アトマイズ粉を焼結することによって製造する。 (もっと読む)


【課題】コスト高となる溶湯金属の急冷によるバルク金属ガラスに替えて、例えば粉末冶金法により、作製される超微細加工用コーティング膜が、パーティクル等の欠陥及び組成の不均一性の問題を生じない、結晶組織が極微細で均一な組織を有する高品質かつ実用的な大きさのターゲット材を提供する。
【解決手段】平均結晶子サイズが1nm〜5nmの組織を備え、Coを主成分として原子比率で50at%以上含有する3元系以上の合金からなり、主成分に対する他成分が12%以上の原子半径差を有すると共に負の混合熱を満たす金属ガラスの要件を備え、当該3元系以上の合金はTa及びBを含有し、かつ96.4%以上の相対密度を有し、ガスアトマイズ粉を焼結することによって得られた非晶質体であることを特徴とするスパッタリングターゲット。 (もっと読む)


例えば以下の化合物から選ばれる熱磁気材料を含む、熱交換器用の連続気泡多孔性成型物。
(1)一般式(I)の化合物
(Ayy-12+δwxz (I)
式中、
Aは、Mn又はCoであり、
Bは、Fe、Cr、又はNiであり、
CとDとEは、CとDとEのうち少なくとも2つ異なり、濃度がゼロでなく、P、B、Se、Ge、Ga、Si、Sn、N、As、およびSbから選ばれ、CとDとEの少なくとも一つがGe又はSiであり、
δは、−0.1〜0.1の範囲の数字であり、
w、x、y、zは、0〜1の範囲の数字である(ただし、w+x+z=1); (もっと読む)


本発明はタングステンレニウム化合物および複合物ならびにそれらを生成する方法に関する。タングステンおよびレニウム粉末は一緒に混合され、高温高圧で焼結されてユニークな化合物を生成する。超硬質材料も添加することができる。これらのタングステン、レニウム、および超硬質材料は一緒に混合されて、次に高温高圧で焼結される。 (もっと読む)


【課題】スパッタリング時にパーティクル発生が少ない相変化膜形成用スパッタリングターゲットおよびその製造方法を提供する。
【解決手段】原子%でGe:20.2〜24.2%、Sb:20.2〜24.2%含有し、残部がTeおよび不可避不純物からなる組成を有する相変化膜形成用スパッタリングターゲットであって、その曲げ強度が110MPa以上あるパーティクル発生の少ない相変化膜形成用スパッタリングターゲットおよびその製造方法であって、このターゲットは合金インゴットを粉砕することにより得れられた合金粉砕粉末を不活性ガスのプラズマ中に曝して合金粉末の表面を活性化し、この表面を活性化した合金粉末を使用して加圧焼結することを特徴とする。 (もっと読む)


【課題】 常温のみならず高温でも強度特性に優れるなどの優れた性能を有するマグネシウム基複合材料を提供する。
【解決手段】 本発明にかかるマグネシウム基複合材料は、マグネシウム合金と添加材との固相反応により得られたマグネシウム基複合材料であって、前記添加材は希土類金属、Sr又はBaの酸化物、炭化物、珪化物及び炭酸塩、Caの炭化物、珪化物及び炭酸塩から選択される1種以上であり、前記固相反応により生成した金属間化合物を含むことを特徴とする。該マグネシウム基複合材料中には、金属間化合物とともに添加材が分散していることができる。 (もっと読む)


【課題】ルテニウムターゲットを代替することができ、かつ、安価なスパッタリングターゲットを提供する。
【解決手段】PdとWを主要成分として含有するPd−W系スパッタリングターゲットとし、該ターゲットの構造を、Wを1〜22at%含有し、残部がPdおよび不可避的不純物からなるPd−W合金マトリックス中に、平均粒径5〜40μmのW粒子が分散した構造とし、ターゲット全体に対するWの含有量が15〜50at%となるようにする。 (もっと読む)


【課題】 タングステン炭化物系硬質合金材料、該硬質合金材料の製造方法、該硬質合金材料を含む工具および耐摩耗部材を提供すること。
【解決手段】 本発明の硬質合金材料は、主としてタングステン炭化物からなる硬質相と、該硬質相に接して偏在し主として銅からなる結合相とを含む。硬質合金材料は、ビッカース硬さが1000〜2000Hv5の硬さを有することができる。本発明の硬質合金材料は、タングステン炭化物粒子の粉体と銅粒子の粉体とを混合(S103)し、加圧下で焼結(S105)することにより得られる。このとき、平均粒径100nm〜300nmを有するタングステン炭化物粒子を用いることができる。 (もっと読む)


【課題】本願発明の目的は、ターゲットの機械的強度を改善し、成膜中に発生するドロップレットの量を抑制したターゲットを提供することである。
【解決手段】周期律表4a、5a、6a族元素から選択される1種以上のM成分元素とホウ素を有するターゲットにおいて、該ターゲットのホウ素は窒化ホウ素として含有し、窒化ホウ素の含有量はモル%で、5%以上、30%以下であることを特徴とする窒化物含有ターゲットで、該窒化ホウ素の含有量はモル%で、5%以上、30%以下であることを特徴とする窒化物含有ターゲットである。 (もっと読む)


