説明

Fターム[4K030CA01]の内容

CVD (106,390) | 基体 (14,903) | 材質 (8,740)

Fターム[4K030CA01]の下位に属するFターム

Fターム[4K030CA01]に分類される特許

101 - 120 / 252


【課題】手間を要さずにIII族窒化物半導体基板を得ることができるIII族窒化物半導体基板の製造方法を提供すること。
【解決手段】下地基板10上に、第一の膜11である炭素膜を形成する工程と、第一の膜11上に炭化チタン層12を形成する工程と、炭化チタン層12を窒化する工程と、窒化された炭化チタン層の上部にGaN半導体層をエピタキシャル成長させる工程と、GaN半導体層から、下地基板10を除去して、GaN半導体基板を得る工程とを実施する。 (もっと読む)


【課題】結晶方位に関し反対向きの構造を取る異なる極性A、Bを混在させた結晶において少なくとも表面において極性Aの単結晶としてデバイスをその上に製造するに適した単結晶基板およびその製造方法を提供する。
【解決手段】結晶方位に関し反対向きの構造を取る異なる極性A、Bを持つ部分が混在する結晶において、一方の極性Bの部分をエッチングして表面部分を除去し、あるいは除去せずそのままに極性Bの上を異種物質(マスク)Mで被覆し、さらに同じ結晶の成長を行い極性Aの結晶によって表面を覆うようにする。 (もっと読む)


本発明は、複数の個別のサイクルを含む原子層堆積プロセスによって、反応チャンバ中で基板上に薄膜を形成する方法に関する。複数の個別のサイクルは、個別のサイクルの少なくとも2つのグルーピングを含む。個別のサイクルは、(i)ガス状金属含有前駆体を該反応チャンバ中に導入し、該基板を該ガス状金属含有前駆体に曝露させること(ここで、該金属含有前駆体の少なくとも一部は該基板の表面上に化学吸着されて、その上に単分子層を形成する。)、(ii)該金属含有前駆体の導入を停止させ、該反応チャンバの容積をパージすること、(iii)ガス状酸素源化合物を該反応チャンバ中に導入し、該単分子層を該ガス状酸素源化合物に曝露させること(ここで、該酸素源化合物の少なくとも一部は該単分子層と化学的に反応する。)、及び(iv)該酸素源化合物の導入を停止させ、該反応チャンバの容積をパージすることを含む。該方法は、所望の厚さの薄膜が得られるまで、該個別のサイクルを繰り返すことを含む。該方法はまた、個別のサイクルの少なくとも2つのグルーピングを異なる処理条件で行うことを含む。 (もっと読む)


【課題】従来のDLC成膜では高温雰囲気領域で成膜されるため、成膜対象物が樹脂製品やアルミの場合は変形することがある。とくにアルミロールの場合、表面が酸化して、後日の成膜剥離の一因となっていた。
【解決手段】本願発明では、真空チャンバー内にロールをセットし、チャンバー内を常温かつ真空状態とし、ロールの表面をスパッタリングし、ロール表面にミキシング層を形成し、真空チャンバー内にDLCの原料ガスを注入して、それら原料ガスを真空チャンバー内で反応させて、前記ロールにDLCを注入しながらロール表面にDLC層を堆積させることで、DLC膜を常温成膜する方法とした。また、本願発明のDLC常温成膜ロールは、ロールの表面にプラズマイオンが注入されたミキシング層を備え、ロールにDLCが注入され、かつロール表面にDLC層が堆積されたDLC膜を備えたものである。 (もっと読む)


【課題】 生産コストの高騰や、装置の大型化を招来することなく、サセプターの品質や生産性を飛躍的に向上させることができるCVD装置を提供することを目的とする。
【解決手段】 炭素質基材10の一部に凹状のマスキング部10aが形成され、このマスキング部10aにマスキング冶具7を嵌め込んだ状態で、内部にガスを導入することにより、マスキング冶具7により覆われた部位を除いた炭素質基材10の表面にSiC被膜を形成するCVD装置において、上記マスキング冶具7を被膜形成用冶具2に固定することにより、上記炭素質基材10を被膜形成用冶具2で支持し、且つ、鉛直軸9に対する上記炭素質基材10の主面の角度が2°となるように構成されていることを特徴とする。 (もっと読む)


【課題】、生産コストの高騰や、装置の大型化を招来することなく、サセプターの品質や生産性を飛躍的に向上させることができるCVD装置を提供することを目的とする。
【解決手段】 炭素質基材5を支持部材により支持した状態で、内部にガスを導入することにより、炭素質基材5の表面にSiC被膜を形成するCVD装置において、上記支持部材は、上記炭素質基材5が載置されて炭素質基材の下部を支持する下部支持部材6と、上記炭素質基材5の上部を支持する上部支持部材13とを有し、この上部支持部材13は上記炭素質基材5の外周縁に設けられると共に、この上部支持部材13にはV字状の溝13dが形成され、このV字状の溝13dにより構成される炭素質基材配置空間17内には、十分な遊びを有する状態で上記炭素質基材5が配置されることを特徴とする。 (もっと読む)


