説明

Fターム[4M104DD26]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 析出面の前処理 (2,098) | 基板への不純物導入 (557)

Fターム[4M104DD26]に分類される特許

121 - 140 / 557


【課題】 埋め込み工程におけるスループットを向上でき、埋め込み工程が多用される半導体集積回路装置であっても、優れた生産能力を発揮することが可能な成膜装置を提供すること。
【解決手段】 アミノシラン系ガスを供給する供給機構122、及びアミノ基を含まないシラン系ガスを供給する供給機構121を備え、アミノシラン系ガスを供給して前記導電体に達する開孔を有した絶縁膜の表面、及び前記開孔の底の表面にシード層を形成する処理、及びアミノ基を含まないシラン系ガスを供給してシード層上にシリコン膜を形成する処理を、一つの処理室内101において順次実行する。 (もっと読む)


【課題】ドーパントの濃度をより高く確保しつつも、ドーパントが拡散されるジャンクション深さを制御することができ、改善された接触抵抗を実現し、チャネル領域との離隔間隔を減らしてチャネルのしきい電圧(Vt)を改善できる埋没ジャンクションを有する垂直型トランジスタ及びその形成方法を提供すること。
【解決手段】半導体基板に第1の側面に反対される第2の側面を有して突出した壁体)を形成し、壁体の第1の側面の一部を選択的に開口する開口部を有する片側コンタクトマスクを形成した後、開口部に露出した第1の側面部分に互いに拡散度が異なる不純物を拡散させて第1の不純物層及び該第1の不純物層を覆う第2の不純物層を形成することを特徴とする。 (もっと読む)


【課題】縦型トランジスタの特性を悪化させることなく縦型トランジスタの設置面積を削減できる高集積化に適した半導体装置およびその製造方法を提供する。
【解決手段】一定の間隔を空けて配置された複数のピラー30が備えられ、複数のピラー30が、縦型トランジスタTのチャネルとして機能する半導体層からなるチャネルピラー1と、不純物拡散層からなり、前記チャネルピラー1の下部に接続されて縦型トランジスタTの一方のソースドレインとして機能する下部拡散層4に電気的に接続された引き上げコンタクトプラグ2とを含む半導体装置とする。 (もっと読む)


【課題】炭化ケイ素デバイスのためのエッジ終端構造において、酸化膜などの絶縁層の境界面電荷の悪影響を中和し、多重フローティングガードリング終端では、この酸化膜電荷の変化に対する影響を少なくし、又は影響をなくす。
【解決手段】炭化ケイ素ベースの半導体接合に近接し、この半導体接合から間隔をおいて配置された、炭化ケイ素層中の複数の同心円のフローティングガードリングを有する。酸化膜などの絶縁層が、これらのフローティングガードリング上に設けられ、炭化ケイ素表面電荷補償領域が、これらのフローティングガードリング間に設けられ、この絶縁層に隣接している。かかるエッジ終端構造の製造方法もまた提供される。 (もっと読む)


【課題】本発明は、金属半導体電界効果トランジスタ(MESFET)を提供する。
【解決手段】このMESFETは、ソース(13)とドレイン(17)とゲート(24)とを備えている。このゲート(24)を、ソース(13)とドレイン(17)の間及びn導電型チャネル層(18)上に設ける。ドレイン(17)に向かって延びている端部を備えるp導電型領域(14)をソースの下に設ける。このp導電型領域(14)をn導電型チャネル領域(18)から隔ててソース(13)に電気的に結合させる。 (もっと読む)


【課題】接合障壁ショットキー(JBS)構造内のビルトインPiNダイオードの電流伝導を阻止する。
【解決手段】接合障壁ショットキー(JBS)一体構造が提供される。ダイオードのドリフト領域内に配置された炭化シリコン接合障壁領域を含む炭化シリコンショットキーダイオード、およびこの炭化シリコンショットキーダイオードを製造する方法も提供される。この接合障壁領域は、ダイオードのドリフト領域内にあって第1のドーピング濃度を有する第1の炭化シリコン領域と、ドリフト領域内にあって、第1の炭化シリコン領域とショットキーダイオードのショットキーコンタクトとの間に配置された第2の炭化シリコン領域とを含む。第2の領域は、第1の炭化シリコン領域およびショットキーコンタクトと接触する。第2の炭化シリコン領域は、第1のドーピング濃度よりも低い第2のドーピング濃度を有する。 (もっと読む)


【課題】ソース・ドレイン領域とコンタクトプラグの接続部分の電気抵抗が低減され、かつ短チャネル効果の発生が抑えられたトランジスタを有する、n型およびp型トランジスタを含む半導体装置、およびその半導体装置の製造方法を提供すること。
【解決手段】不純物高濃度領域を有する半導体装置を提供する。前記不純物高濃度領域は、第1のソース・ドレイン領域内の前記第1のソース・ドレイン領域と前記第1のコンタクトプラグとの界面近傍に形成される。前記不純物高濃度領域の前記第1のコンタクトプラグの底面の長手方向の前記第1のコンタクトプラグの前記底面の輪郭からの前記不純物高濃度領域の輪郭の広がり幅の少なくとも一方は、前記第1のコンタクトプラグの前記底面の短手方向の前記第1のコンタクトプラグの前記底面の輪郭からの前記不純物高濃度領域の輪郭の広がり幅よりも大きい。 (もっと読む)


