説明

Fターム[4K030CA01]の内容

CVD (106,390) | 基体 (14,903) | 材質 (8,740)

Fターム[4K030CA01]の下位に属するFターム

Fターム[4K030CA01]に分類される特許

61 - 80 / 252


【課題】低温保護層の成長プロセスを省略でき、GaN系半導体基板の製造コストを低減できるとともに、低温保護層の品質のばらつきによる影響を排除できる窒化物系化合物半導体基板の製造方法を提供する。
【解決手段】平均表面粗さが0.2〜10nmに制御された成長用基板上に、窒化物系化合物半導体層をエピタキシャル成長させる。例えば、成長用基板をエピタキシャル成長装置に投入した後、成長用基板の平均表面粗さが0.2〜10nmとなるようにアニール処理を施す。 (もっと読む)


【課題】大規模、均一かつ高品質のグラフェン膜およびその作成方法を提供する。
【解決手段】結晶質基板100上に触媒薄膜101を形成し、この触媒薄膜を加熱処理して高秩序で選択的に配向した結晶質触媒薄膜を形成し、ガス状炭素源を加熱し触媒薄膜を冷却することで、触媒薄膜上にグラフェン膜102が形成される。前記触媒薄膜の触媒材料はNi、Pt、Co、Fe、Al、Cr、Cu、Mg、Mn、Rh、Ti、Pd、Ru、Ir及びReからなる群から選択された1つまたは複数の元素を含み、厚さは約1nmから約2mmの範囲である。 (もっと読む)


【課題】 本発明は、リン原子がドープされたn型(100)面方位ダイヤモンド半導体単結晶膜を備えた(100)面方位を有するダイヤモンド半導体デバイスを提供することを課題とする。
【解決手段】 (100)面から10度以下のオフ角を持ち、エピタキシャル成長させるためのダイヤモンド基板と、前記基板上にリンをドープしてエピタキシャル成長させて形成したn型ダイヤモンド半導体単結晶膜とを備え、前記n型ダイヤモンド半導体単結晶膜は、前記基板と同じオフ角ならびに(100)面方位を有することを特徴とするダイヤモンド半導体デバイス。 (もっと読む)


【課題】従来よりも原子レベルで平坦な表面を有する窒化物半導体薄膜及びその成長方法を提供すること。
【解決手段】ミスカットを有するGaN基板101のステップフロー成長(第1の成長工程)により制限領域102内に形成されたテラス202に、第1の成長工程よりも大きな供給量でTMG又はTEGを供給する。これにより、テラス202の上にGaNの2次元核301が発生するが(図3(a)参照)、発生する2次元核301の個数が1個以上100個以下発生するだけの時間だけこの第2の成長工程を行う。次に、TMG又はTEGの供給量を、第2の成長工程よりも小さくする(第3の成長工程)。これにより、複数の2次元核301が横方向成長して1分子層の厚さの連続的なGaN薄膜302となる(図3(b)参照)。第2と第3の工程を交互に繰り返すことにより、2分子層以上の厚さのGaN薄膜303を成長することも可能である(図3(c)参照)。 (もっと読む)


【課題】ナノおよびマイクロマシン(N/MEMS)デバイスに単結晶ダイヤモンドを利用することは困難であり、報告例がなかった。それは、犠牲層である酸化物上に単結晶ダイヤモンドを成長させることが困難なためである。従来技術では、犠牲層酸化物上に多結晶或いはナノダイヤモンドを作製することによって、カンチレバー等を作製しているが、機械性能、振動特性、安定性及び再現性は不十分であった。
【解決手段】本発明は、ダイヤモンド基板101内の高濃度イオン注入領域がグラファイトに改質されることを利用し、改質されたグラファイト層104を犠牲層として電気化学エッチング除去し、その上に遺されたダイヤモンド層を可動構造体とする。作製されたカンチレバー106は高い周波数の共鳴振動を示した。単結晶ダイヤモンドを使用することによって、N/MEMSデバイスの機械性能、安定性および電気特性を改良することができる。 (もっと読む)


【課題】剥離しにくい炭化タンタル被覆膜を有する炭化タンタル被覆炭素材料を得る。
【解決手段】炭素基材上に炭化タンタル被覆膜形成工程により炭化タンタル被覆膜を形成する。炭化タンタル被覆膜形成工程は、炭素基材の表面に第1炭化タンタル被覆膜を形成する第1形成工程と、第1炭化タンタル被覆膜上に1回以上新たな炭化タンタル被覆膜を形成する第2形成工程とを有する。第1炭化タンタル被覆膜は、X線回折により炭化タンタルに対応した回折ピークの(311)面の配向角度において80°以上に最大のピーク値を有する。 (もっと読む)