【課題】高い結晶性をもった物を製造することが可能なドライプロセス装置を提供する。
【解決手段】基板保持部10aに保持された基板14の温度を所望の温度に保つ温度調整器と、前記基板保持部10aとターゲット保持部10bとにそれぞれ配置された高周波電極11a、11bと、両電極の陰陽を切り替える陰陽切替器と、前記チャンバー内の気体を外部の排出するあたりその排気速度を調整する排気調整器と、前記チャンバー内へ供給する気体の供給速度を調整する給気調整器と、この給気調整器を介して前記チャンバーに供給する気体の種類を変更する気体切替器とからなり、前記基板保持部10aに保持された基板14に対しスパッタリング法、イオン注入法、CVD法等の異なった複数のドライプロセスを選択して連続実行する。 (もっと読む)


【課題】コバルト前駆体の使用効率の高い、化学気相成長方法によるコバルト膜の形成方法を提供すること。
【解決手段】上記コバルト膜の形成方法は、基体上にコバルト膜を形成する方法であって、少なくとも(A)一酸化炭素を含む気体の存在下でコバルトカルボニル錯体を昇華する工程と(B)基体上にコバルトカルボニル錯体の昇華物を供給してコバルトに変換する工程とを含むことを特徴とする方法である。 (もっと読む)


【課題】多結晶のGaN結晶の成長を抑制できるGaN結晶の成長方法およびGaN結晶の製造方法を提供する。
【解決手段】GaN結晶の成長方法は、以下の工程が実施される。まず、下地基板が準備される(ステップS1)。そして、下地基板上に、開口部を有し、かつSiO2よりなるマスク層が形成される(ステップS2)。そして、下地基板およびマスク層上に、GaN結晶が成長される(ステップS5)。マスク層の表面粗さRmsは2nm以下である。 (もっと読む)


【課題】ガス吸着量が多いミクロポーラス炭素系材料を提供する。
【解決手段】ミクロポーラス炭素系材料であって、炭素骨格中に窒素を有し、3次元の長周期規則構造と、内部にミクロ細孔とを有し、BET表面積が1500m/g以上であり、窒素/炭素の元素比が0.07以上である。このミクロポーラス炭素系材料は、多孔質材料1の表面及び空孔(ミクロ孔)の内部に窒素含有有機化合物を導入し、この窒素含有有機化合物を加熱して炭化する第1の工程と、多孔質材料1の表面及び空孔の内部に有機化合物を導入して気相炭化する第2の工程と、多孔質材料1を除去する第3の工程と、を有する製造方法により得られる。 (もっと読む)


【課題】炭化珪素膜形成後にクラックや剥離が生じることなく、炭化珪素膜を炭素基材の表面上に効率良く形成する。
【解決手段】炭素基材1の表面1bの所定箇所を支持治具4で当接した状態で炭素基材1を支持し、炭素基材1の表面1b上に炭化珪素膜5を形成する方法であって、支持治具4が当接する所定箇所に孔1aが形成された炭素基材1を準備する工程と、炭素基材1と同種の材料からなり、孔1aに嵌入することができる寸法形状を有する嵌入部材2であって、孔1aに嵌入した際に炭素基材1の表面1bに連なる表面2a上に予め炭化珪素膜3が形成された嵌入部材2を準備する工程と、炭素基材1の孔1aに嵌入部材2が直接接するように嵌入部材2を嵌入し、炭化珪素膜3が形成された嵌入部材2の表面に支持治具4を当接して、炭素基材1を支持した状態で、炭素基材1の表面1b上に炭化珪素膜5を形成する工程とを備えることを特徴としている。 (もっと読む)


【課題】SiC被覆膜が予め形成された部材同士を強固に接合することができるとともに、内部空間(中空部)に均一なSiC被覆層が形成されたSiC被覆カーボン部材及びSiC被覆カーボン部材の製造方法を提供する。
【解決手段】SiC被覆カーボン部材1は、少なくとも表面にSiC被覆膜が形成された複数のカーボン基体2a,3aを接合したSiC被覆カーボン部材であって、前記カーボン基体2とカーボン基体3の接合層が、単一の層からなるSiC被覆膜2b,3bで構成されている。 (もっと読む)


本発明は、金属、金属ハロゲン化物、またはこれらの混合物を前駆物質として利用した金属ナノプレート(Metal nano-plate)の製造方法であって、詳細には、反応炉の前端部に位置させた金属、金属ハロゲン化物、またはこれらの混合物を含む前駆物質と、反応炉の後端部に位置させた単結晶基板とを、不活性気体が流れる雰囲気で熱処理し、前記単結晶基板上に単結晶体の金属ナノプレート(nano-plate)が形成される特徴がある。
本発明の製造方法は、触媒を使用しない気相移送法を利用して、数マイクロメートル大きさの金属ナノプレートを製造することができ、その工程が簡単で且つ再現性があって、製造されたナノプレートが、欠陥及び不純物を含まない高結晶性及び高純度単結晶状態の貴金属ナノプレートである長所があり、単結晶基板の表面方向を制御し、金属ナノプレートの形状及び単結晶基板との配向性を制御できる長所を有して、数マイクロメートル大きさの金属ナノプレートを大量生産することができる長所がある。
(もっと読む)