【課題】トレンチ構造のトランジスタセルがマトリクス状に多数個形成され、そのゲート電極に金属膜からなるゲート配線がコンタクトされる半導体装置でも、ゲート耐圧を充分に高くすることができる構造の半導体装置を提供する。
【解決手段】半導体層1に凹溝11が形成され、その凹溝11内にゲート酸化膜4が形成され、その凹溝11内にポリシリコンなどからなるゲート電極5が設けられるトレンチ構造のトランジスタセルがマトリクス状に配列されたセル領域10を有している。そして、金属膜からなるゲート配線9とコンタクトするため、ゲート電極5と連続してゲートパッド部5aが設けられるが、そのゲートパッド部5aが凹溝11と同時に設けられる凹部12内に形成されている。 (もっと読む)


【課題】微細化してもソース領域およびベース領域に繋がるコンタクト領域とソース電極とのコンタクトが十分に取れるようにする。
【解決手段】コンタクトホール12aの長手方向、つまりソース電極11とn+型ソース領域4およびp+型ボディ層5とのコンタクト領域の長手方向とn+型ソース領域4およびp+型ボディ層5の長手方向も直交させる。これにより、n+型ソース領域4やp+型ボディ層5それぞれのソース電極11へのコンタクト幅をコンタクトホール12aの幅分とすることが可能となる。このため、コンタクトを広く取ることが可能となる。これにより、素子を微細化してもn+型ソース領域4やp型ベース領域3に繋がるp+型ボディ層5とソース電極11とのコンタクトが十分に取れるようにすることが可能となる。 (もっと読む)


【課題】活性層の上に電極パッドを形成する場合に生じる問題を解決し、オン抵抗の上昇を抑えた窒化物半導体装置を実現できるようにする。
【解決手段】窒化物半導体装置は、活性領域102Aを有する窒化物半導体層積層体102と、活性領域の上に互いに間隔をおいて形成されたフィンガー状の第1の電極131及び第2の電極132とを備えている。第1の電極の上に接して第1の電極配線151が形成され、第2の電極の上に第2の電極配線152が接して形成されている。第1の電極配線及び第2の電極配線を覆うように第2の絶縁膜が形成され、第2の絶縁膜の上に第1の金属層161が形成されている。第1の金属層は、第2の絶縁膜を介して活性領域の上に形成され、第1の電極配線と接続されている。 (もっと読む)


【課題】FETの閾値電圧のばらつきのない半導体トランジスタおよびその製造方法を提供する。
【解決手段】半導体トランジスタ100は、基板1と、基板1の上方に形成された第1化合物半導体層103と、第1化合物半導体層103上に形成され、第1化合物半導体層103よりもバンドギャップの大きい第2化合物半導体層104と、第2化合物半導体層104内の少なくとも一部に、酸素がドープされた酸素ドープ領域105と、第2化合物半導体層104上に形成された第3化合物半導体層106と、第1化合物半導体層103に電気的に接続されたソース電極107およびドレイン電極109と、酸素ドープ領域105の上方に、酸素ドープ領域105に接するように形成されたゲート電極108とを有する。 (もっと読む)


【課題】歩留りの低下を抑制する。
【解決手段】開口部121.1の形成により、第1の半導体層110の上面のうち、上方に第2の半導体層120が形成されていない部分の少なくとも一部には、絶縁体130.1が形成される。開口部121.1には、絶縁体130.1を覆うようにソース電極S10が形成される。ソース電極S10は、第1の半導体層110と前記第2の半導体層120との界面と接するように形成される。 (もっと読む)


【課題】高いしきい値電圧と低いリーク電流のノーマリーオフの半導体素子を提供する。
【解決手段】基板2の上に少なくともAlを含むIII族窒化物からなる下地層(バッファー層)3を設けた上で、III族窒化物、好ましくはGaNからなる第1の半導体層(チャネル層)4と、少なくともAlを含むIII族窒化物、好ましくはAlxGa1−xNであってx≧0.2である第2の半導体層(電子供給層)6が積層されてなる半導体層群からなるHEMT構造の半導体素子の上に、Al2O3−Ga2O3の混晶からなる絶縁膜7を形成し、その上にゲート電極9を形成した。 (もっと読む)


【課題】トランジスタが設計より低い閾値電圧で動作し始めるという寄生トランジスタ動作を抑制する。
【解決手段】半導体装置100は、基板102の素子形成領域に形成されたトレンチ162、トレンチ162の側壁および底面に形成されたゲート絶縁膜120、トレンチ162を埋め込むようにゲート絶縁膜120上に形成されたゲート電極122、基板102表面のゲート長方向の一方の側に形成されたソース領域112、およびゲート長方向の他方の側に形成されたドレイン領域113、を有するトランジスタを含む。ここで、ゲート電極122は、トレンチ162外部の基板102上にも露出して形成され、ゲート電極122は、ゲート長方向における、トレンチ162の両端部上部が覆われるとともに、中央部に少なくとも一つ深さが基板まで達する凹部が形成されるように設けられている。 (もっと読む)


