説明

Fターム[4K030CA04]の内容

CVD (106,390) | 基体 (14,903) | 材質 (8,740) | 半導体からなるもの (4,808)

Fターム[4K030CA04]に分類される特許

121 - 140 / 4,808


【課題】CVDにより不純物の少ないニッケル膜を高スループットで成膜することができるニッケル膜の成膜方法を提供すること。
【解決手段】基板上に、成膜原料として、分子構造中に窒素−炭素結合をもつ配位子を有し、配位子中の窒素がニッケルに配位した構造を有するニッケル含有化合物を用い、還元ガスとして、アンモニア、ヒドラジン、およびこれらの誘導体から選択された少なくとも1種を用いたCVDにより初期ニッケル膜を成膜する第1工程と、初期ニッケル膜の上に、成膜原料として、分子構造中に窒素−炭素結合をもつ配位子を有し、配位子中の窒素がニッケルに配位した構造を有するニッケル含有化合物を用い、還元ガスとして水素ガスを用いたCVDにより主ニッケル膜を成膜する第2工程とを有する。 (もっと読む)


【課題】制御パラメータの測定値が、その基準値に対して偏差の上限値を超えた場合と偏差の下限値を超えた場合とで、状況に応じたエラー処理を選択できる。
【解決手段】基板を処理する基板処理室と、記憶部と、基板処理を制御する制御部とを備えた基板処理装置において、記憶部は、プロセスレシピを記憶するプロセスレシピ記憶部と、制御パラメータの基準値を記憶する制御パラメータ記憶部と、制御パラメータの基準値に対する上限偏差値と下限偏差値を記憶するアラーム値記憶部とを備え、制御部は、プロセスレシピ記憶部に記憶したプロセスレシピを実行するプロセスレシピ実行部と、制御パラメータの測定値がアラーム値記憶部に記憶された上限偏差値と下限偏差値を超えたか否か判断し、上限偏差値を超えた場合と下限偏差値を超えた場合とで、異なる処理を実施するエラー処理部とを備える。 (もっと読む)


【課題】本発明は、ウェーハの温度分布を制御し、より膜厚均一性を向上させることが可能な気相成長装置及び気相成長方法を提供する。
【解決手段】本発明の気相成長装置は、ウェーハが導入される反応室と、反応室にプロセスガスを供給するガス供給機構と、ウェーハを載置する支持部と、ウェーハを下方より加熱するためのヒータと、ウェーハを回転させるための回転制御部と、反応室よりガスを排出する排気口を含むガス排出機構と、ヒータの下部に設けられ、ヒータからの熱を前記ウェーハの裏面に反射するための反射板と、反射板を上下移動させるための上下駆動部と、を備える。 (もっと読む)


【課題】ウェーハに設けられたノッチ部周辺においても高い平坦性を有するエピタキシャルウェーハを製造することを可能にするサセプタおよび該サセプタを用いたエピタキシャルウェーハの製造方法を提案する。
【解決手段】上面にウェーハWが載置される円形凹状の座ぐり部11が形成され、該座ぐり部11は、ウェーハWの裏面周縁部を支持する上部座ぐり部12と、上部座ぐり部12よりも中心側下段に形成された下部座ぐり部13とを有する二段の座ぐり部で構成され、上部座ぐり部12の環状底面部14にウェーハWを載置してエピタキャル装置内に原料ソースガスを供給した際、ウェーハWの周縁部に設けられたノッチ部Nから下部座ぐり部13内に流入する原料ソースガスの流入を抑制する、下部座ぐり部13の内周壁面の一部に下部座ぐり部13の内周壁面よりも内側に突出する突出部15が設けられていることを特徴とする。 (もっと読む)


【課題】光アクセス窓のエッチングおよび堆積を低減させ、診断終点において所望のSNRを維持できるガス注入器を提供する。
【解決手段】注入器は、プロセスチャンバの外側の診断終点S−OUTから光アクセス窓70を通ってプロセスチャンバ内S−INへと、軸路に沿った光アクセスを提供する。中空のケースボディ90は、第1および第2のプロセスガスを受け取り、軸路を取り囲む。ボディ内のスリーブ92は、粒子の生成を最小限に抑えるために、ケースボディに対して促され、プロセスチャンバ内に第1のプロセスガスを注入する第1のガス穴106を画定する。スリーブの第2のガス穴124は、プロセスチャンバ内に第2のプロセスガスを注入するために、軸路を取り囲み、光信号が終点において所望の信号対ノイズ比(SNR)を有することを可能にする。第2の穴内にセプタム126を提供することによって、第2の穴を、アパーチャ136に分割する。 (もっと読む)


