説明

Fターム[4K030DA02]の内容

CVD (106,390) | 前処理、後処理 (3,120) | 前処理を行うもの (2,181) | 基体の前処理を行うもの (1,282)

Fターム[4K030DA02]の下位に属するFターム

Fターム[4K030DA02]に分類される特許

161 - 180 / 746


【課題】電気特性が良好な半導体装置を、生産性高く作製する方法を提供する。
【解決手段】第1の条件により、高い結晶性の混相粒を低い粒密度で有する第1の微結晶半導体膜を酸化絶縁膜上に形成した後、第2の条件により混相粒を結晶成長させて混相粒の隙間を埋めるように、第1の微結晶半導体膜上に第2の微結晶半導体膜を積層形成する。第1の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量比を50倍以上1000倍以下にして堆積性気体を希釈し、処理室内の圧力を67Pa以上1333Pa以下とする条件であり、第2の条件は、シリコンまたはゲルマニウムを含む堆積性気体の流量に対する水素の流量比を100倍以上2000倍以下にして堆積性気体を希釈し、処理室内の圧力を1333Pa以上13332Pa以下とする条件である。 (もっと読む)


【課題】透明性を向上させたSiNxOyCz膜、および成膜速度を向上させた薄膜の成膜方法を提供する。
【解決手段】被成膜基材2にRFバイアスを印加し、1ターンのコイル6にICP出力を印加して誘導結合プラズマを発生させ、誘導結合プラズマによって有機金属を含む原料ガスを分解するCVD法を用いることによりSiNxOyCz膜を形成する。SiNxOyCz膜は、x、y及びzそれぞれが下記式(1)〜(3)の範囲である。0.2<x<1.5・・・(1)、0.3<y<0.8・・・(2)、0.03<z<0.4・・・(3) (もっと読む)


【課題】貫通らせん転位密度の小さい炭化珪素単結晶の製造方法を提供する。
【解決手段】炭化珪素単結晶ウエハに新たな炭化珪素単結晶層を形成する工程において、c軸方向に貫通する転位3を、基底面(0001)に沿った第1方向の欠陥に変換させ、第1方向に交差し、かつ基底面(0001)に沿った第2方向に欠陥の伝播方向を制御することで、単結晶基板中に含まれる貫通らせん転位3を基底面内欠陥4に構造転換し、基底面内欠陥4を結晶の外部に排出させ、元の炭化珪素単結晶基板よりも貫通らせん転位密度の小さい炭化珪素単結晶層。 (もっと読む)


【課題】LEDや高電子移動度トランジスタなどのデバイス用として有用なIII−V族窒化物品の提供。
【解決手段】自立III−V族窒化物基板上に堆積したIII−V族窒化物ホモエピタキシャル層を含むホモエピタキシャルIII−V族窒化物品であって、前記III−V族窒化物ホモエピタキシャル層が1E6/cm2未満の転位密度を有しており、(i)前記III−V族窒化物ホモエピタキシャル層と前記自立III−V族窒化物基板の間に酸化物を有するか、(ii)前記III−V族窒化物ホモエピタキシャル層と前記自立III−V族窒化物基板の間にエピ中間層を有するか、
(iii)前記自立III−V族窒化物基板がオフカットされており、前記III−V族窒化物ホモエピタキシャル層が非(0001)ホモエピタキシャルステップフロー成長結晶を含むことを特徴とする。 (もっと読む)


【課題】デフォーカスや発塵を防ぐことができる半導体装置の製造方法を得る。
【解決手段】p型半導体基板10の外周部の一部にオリエンテーションノッチ32を形成する。p型半導体基板10の裏面にオートドープ防止膜34を形成する。オリエンテーションノッチ32及びオートドープ防止膜34を形成した後に、p型半導体基板10の表面にp型又はn型の半導体層36をエピタキシャル成長させる。オリエンテーションノッチ32の近傍におけるp型半導体基板10の外周とオートドープ防止膜34との間隔を、オリエンテーションノッチ32の近傍以外におけるp型半導体基板10の外周とオートドープ防止膜34との間隔よりも大きくする。 (もっと読む)


【課題】バイアスパワーを印加して、窒化珪素膜を成膜する際、基板周辺部におけるブリスタの発生を抑制する窒化珪素膜の製造方法及び装置を提供する。
【解決手段】半導体素子に用いる窒化珪素膜を、プラズマ処理により基板上に形成する窒化珪素膜の製造方法及び装置において、時間b1において基板にバイアスを印加すると共に、バイアスを印加した後、時間b3において、窒化珪素膜の原料ガスSiH4の供給を開始する。 (もっと読む)


【課題】 樹脂材の熱伝導率、摺動性、さらには耐熱性、強度、剛性を一層高め、高熱伝導性、剛性、傷つき防止、高摺動性などの特性を付与された積層体を提供する。
【解決手段】 樹脂材と、抵抗値1×107Ωcm以上(100℃)を有する膜厚50nm〜10μmの炭素膜とを積層し、前記炭素膜は、CuKα1線によるX線回折スペクトルにおいて、ブラック角(2θ±0.3°)の41〜42°にスペクトルのピークを備え、かつ前記樹脂材に形成された炭素膜の熱伝導率は、光交流法で測定した値で70〜700W/mKである積層体であって、前記炭素膜は、プラズマの電子密度;0.5〜3.0eVの位置に置かれた樹脂材の上に形成される。 (もっと読む)


