説明

Fターム[5E041NN06]の内容

軟質磁性材料 (11,729) | 数値限定の対象 (2,893) | 磁性体の構造 (505)

Fターム[5E041NN06]に分類される特許

41 - 60 / 505


【課題】透磁率の向上と抵抗絶縁抵抗の向上を図りつつ、高温負荷、耐湿性、吸水性等の信頼性特性を向上させる磁性材料及びコイル部品の提供。
【解決手段】Fe−Si−M系軟磁性合金(但し、MはFeより酸化し易い金属元素である。)からなる複数の金属粒子と、前記金属粒子の表面に形成された前記軟磁性合金の酸化物からなる酸化被膜とを備え、隣接する金属粒子表面に形成された酸化被膜を介しての結合部および酸化被膜が存在しない部分における金属粒子どうしの結合部を有し、前記金属粒子の集積により生じた空隙の少なくとも一部には樹脂材料が充填されている、磁性材料。 (もっと読む)


【課題】{200}面がより高集積化されており、さらに、高い電気抵抗が付与されたFe系金属板を効率的に製造する方法を提供する。
【解決手段】α−γ変態成分系のFe系金属よりなり、加工組織を有する母材金属板を準備し、その片面あるいは両面にフェライト生成元素を付着する工程と、フェライト生成元素の付着した母材金属板を、キューリー温度以下では磁場を印加させながら母材のA点まで加熱して、母材金属板内のフェライト生成元素を拡散させ、合金化させる工程と、母材金属板をA点以上1300℃以下の温度に加熱、保持して、フェライト生成元素の拡散によって合金化されたα−Fe相の{200}面集積度を増加させるとともに{222}面集積度を低下させる工程とよりなる、Fe系金属板の製造方法。 (もっと読む)


【課題】粒径が30nmから数100nmのフェライト微粒子を連続式で合成することのできる合成方法を開発する。
【解決手段】一方から2価鉄イオンを含有する反応液を送出して輸送し、他方からで酸化剤液を送出して輸送し、送出された前記反応液と前記酸化剤液とを合流させ、合流した前記反応液と前記酸化剤液とを、流れ反応器中に流しながら反応させて粒径が30nmから数100nmで結晶性の良好なフェライト微粒子を合成する。またフェライト微粒子の合成とフェライト微粒子の表面修飾とを一つにまとめた形で、表面修飾されたフェライト微粒子の製造することができるようになった。こうして粒径が30nmから数100nmの範囲の粒径を有し粒径の揃ったフェライト微粒子の表面を修飾して液に分散することにより、粒子サイズが大きく磁化が大きくしかも分散安定性に優れ、これまで実現することのできなかった分散液が製造できるようになった。 (もっと読む)


【課題】{110}面または{222}面がより高集積化されており、さらに、高い磁気特性や加工性が付与されたFe系金属板を効率的に製造する方法を提供する。
【解決手段】C:0.8%未満を含有し、α−γ変態成分系のFe系金属よりなる鋳片を熱間圧延し、さらに、圧下率が20%以上95%以下で冷間圧延して、母材金属板を製造し、該母材金属板の表面にα生成元素を付着し、この母材金属板を母材金属のA3点まで加熱して、母材金属板内にα生成元素を拡散させ、合金化させ、母材金属板をA3点以上1300℃以下の温度に加熱、保持して、α生成元素の拡散によって合金化されたα−Fe相の{110}または{222}面集積度をさらに増加させ、その後母材金属板をA3点未満の温度へ冷却し、母材金属板の{110}または{222}面集積度が30%〜95%となるようにするFe系金属板の製造方法。 (もっと読む)


【課題】比抵抗および強度に優れる圧粉磁心を提供する。
【解決手段】本発明は、軟磁性粒子と、この軟磁性粒子間に形成される粒界相と、からなる圧粉磁心であって、粒界相は、軟磁性粒子の焼鈍温度よりも低い軟化点を有する第一無機酸化物からなる低温軟化材(低融点ガラス粒子)からなるマトリックス中に、焼鈍温度よりも高い軟化点を有する第二無機酸化物からなる高温軟化材(シリカやアルミナのナノ粒子)からなる微粒子が分散した複合分散組織であることを特徴とする。粒界相がこのような複合分散組織からなることにより、各軟磁性粒子は、低温軟化材により強固に結合されると共に高温軟化材により所定間隔が保持され絶縁性が確保される。こうして高比抵抗と高強度が高次元で両立した本発明の圧粉磁心が得られた。 (もっと読む)