【課題】結晶粒界の少ない炭化タンタル被覆膜を有する炭化タンタル被覆炭素材料を得る。
【解決手段】炭素基材上に炭化タンタル被覆形成工程により炭化タンタル被覆膜を形成する炭化タンタル被覆炭素材料の製造方法であり、炭素基材の表面にタンタル被覆膜を形成するタンタル被覆膜形成工程とタンタル被覆膜を浸炭処理する浸炭処理工程とを経て第1炭化タンタル被覆膜を形成する第1炭化タンタル被覆膜形成工程と、前記第1炭化タンタル被覆膜上に新たな第2炭化タンタル被覆膜を形成する第2炭化タンタル被覆膜形成工程を有する。 (もっと読む)


【課題】結晶粒界の少ない炭化タンタル被覆膜を有する炭化タンタル被覆炭素材料を得る。
【解決手段】炭素基材41の表面に、炭素基材41を被覆した炭化タンタル被覆膜42が形成されている。炭化タンタル被覆膜42は、X線回折により炭化タンタルに対応した回折ピークの(311)面の配向角度において80°以上に最大のピーク値を有する。 (もっと読む)


【課題】結晶粒界の少ない炭化タンタル被覆膜を有する炭化タンタル被覆炭素材料を得る。
【解決手段】炭素基材上に炭化タンタル被覆膜を形成する炭化タンタル被覆炭素材料の製造方法であり、炭素基材の表面に炭化タンタル結晶核を形成する結晶核生成工程と、結晶核生成工程後に炭化タンタル結晶核を結晶成長させる結晶成長工程とを含む。結晶成長工程において、製造温度を漸次上昇させる昇温工程を行う。 (もっと読む)


【課題】光デバイス若しくは素子中に、又は光デバイス若しくは素子として、使用するのに適したCVD単結晶ダイヤモンド材料を提供する。
【解決手段】低く均一な複屈折性、均一で高い屈折率、歪みの関数としての低い誘起複屈折性又は屈折率変動、低く均一な光吸収、低く均一な光散乱、高い光(レーザ)損傷閾値、高い熱伝導率、高度な平行度及び平坦度を有しながら高度の表面研磨を示す加工性、機械的強度、磨耗抵抗性、化学的不活性等の特性の少なくとも1つを示すCVD単結晶ダイヤモンド材料であって、前記CVD単結晶ダイヤモンド材料の製造方法は実質上結晶欠陥のない基板を提供するステップと、原料ガスを提供するステップと、原料ガスを解離して、分子状窒素として計算して300ppb〜5ppmの窒素を含む合成雰囲気を作るステップと、実質上結晶欠陥のない前記表面上にホモエピタキシャルダイヤモンドを成長させるステップとを含む。 (もっと読む)


【課題】疎水性基板上に良好な酸化膜を形成する成膜方法を提供する。
【解決手段】室温以上且つ水の沸点未満の第1の基板温度T1で、水の過飽和状態にした疎水性の基板11の基板表面110上に下地酸化膜12を原子層堆積法を用いて形成するステップと、第2の基板温度T2で、下地酸化膜12上に上部酸化膜13を原子層堆積法を用いて形成するステップとを含む。 (もっと読む)


【課題】GaN等の窒化物半導体薄膜を作製する基板として、非単結晶基板であるグラファイトを基板として使用するとGaN薄膜が多結晶となり結晶中の欠陥が多くなる為、フォトダイオードに使用することが出来なかった。
【解決手段】グラファイト基板上にアモルファスカーボン層を設け、アモルファスカーボン層上にMOCVD法によってAlNのc軸配向膜を成長させた後、AlN層上にGaNの低温成長バッファ層を形成し、低温成長バッファ層上にn型GaN層を形成し、n型GaN層上にInxGa1-xNあるいはAlyGa1-yNからなる光吸収層を形成し、光吸収層上にp型GaN層を形成し、p型GaN層上にp型GaNコンタクト層を形成することが可能となり、グラファイト基板上に直接フォトダイオードを作製することで低コストで優れた特性を有するフォトダイオードを実現できる。 (もっと読む)


【課題】窒化インジウム(InN)を基としたバンドギャップEgが0.7〜1.05eVをもつIn1-(x+y)GaxAlyN(x≧0、y≧0、かつx+y≦0.35)単結晶薄膜と良好に格子整合する単結晶基板、その製造方法、当該単結晶基板上に形成してなる半導体薄膜、および半導体構造を提供する。
【解決手段】窒化インジウム(InN)を基とするIn1-(x+y)GaxAlyN薄膜を成長させる単結晶基板は、stillwellite型構造を持つ三方晶系に属する化学式REBGeO5(REは希土類元素)で標記される単結晶からなり、結晶学的方位{0001}を基板面とする。前記単結晶基板は、1000℃以上に加熱して形成した焼結体を原料として溶融し、必要に応じて、酸素雰囲気下あるいは不活性ガス雰囲気下で融液から単結晶を育成した後、結晶学的方位{0001}を基板面として切り出すことにより製造される。 (もっと読む)