【課題】特殊な材料からなる基板及び電極を用いることなく、PZT圧電薄膜層の結晶配向の制御を適切に行うことが可能な圧電素子の製造方法を提供する。
【解決手段】シリコン基板101上に、酸化膜104を形成する工程と、酸化膜104上に、チタンと白金を順次積層して下部電極層130を形成する工程と、下部電極層130の表面に、上記白金からなるヒロック135を形成する工程と、下部電極層130上に、ヒロック135を成長核として、(100)面配向のチタン酸鉛からなるシード層140を形成する工程と、シード層140上に、(001)面又は(100)面配向のチタン酸ジルコン酸鉛からなる圧電薄膜層150を形成する工程と、圧電薄膜層150上に、上部電極層160を形成する工程と、を有して構成した。 (もっと読む)


【課題】真性微結晶シリコン層のための方法を提供すること。
【解決手段】一実施形態では、真性微結晶シリコン層を形成する方法は、加工チャンバ内に配置された基板の表面へガス混合物中で供給されるシランガスを動的に増加させるステップと、加工チャンバへ供給されるガス混合物中で印加されるRF電力を動的に減少させて、ガス混合物中でプラズマを形成するステップと、基板上に真性微結晶シリコン層を形成するステップとを含む。 (もっと読む)


【課題】結晶欠陥の少ない化合物半導体層を種基板上にエピタキシャル成長できる化合物半導体基板の製造方法を提供する。
【解決手段】電解めっきにおいて種基板10を膜厚方向に貫通する貫通転位101〜105をそれぞれ通して種基板10の厚さ方向に電流を流すことにより、種基板10の第1の主面11上の貫通転位101〜105が存在する位置に金属膜201〜205を選択的に形成するステップと、金属膜201〜205の融点より低いエピタキシャル成長温度で、金属膜201〜205を覆うように種基板10の第1の主面11上に化合物半導体層30をエピタキシャル成長させるステップとを含む。 (もっと読む)


【課題】生産コストを低くできるプラズマ処理装置及び基材の表面処理方法を提供する。
【解決手段】本発明に係るプラズマ処理装置は、チャンバー1と、前記チャンバー内に配置され、基材2を保持する基材ホルダー3と、前記チャンバー1に繋げられ、前記チャンバー内に処理ガスを導入するガス導入経路と、前記チャンバー内に50〜500kHzの高周波出力を供給する高周波電源4と、を具備し、前記高周波電源4から供給された高周波出力により前記チャンバー内に前記処理ガスのプラズマを発生させて前記基材2にプラズマ処理を行うことを特徴とする。 (もっと読む)


【課題】フィラー同士が互いに接触する確率が高く、重なり合うこともないフィラーとして、どのような母材の場合でも用いることができるダイヤモンドフレークの製造方法と、そのダイヤモンドフレークを含有した伝熱性強化材を提供する。
【解決手段】石英基板3の表面に、ダイヤモンド粉末を用いてダイヤモド核発生促進処理を施した後、700〜1000℃でCVD法により厚さ0.5〜5μmのダイヤモンド被膜2を成膜し、次いで、冷却を施してダイヤモンド被膜2に亀裂4を発生させ、ダイヤモンド被膜2を石英基板3から剥離させることで、薄片状で反りを有するダイヤモンドフレーク1を得る。 (もっと読む)


【課題】体積抵抗率が低く、しかも、エピタキシャル成長工程等のウエハプロセスにおいて炭化珪素単結晶基板が1000℃以上に晒されても、積層欠陥が殆ど発生することがない炭化珪素単結晶基板、および、この基板を用いて得た炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハを提供する。
【解決手段】体積抵抗率が0.001Ωcm以上0.012Ωcm以下の炭化珪素単結晶基板であり、表裏面のうち少なくとも片面の表面粗さRaが1.0nm以下であると共に、外周側面の表面粗さRaが1.0nm以下である炭化珪素単結晶基板、および、前記炭化珪素単結晶基板上に炭化珪素薄膜をエピタキシャル成長してなる炭化珪素エピタキシャルウェハ、あるいは、窒化ガリウム、窒化アルミニウム、窒化インジウム又はこれらの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハ。 (もっと読む)


【課題】 基材表面に位置する官能基がアミド化や窒化することを防ぎつつ、また酸素結合に頼ることなく層間密着力を向上させることを可能としたガスバリアフィルムの製造方法及び係る製造方法によるガスバリアフィルムを提供する。
【解決手段】 基材となるプラスチックフィルムの表面に対し、不活性ガス導入下において、気圧1×10−1〜1×10−3torrという環境下にて予めプラズマ処理を施すプラズマ処理工程と、前記プラズマ処理工程を実施した後に、その表面にガスバリア性を有するガスバリア層を積層してなるガスバリア層積層工程と、を備えてなる製造方法、及び該方法により得られるガスバリアフィルムとした。 (もっと読む)