半導体デバイス用のアルミニウムがドープされた金属(タンタル又はチタン)炭窒化物ゲート電極の作製方法が記載されている。当該方法は、上に誘電層を有する基板を供する工程、及びプラズマが存在しない状態で前記誘電層上に前記ゲート電極を作製する工程を有する。前記ゲート電極は、金属炭窒化物を堆積する堆積工程、及び前記金属炭窒化物上にアルミニウム前駆体の原子層を吸着させる吸着工程によって作製される。前記堆積工程及び前記吸着工程は、前記アルミニウムがドープされた金属炭窒化物ゲート電極が所望の厚さを有するまで、必要な回数だけ繰り返されて良い。
(もっと読む)


本発明の実施形態は、障壁層上にコバルト層を堆積させた後、コバルト層上に銅または銅合金などの導電材料を堆積させるプロセスを提供する。一実施形態では、基板表面上に材料を堆積させる方法であって、基板上に障壁層を形成するステップと、気相成長プロセス(たとえば、CVDまたはALD)中に基板をジコバルトヘキサカルボニルブチルアセチレン(CCTBA)および水素に露出させて障壁層上にコバルト層を形成するステップと、コバルト層を覆うように導電材料を堆積させるステップとを含む方法が提供される。いくつかの例では、障壁層および/またはコバルト層は、熱プロセス、インサイチュプラズマプロセス、または遠隔プラズマプロセスなどの処理プロセス中にガスまたは試薬に露出させることができる。
(もっと読む)


【課題】弾性層からの低分子量成分の染み出しが抑制され、タック性の低い、膜強度の高い表面層を有する現像ローラを備え、電子写真画像の濃度の不均一も抑制された電子写真画像形成装置を提供する。
【解決手段】現像ローラの最表面が、Si、O、C及びHの存在元素数の合計が全検出元素数に対して90.00%以上であり、Si原子に結合したO原子のSi原子に対する原子比(O/Si)が0.65以上1.95以下であり、Si原子に結合したC原子のSi原子に対する原子比(C/Si)が0.15以上1.65以下であるC原子を含有する酸化ケイ素膜であり、弾性層の引裂き強度が11.5N/mm2以上110.0N/mm2以下であり、かつ現像ローラの周速が感光体の周速に対して1.5倍以上2.5倍以下である。 (もっと読む)


【課題】シリコン等の周期表14族元素の高純度な多結晶体を高速で得ることが可能な製造装置を提供する。
【解決手段】多結晶体の製造装置であって、内部に導入された周期表14族元素のハロゲン化物の超臨界流体状態を形成するための反応容器10と、反応容器10の内部に設けられプラズマ放電を行うための電極11,12と、反応容器10本体の内部に設けられプラズマ放電で分解したシリコンを表面上で析出させる種結晶30と、を有することを特徴とする多結晶体の製造装置I。 (もっと読む)


【構成】補聴器のコーティングのための方法であって,上記方法は腐食反応生成物を創出しない吸着層の堆積を含む。上記方法は,気相成長を用いて上記補聴器構成要素の表面に有機金属化合物を与え,それを酸化金属に変換する反応を導入し,次に上記表面にシラン分子を与え,与えられたシラン分子と上記酸化金属の間の反応を誘導する。この発明はまた,酸化アルミニウムの層を備える疎水性コーティングを備えた補聴器用の構成要素を備える補聴器,および補聴器構成要素のコーティングに関する。上記コーティングは前駆物質の気相成長のためのシステム(701)において生成される。
(もっと読む)


【課題】品質に優れ、平坦で厚い化合物半導体を成長させるための方法を提供する。
【解決手段】HVPEを利用し、ナノ構造層を使用して高品質の平坦かつ厚い化合物半導体(15)を異種基板(10)上に成長させる。半導体材料のナノ構造(12)は、分子線エピタキシャル成長(MBE)、化学気相成長(CVD)、有機金属化学気相成長(MOCVD)又はハイドライド気相エピタキシャル成長(HVPE)によって基板(10)上に成長させることができる。化合物半導体の厚膜(15)又はウェハは、HVPEを使用したエピタキシャル横方向成長によってナノ構造(12)上に成長させることができる。 (もっと読む)


【課題】 プラズマダメージを与えることなく膜中の残留不純物を低減でき、膜の平坦性を向上でき、さらには、プリカーサの使用量を抑えつつ堆積速度を向上させることができる半導体装置の製造方法および基板処理装置を提供することを目的とする。
【解決手段】 基板上に絶縁膜を形成する工程と、絶縁膜上に高誘電率絶縁膜を形成す
る工程と、高誘電率絶縁膜上に窒化アルミニウムチタン膜を形成する工程と、を有し、窒化アルミニウムチタン膜を形成する工程では、窒化アルミニウム膜の形成と、窒化チタン膜の形成と、を交互に繰り返し行い、その際、最初および/または最後に前記窒化アルミニウム膜を形成する。 (もっと読む)


101 - 120 / 252