被加工物から材料を除去するためのコーティングされた切削インサート10が開示される。インサート10基材12、ならびにα−アルミナ層15およびα−アルミナ層15の上に堆積されたZr−炭窒化物またはHf−炭窒化物の外層16を含む、耐摩耗コーティング。Zr−炭窒化物またはHf−炭窒化物外層16は、コーティング後のウェットブラスティング処理を受ける。ウェットブラスティングは、アルミナコーティング層15の応力状態を、初期の引張応力状態から圧縮応力状態に変化させる。
(もっと読む)


【課題】 成長終了後の冷却時に基板やエピタキシャル層の破壊を防止することのでき、エピタキシャル層の形状を保ったまま基板から剥離することのできる窒化ガリウム系化合物半導体単結晶の製造方法を提供することを課題とする。
【解決手段】 単結晶基板(例えば、NdGaO3単結晶基板)上に窒化ガリウム系化合物半導体(例えば、GaN)の結晶をエピタキシャル成長させた後、降温速度を毎分5℃以下、好ましくは毎分2℃以下(例えば毎分1.3℃)の条件で冷却するようにした。 (もっと読む)


【課題】光透過性が低く、かつ、伝熱性が高く、半導体製造等における熱処理工程、特に、急速加熱・急速冷却熱処理に好適に用いることができる炭化ケイ素材料を提供する。
【解決手段】CVD法により成膜されたβ−SiCからなり、成膜方向に対する垂直断面において、結晶面(311)/(111)のX線回折によるピーク強度比が0.8よりも大きい層が、厚さ40μm以上で形成された炭化ケイ素材料を半導体製造装置の熱処理用部材に用いる。 (もっと読む)


【課題】発光強度及び歩留を高度に両立することが可能なIII族窒化物半導体基板、エピタキシャル基板及び半導体デバイスを提供する。
【解決手段】半導体デバイス100では、S換算で30×1010個/cm〜2000×1010個/cmの硫化物、及び、O換算で2at%〜20at%の酸化物が表面層12に存在することにより、エピタキシャル層22とIII族窒化物半導体基板10との界面においてCがパイルアップすることを抑制できる。このようにCのパイルアップを抑制することで、エピタキシャル層22とIII族窒化物半導体基板10との界面における高抵抗層の形成が抑制される。これにより、エピタキシャル層22とIII族窒化物半導体基板10との界面の電気抵抗を低減することができると共に、エピタキシャル層22の結晶品質を向上させることができる。したがって、半導体デバイス100の発光強度及び歩留を向上させることができる。 (もっと読む)


【課題】半導体層を構成する化合物半導体と異なる材料からなる基板とこの上に成膜されたIII族化合物半導体層を有し、発光波長の波長分布σが5nm以下の化合物半導体ウェーハを提供する。
【解決手段】サファイア基板上にIII族窒化物化合物半導体層を成膜し発光波長の波長分布σが5nm以下の化合物半導体ウェーハの製造方法であって、反り量Hが−10μm<H<0の範囲であり、直径Dが50mm〜155mmの範囲であり、厚さdが0.4mm〜1.5mmの範囲であるサファイア基板上に、合計の厚さが8μm以上15μm以下のIII族窒化物化合物半導体層を成膜する半導体層成膜工程を有し、前記サファイア基板の前記直径Dと前記厚さdとが、下記式(1)の関係を満たすことを特徴とする化合物半導体ウェーハの製造方法。
0.7×10≦(D/d)≦1.5×10 (1) (もっと読む)


【課題】気化室に対して改質剤化合物を供給する際の温度変化の影響を排除し、ひいては、燃料ガス中に含まれる改質剤化合物の濃度変化が少ない表面改質装置等を提供する。
【解決手段】改質剤化合物を貯蔵するための貯蔵室と、所定温度下に蒸発させ、気体状態の改質剤化合物を生成するための気化部と、気化部に、キャリアガスを導入し、気体状態の改質剤化合物を、噴射部に移送するための移送部と、改質剤化合物を含む燃料ガスに由来した火炎を吹き付けるための噴射部と、を含む表面改質装置等であって、気化部が、少なくとも第1の気化室及び第2の気化室を含む複数の気化室を備えるとともに、当該第1の気化室及び第2の気化室を交互使用するための切替装置を備えることを特徴とする。 (もっと読む)


【課題】複数種類の面方位のYAG(YAl12)のいずれにも簡易な工程でIII族窒化物半導体層を形成する半導体素子の製造方法の提供。
【解決手段】半導体素子10において、YAG基板12は、面方位(100)、(110)、(111)のいずれかの単結晶基板として形成される。半導体素子10を製造する場合、まずYAG基板上にTMAlガスを供給し、III族元素であるアルミニウムにより核形成層18を形成する。次に核形成層18の表面にNHガスを供給して核形成層18の表面をV族化してAlNからなるIII−V族化合物層24を形成する。次にIII−V族化合物層24上にTMAlガスとNHガスとの混合ガスを供給してIII−V族化合物層20を形成する。最後にIII−V族化合物層20上にIII族窒化物半導体層16を成長結晶させる。 (もっと読む)


61 - 80 / 252