【課題】アルミニウム基材に対し簡単な方法で密着性の高い炭素薄膜を積層できる炭素薄膜付アルミニウム材の製造方法を提供する。
【解決手段】 炭素薄膜付アルミニウム材(10)の製造方法は、アルミニウム基材(1)を、鉄、ニッケルおよびコバルトのうちのいずれか1種以上の金属を含む処理液を用いて化成処理を行い、該アルミニウム基材(1)の表面に前記金属を含む化成皮膜からなる下地層(2)を形成する下地層形成工程と、前記工程により下地層(2)を形成したアルミニウム基材(1)を炭化水素ガスが存在する雰囲気中で450℃〜アルミニウム基材の融点未満に加熱し、下地層(2)上に炭素薄膜(3)を形成する炭素薄膜形成工程、とを含む。 (もっと読む)


【課題】 結晶シリコンとアモルファスシリコンとを含むシリコンを活性層に有する薄膜半導体装置は、活性層がゲート絶縁層から剥がれやすく、良好な特性が得られない。
【解決手段】 基板(101)に、ゲート電極(102)、窒化シリコンを含むゲート絶縁層(103)、結晶シリコンとアモルファスシリコンとを含むシリコン層(105)、コンタクト層(107)、ならびにソース電極及びドレイン電極(108)が、順に積層された半導体装置であって、前記シリコン層(105)の内部で、前記基板に近い側から前記ソース電極及びドレイン電極に近い側に向かって、前記結晶シリコンの体積比率が大きくなっており、かつ、前記ゲート絶縁層(103)と前記シリコン層(105)との間に酸化シリコンを含む層(104)が挟まれていることを特徴とする半導体装置。 (もっと読む)


【課題】比較的小さい膜厚で結晶性の良いIII族窒化物半導体の結晶を成長させることができるIII族窒化物半導体の成長方法を提供する。
【解決手段】本発明のIII族窒化物半導体の成長方法は、基板(10)上に、III族窒化物半導体の結晶核(40)を島状に形成する第1の工程と、窒素源ガスを供給しながら珪素源ガスとIII族源ガスを交互に供給することにより、前記結晶核(40)を島状に成長させる第2の工程と、該第2の工程後、窒素源ガスとIII族源ガスを供給し、前記島状の結晶核(40)からIII族窒化物半導体を各々成長させ、層状のIII族窒化物半導体(45)を形成する第3の工程と、を具備することを特徴とする。 (もっと読む)


【課題】外部からの磁場を遮蔽する磁気シールド効果が高い半導体装置を提供する。
【解決手段】半導体基板SUBの主表面上に形成されたスイッチング素子TRを覆うように形成された層間絶縁膜III1と、平板状の引出配線LELと、引出配線LELとスイッチング素子TRとを接続する接続配線ICLと、磁化の向きが可変とされた磁化自由層MFLを含み、引出配線LEL上に形成された磁気抵抗素子TMRとを備える。磁化自由層MFLの磁化状態を変化させることが可能な配線DLと配線BLとを備えている。磁気抵抗素子TMRが複数並んだメモリセル領域において、磁気抵抗素子TMRの上部に配置された第1の高透磁率膜CLAD2が、上記メモリセル領域から、メモリセル領域以外の領域である周辺領域にまで延在している。 (もっと読む)


【課題】保護膜として機能し得る硬度と高い可視光透過性とを兼ね備えたDLC膜を樹脂基材上に有するDLC膜付基材の製造方法を提供する。
【解決手段】本発明の製造方法は、RF電源16を用いた平行平板型プラズマCVDによりCHとHとの混合ガスからDLC膜を形成する工程を包含する。この工程では、上記プラズマCVDを、(a)上記混合ガスのHガス分圧をCHガス分圧の0.8倍以上とする;(b)上記混合ガスの合計圧力を20Pa〜40Paとする;および(c)RF電源16のパワーを15W〜20W/225πcmとする;を満たすように行うことにより、(A)膜厚200nmのとき、波長400nmにおける光透過率が70%以上;および、(B)硬度が5GPa以上;を満たすDLC膜を樹脂基材3上に形成する。 (もっと読む)


【課題】本発明は、リーク電流が小さく、かつ容量の大きい容量絶縁膜を有するキャパシタを備えた半導体装置の製造方法を提供することを課題とする。
【解決手段】容量絶縁膜形成工程は、下部電極が形成された半導体基板を成膜装置内に設置する工程と、半導体基板の温度を第1の温度に保持する第1の温度調整工程と、下部電極を覆うように、第1の温度に保持された半導体基板上に第1の絶縁膜を成膜する第1の成膜工程と、半導体基板を第2の温度に保持する第2の温度調整工程と、第1の絶縁膜の表面を覆うように、第2の温度に保持された半導体基板上に第2の絶縁膜を成膜する第2の成膜工程と、第1の温度調整工程、第1の成膜工程、第2の温度調整工程、第2の温度調整工程、及び第2の成膜工程を繰り返し行うことで、前記容量絶縁膜を形成する繰り返し工程と、を含む。 (もっと読む)


161 - 180 / 746