【課題】本発明は、MPS構造の半導体装置において、逆方向特性の漏れ電流を低減できる半導体装置の製造方法を提供することを目的とする。
【解決手段】第1の導電型の半導体と金属層がオーミック接合するオーミック接合部と、第2の導電型の半導体と金属層がショットキ接合するショットキ接合部とを備える半導体装置の製造方法は、オーミック接合部がオーミック接合可能な膜厚範囲で薄くした膜厚によって、金属層を形成する金属層形成工程(ステップS101、S102)と、金属層の一部を覆って保護する絶縁膜を形成する絶縁膜形成工程(ステップS103、S104)と、絶縁膜形成工程(ステップS103、S104)の後に、絶縁膜をベークすると共に、オーミック接合部の金属層をシリサイド化させる熱処理工程(ステップS105)とを有する。 (もっと読む)


【課題】pチャネル型の電界効果トランジスタのしきい値電圧を確実に制御して所望の特性が得られる半導体装置と、その製造方法とを提供する。
【解決手段】温度約700〜900℃のもとで施す熱処理に伴い、素子形成領域RPでは、アルミニウム(Al)膜7a中のアルミニウム(Al)がハフニウム酸窒化(HfON)膜6へ拡散することによって、ハフニウム酸窒化(HfON)膜6に元素としてアルミニウム(Al)が添加される。また、チタンアルミニウムナイトライド(TiAlN)膜からなるハードマスク8a中のアルミニウム(Al)とチタン(Ti)とがハフニウム酸窒化(HfON)膜6へ拡散することによって、ハフニウム酸窒化(HfON)膜6に元素としてアルミニウム(Al)とチタン(Ti)とが添加される。 (もっと読む)


【課題】微細化が進んだ場合であっても、適切なしきい値電圧を有するpチャネルMOSFETを含む半導体装置を製造する。
【解決手段】本発明に係る半導体装置の製造方法は、半導体基板101上に、SiO2またはSiONを含む第1ゲート絶縁層104を形成する第1ゲート絶縁層形成ステップと、第1ゲート絶縁層104上に、金属酸化物を含む第2ゲート絶縁層105を形成する第2ゲート絶縁層形成ステップと、第2ゲート絶縁層105上に、金属を含む第1電極106aを形成する第1電極形成ステップと、形成された積層構造に、複数回のミリセカンドアニール処理を行うことで、第2ゲート絶縁層105および第1電極106aの少なくとも一方に含まれる4族、5族または13族の元素を、第1ゲート絶縁層104と第2ゲート絶縁層105との界面に拡散させるアニールステップとを含む。 (もっと読む)


【課題】半導体装置において低抵抗なオーミック性を有し、酸・アルカリによる腐食に対し高い耐性を持つ電極を得ることを目的とする。
【解決手段】本発明に係る第1の半導体装置は、窒化物半導体層1と、窒化物半導体層上に設けられた電極とを備え、窒化物半導体層1は電極下に、それ以外の部分よりも高濃度にn型不純物を含む高濃度不純物領域2を備え、電極は、窒化物半導体層1上に設けられた第一金属層3と、第一金属層3上に設けられた第二金属層4と、第二金属層4上に設けられた第三金属層5と、を備え、第一金属層3は第二金属層4よりも窒化物半導体層1との高い密着性を有する金属を含み、第三金属層5は水素よりもイオン化傾向の小さい金属を含む。 (もっと読む)


【課題】リフトオフ法を用いずに、簡易な手法で化合物半導体装置のゲート電極、ソース電極、及びドレイン電極を各種パターンに欠陥を生ぜしめることなく形成する。
【解決手段】AlGaN/GaN・HEMTを製造する際に、化合物半導体層上に保護絶縁膜8を形成し、保護絶縁膜8に開口を形成し、開口を埋め込む導電材料を保護絶縁膜8上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてゲート電極15(又はソース電極45及びドレイン46)を形成し、その後、保護絶縁膜8上に保護絶縁膜16を形成し、保護絶縁膜8,16に開口を形成し、開口を埋め込む導電材料を保護絶縁膜16上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてソース電極22及びドレイン23(又はゲート電極53)を形成する。 (もっと読む)


【課題】耐圧向上や短チャンネル効果の抑制を可能とする半導体装置およびその製造方法を提供することを目的とする。
【解決手段】本発明にかかる半導体装置は、半導体基板であるSiC基板1上に形成された、バッファ層2と、バッファ層2上に形成された、バッファ層2よりもバンドギャップが小さいチャネル層3と、チャネル層3上に形成された、チャネル層3よりもバンドギャップが大きいバリア層4と、バリア層4上に互いに離間して形成された、ソース、ドレイン電極7、8と、ソース、ドレイン電極7、8下から、バリア層4を通ってチャネル層3中にそれぞれ達する、不純物領域5とを備え、不純物領域5の下端は、バッファ層2に達しない。 (もっと読む)


121 - 140 / 557