【課題】金属ガラス粉末焼結による金型の製造方法とその金型およびその金型によって成形加工された部材を安価に提供する。
【解決手段】ホットプレス装置にて金属ガラス粉末4をガラス遷移温度(Tg)以上、結晶化温度(Tx)以下に保った状態でパンチ6を用いて加圧して焼結すると同時に焼結用パンチ6の表面を転写し金型成形面を作製するために、成形面の温度を粉末焼結温度よりも高くすることを特徴とする金属ガラス粉末焼結体金型10の製造方法とその金型および部材。 (もっと読む)


【課題】ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するための比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法を提供する。
【解決手段】非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットはCo−Cr−B三元系合金相1の一部または全表面が薄い非磁性酸化物相2により包囲されている複合相3がBを含むPt合金相素地4中に均一分散している組織を有する。 (もっと読む)


【課題】ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するための比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットおよびその製造方法を提供する。
【解決手段】非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットはCo−Cr二元系合金相1の一部または全表面が薄い非磁性酸化物相2により包囲されている複合相3がPt相素地4中に均一分散している組織を有する。 (もっと読む)


【課題】従来のボンド磁石に比べて高い磁気特性、特に高い角形性を示し、かつ、従来の焼結磁石よりも形状の自由度の高いR−Fe−B系永久磁石用多孔質材料を提供する。
【解決手段】 本発明のR−Fe−B系永久磁石用多孔質材料の製造方法は、平均粒径20μm未満のR−Fe−B系希土類合金粉末を用意する工程と、前記R−Fe−B系希土類合金粉末を成形して圧粉体を作製する工程と、水素ガス中において前記圧粉体に対し550℃以上650℃未満の温度で熱処理を施し、それによって水素化および不均化反応を起こす工程と、真空または不活性雰囲気中において前記圧粉体に対し550℃以上1000℃未満の温度で熱処理を施し、それによって脱水素および再結合反応を起こす工程とを含む。 (もっと読む)


【課題】太陽電池の光吸収層を形成するためのCu−In−Ga−Se四元系合金膜を形成するときに使用するCu−In−Ga三元系焼結合金スパッタリングターゲットおよびその製造方法を提供する。
【解決手段】In:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成を有するCu−In−Ga三元系焼結合金スパッタリングターゲットであって、このスパッタリングターゲットの素地中に分散しているIn含有合金相の最大粒径が10μm以下であることを特徴とする。 (もっと読む)


【課題】太陽電池の光吸収層を形成するためのCu−In−Ga−Se四元系合金膜を形成するときに使用するCu−In−Ga三元系焼結合金スパッタリングターゲットの製造方法を提供する。
【解決手段】原料粉末として、Ga:20〜50質量%を含有し、残部がCuおよび不可避不純物からなるCu−Ga二元系母合金粉末、In:20〜70質量%を含有し、残部がCuおよび不可避不純物からなるCu−In二元母合金粉末並びに純Cu粉末を用意し、これら原料粉末をIn:40〜60質量%、Ga:1〜45質量%を含有し、残部がCuからなる成分組成となるように配合し混合して混合粉末を作製し、得られた混合粉末をプレス成形して成形体を作製し、得られた成形体を焼結する。 (もっと読む)


【課題】低透磁率を有する磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法を提供する。
【解決手段】Cr:50〜70原子%を含有し、残部がCoからなる成分組成を有する第一CoCr合金粉末、Cr:5〜15原子%を含有し、残部がCoからなる成分組成を有する第二CoCr合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結することを特徴とし、前記第一CoCr合金粉末および前記第二CoCr合金粉末のいずれか一方または両方の粉末は、さらにB:0.5〜8原子%を含有しても良い。 (もっと読む)


【課題】 本発明は、金属製の容器に原料粉末を充填し、熱間固化成形した成形体の機械加工に関し、特にスパッタリングターゲット材の機械加工方法を提供する。
【解決手段】 円筒型の金属製容器の内部に原料粉末を充填し、脱気封入した粉末充填ビレットを、熱間で固化成形した粉末成形体ビレットにおいて、金属製容器側面の外筒缶を厚さ0.5mm以上残した状態で、金属製容器の少なくとも片方の端面の蓋を2mm以下に切削し、その後、蓋を2mm以下に切削した側の端から、15mm以下の厚さにワイヤーカットにてスライスする工程を有する粉末固化成形体の機械加工方法。 (もっと読む)


【課題】低透磁率を有する磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法を提供する。
【解決手段】高Cr含有Co−Cr−Pt合金粉末、前記高Cr含有Co−Cr−Pt合金粉末よりもCr含有量の少ない低Cr含有Co−Cr−Pt合金粉末、Pt粉末および非磁性酸化物粉末を、非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、混合したのち加圧焼結する比透磁率の低い磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 (もっと読む)


121 - 140 / 276