【課題】処理室へ供給されるガスを充分に加熱することにより、ヘイズやスリップに起因する成膜不良を抑制することができる技術を提供する。
【解決手段】本発明における特徴は、例えば、図2に示すように、処理室209の外壁205とインナーチューブ206の間にガス導入空間210を設け、このガス導入空間210内に誘導加熱するための加熱体207を設けている点にある。これにより、ガス供給部211から供給される原料ガスは、まず、処理室209の内部に導入される前に先立って、ガス導入空間210内に導入され、このガス導入空間210に設けられている加熱体207によって加熱される。 (もっと読む)


【課題】SPV法により気相成長装置の清浄度を簡易に評価できる気相成長装置の清浄度評価方法を提供する。
【解決手段】Bがドーピングされたp型シリコンウェーハ5a上に、ドーパントを含まないシリコンエピタキシャル層9を、気相成長装置1内でエピタキシャル成長させ、SPV法によりシリコンエピタキシャル層9より下層のp型シリコンウェーハ5aで少数キャリアを発生させて少数キャリアの拡散長を測定することにより、p型シリコンウェーハ5a中のFeの不純物濃度を算出し、不純物濃度から気相成長装置1の清浄度を評価する。よって、Feの不純物濃度の指標で気相成長装置1の清浄度を把握できる。 (もっと読む)


【課題】シリコン酸化膜の除去後、シリコンゲルマニウム膜の形成までのQタイムを長くするとともに、シリコンゲルマニウム膜の形成におけるプリベイクの温度を低くする。
【解決手段】基板処理装置1では、酸化膜除去部4にて基板9の一の主面上のシリコン酸化膜が除去された後、シリル化処理部6にてシリル化材料を付与して、当該主面に対してシリル化処理が施される。これにより、シリコン酸化膜の除去後、シリコンゲルマニウム膜の形成までのQタイムを長くするとともに、シリコンゲルマニウム膜の形成におけるプリベイクの温度を低くすることができる。 (もっと読む)


【課題】高品質かつ高信頼性の素子を作製できるSiCエピタキシャルウエハ、およびそれを用いて得られるSiC半導体素子を提供すること
【解決手段】(0001)面に対して4°以下のオフ角θで傾斜したSi面が主面4とされたSiC基板2と、SiC基板2の主面4に形成されたSiCエピタキシャル層3とを含むSiCエピタキシャルウエハ1において、SiC基板2の主面4のオフ方向Dを、[11−20]軸方向および[01−10]軸方向に対して15°+/−10°の角度θで傾斜した方向にする。 (もっと読む)


【課題】被処理体に付着する異物粒子数を低減させた半導体製造装置を提供する。
【解決手段】本発明では、被処理体を処理するための処理室と、該処理室にガスを供給するガス供給手段と、被処理体を戴置するための戴置電極と、前記処理室を減圧するターボ分子ポンプと、前記処理室の圧力を調整するために前記ターボ分子ポンプと前記処理室の間に設置されたバタフライバルブとを有する半導体製造装置において、前記バタフライバルブのフラッパーに異物粒子落下防止用のストッパーを設置した。 (もっと読む)


【課題】膜厚の面内均一性を高くすることが可能なシャワーヘッド装置を提供する。
【解決手段】薄膜が形成される被処理体Wを収容する処理容器4内へガスを導入するシャワーヘッド装置46において、内部にガスを拡散させるガス拡散室48が形成されたシャワーヘッド本体50と、シャワーヘッド本体のガス噴射板52に設けられた複数のガス噴射孔54とを有し、複数のガス噴射孔は、ガス噴射板の中心部を中心として仮想的に形成される複数の螺旋状の曲線84に沿うように配置されている。これにより、ガスを平面方向へ均一に分散させて、膜厚の面内均一性を高くする。 (もっと読む)


【課題】得られるコーティングが0.5マイクロ秒〜1000マイクロ秒のキャリアライフタイムを有するように、シリコンカーバイドコーティングを基板上に堆積させる方法を提供する。
【解決手段】a.ジクロロシランガス、メチルハイドロジェンジクロロシランガス、ジメチルジクロロシランガス、及びそれらの混合物から選択されるクロロシランガスと、炭素含有ガスと、水素ガスとを含む混合ガスを、単結晶シリコンカーバイド基板を含有する反応チャンバ内に導入すること、及びb.1200℃より高いが1800℃より低い温度に基板を加熱すること、を含むが、但し、反応チャンバ内の圧力は10torr〜250torrの範囲に維持されるものとする。 (もっと読む)


【課題】下地層との密着性に優れた銅膜を製造する方法の提供。
【解決手段】成膜対象物上に下地層としてチタン膜を形成した後、この下地層を水素ガス雰囲気中で100℃以上200℃未満の温度で熱処理し、次いでその上に銅膜を作製する。このように銅膜を作製した後、さらに水素ガス雰囲気中で100℃以上200℃未満の温度で熱処理を行う。 (もっと読む)


【課題】常温で液体であり、そして安定性に富んでおり、原料の安定供給が行え、高品質なハフニウム系薄膜を安定して形成できる技術を提供する。
【解決手段】下記の一般式[I]で表される化合物であるハフニウム系薄膜形成材料。
一般式[I]
LHf(NR
(但し、Lは置換シクロペンタジエニル基、R,Rはアルキル基であり、RとRとは互いに異なっていても同じであってもよい。) (もっと読む)


【課題】シリコン基板上に高電子移動度トランジスタを成長させた構造及びその方法の提供。
【解決手段】本シリコン基板上に高電子移動度トランジスタを成長させた構造及びその方法は、半導体産業において半導体装置製造に用いられる。本発明によると、UHVCVDシステムを使用してGeフィルムをSi基板上に成長させ、その後、高電子移動度トランジスタを該Geフィルム上に成長させることで、バッファ層の厚さとコストを低減する。該Geフィルムの機能は、Si基板上にMOCVDによりIII-V MHEMT構造を成長させるときに、シリコン酸化物の形成を防止することである。本発明においてMHEMTを使用する理由は、MHEMT構造中の変成バッファ層がGeとSi基板間の非常に大きな格子不整合度のために形成される貫通転位をブロックし得ることにある。 (もっと読む)


【課題】排気口の周辺に生成物が付着し難い成膜装置および成膜方法を提供する。
【解決手段】成膜装置は、反応ガスが供給されて成膜処理が行われる反応室と、反応室を構成するベースプレート101と、ベースプレート101の上に設置されてベースプレート101の全面を被覆するベースプレートカバー103とを有する。ベースプレート101には、反応室から余剰の反応ガスを排出する排気口6が設けられており、ベースプレートカバー103には、排気口6に勘合する形状と大きさを備えた貫通孔107が設けられている。反応ガスの下流側における貫通孔107の端面109は、排気口6の端面110より突出している。ベースプレートカバー103は、ベースプレート101と対向する面に突起部108を有することが好ましい。 (もっと読む)


【課題】 半導体装置の形成のための方法が提供される。
【解決手段】 本方法は、プロセスチャンバ内の基板ホルダ上に基板を準備し、前記基板が、上部表面と側壁表面を持つ立ち上がり構造を含み;前記プロセスチャンバ内にプロセスガスを流し、前記プロセスガスが炭化水素ガス、酸素含有ガス、及び場合によりアルゴン又はヘリウムを含む。本方法はさらに、プロセスチャンバ内のプロセスガス圧力を少なくとも1トールに維持し、マイクロ波プラズマ源を用いてプロセスガスからプラズマを形成し、及び基板をプラズマに暴露して共形アモルファスカーボンフィルムを前記立ち上がり構造の表面上に堆積させることを含む。 (もっと読む)


【課題】オートドープを抑制して、均一な抵抗分布を有するシリコンエピタキシャルウェーハを効率的に製造できる方法を提供することを目的とする。
【解決手段】シリコン単結晶基板上にシリコン単結晶をエピタキシャル成長させて、エピタキシャル層を積層するシリコンエピタキシャルウェーハの製造方法において、抵抗率が0.5mΩ・cm以上20.0mΩ・cm以下で、ボロンがドープされている前記シリコン単結晶基板上に、成長速度を5μm/分以上15μm/分以下として、抵抗率が0.5Ω・cm以上2000Ω・cm以下である前記エピタキシャル層を成長させるシリコンエピタキシャルウェーハの製造方法。 (もっと読む)


【課題】 良好な規格化保持時間を有するエピタキシャル成長させて得られた強誘電体膜の作製方法を提供すること。
【解決手段】 チタン酸ストロンチウム単結晶基板又はシリコン単結晶基板上に、電極層を介して、強誘電体膜をエピタキシャル成長させて形成し、次いでエピタキシャル成長させて形成された強誘電体膜を冷却する強誘電体膜の作製方法において、この冷却を、少なくとも冷却を開始した後から該強誘電体のキュリー温度より15%高い温度〜15%低い温度の範囲までの冷却速度をその範囲の温度から室温までの冷却速度より遅くして実施する第1冷却工程と、次いで該第1冷却工程の冷却速度より早い冷却速度で室温まで冷却する第2冷却工程とで実施する。 (もっと読む)


【課題】処理空間内の圧力を高めることができる成膜装置を提供すること。
【解決手段】処理容器2内に、基板であるウエハWの載置領域を備えた載置台3と、この載置台3と対向する天板部材4とを設け、載置台3を昇降機構5により天板部材4側へ上昇させて、載置台3と天板部材4との間で処理空間Sを形成する。載置台3における載置領域の外側領域と天板部材4との少なくとも一方には突起部43が設けられ、前記処理空間Sの形成時にその先端が他方に接触することにより、前記外側領域と天板部材4との間の離間距離が規制され、前記載置領域を囲むように排気用の1mm未満の隙間40が形成される。隙間40が狭小であることから、処理空間S内に反応ガスを封じ込めることができ、処理空間内の圧力が高められる。 (もっと読む)


121 - 140 / 4,808