【課題】高透磁率、低磁気損失の特性と、リフロー耐性を備えた磁性体組成物を提供すること。
【解決手段】(A)二次粒子の数平均粒径が300nm以上1000nm以下である磁性粒子、(B)重量平均分子量20万以上の樹脂を含有することを特徴とするペースト組成物。 (もっと読む)


【課題】磁性弾性体とその製造方法において、製造が容易で、磁場に対してより強く応答させることができるものとする。
【解決手段】磁性弾性体1は、多数の空孔20を有する弾性体である母材2と、空孔20の一部に埋め込まれた添加材3に含まれる磁性粒子4とを備えている。磁性粒子4が母材2中ではなく母材2の空孔20中に存在するので、磁性粒子4が母材2そのものの弾性体特性を悪化させることがなく、磁性粒子4の添加量を増やすことができ、磁場強度に対する変形応答をより強くすることができる。 (もっと読む)


【課題】 凝集磁気分離に適した磁性酸化鉄粉末を簡素な構成及び低コストで得ることができる磁性酸化鉄粉末の製造方法、凝集磁気分離に適した磁性酸化鉄粉末、及びこれを用いた水処理方法を提供する。
【解決手段】 溶解された鉄系の金属溶湯を冷却水により噴霧造粒する工程と、造粒された粒を乾燥する工程と、乾燥された粒を冷却水により焼き入れする工程と、焼き入れされた粒を焼き戻しする工程とにより金属粒を得る際の少なくとも一の工程で発生する磁性酸化鉄粉末を集めることで、所定の平均粒径、形状及び浮遊性能の磁性酸化鉄粉末を得る。 (もっと読む)


【課題】インダクタ、チョークコイル、トランス等電磁気部品の小型化及び高周波域で使用可能な磁気特性の優れた複合磁性材料を提供する。
【解決手段】Fe−Si−Al系の金属磁性粉末と結着材とを添加混合し、加圧成形して成形体とした後、前記成形体に熱処理を施した複合磁性材料において、前記金属磁性粉末は異なる酸素濃度を有した金属磁性粉末A、金属磁性粉末Bからなり、前記金属磁性粉末Aの酸素濃度が1500〜6500ppm、前記金属磁性粉末Bの酸素濃度が400ppm以下であり、前記金属磁性粉末中における前記金属磁性粉末Bの含有量を5〜25wt%の範囲とし、前記金属磁性粉末Aの平均粒径をDA、前記金属磁性粉末Bの平均粒径をDBとしたとき、DBとDAが、DB/DA≦0.16となる関係を満たすこととする。 (もっと読む)


【課題】 高い表面抵抗と高い透磁率を同時に有し、ノイズ抑制効果を向上させた電磁干渉抑制体を提供すること。
【解決手段】 Fe−Si−Al合金からなる扁平状の第1の軟磁性粉末11と酸化物粉末12とが有機結合剤13中に分散されて構成された電磁干渉抑制体であって、酸化物粉末12は、Fe−Si−Al合金からなる扁平状の第2の軟磁性粉末を大気雰囲気下で熱処理することにより酸化させて得る。その熱処理条件は、第1の軟磁性粉末11のみを有機結合剤中に分散して構成される電磁干渉抑制体Aの実部透磁率をμ’(A)とし、酸化物粉末12のみを第1の軟磁性粉末11と同じ重量配合比率で同じ有機結合剤中に分散して構成される電磁干渉抑制体Bの実部透磁率をμ’(B)とするとき、μ’(B)の大きさがμ’(A)の大きさの5〜25%となるように設定する。 (もっと読む)


【課題】{100}面をより高集積化して高磁束密度化し、異種金属元素が濃化して鉄損特性に優れたFe系金属板を提供する。
【解決手段】α−γ変態系のFe系母材金属板の表面と裏面にフェライト生成元素を濃化させて形成した異種金属元素濃化領域と、前記表面に形成された前記異種金属元素濃化領域中に形成されたα単相表面側領域と、前記裏面に形成された前記異種金属元素濃化領域中に形成されたα単相裏面側領域と、前記α単相表面側領域の一部と前記α単相裏面側領域の一部とに跨る結晶粒とを備え、前記α単相表面側領域の割合と前記α単相裏面側領域の割合との和であるα単相領域の割合を面積率で1〜90%とし、前記結晶粒の含有量を面積率で3〜90%とし、前記表面と前記裏面のα−Fe相の面集積度それぞれを、{200}面集積度で30〜99%、{222}面集積度で0.01〜30%とする。 (もっと読む)


【課題】低損失で、飽和磁束密度が高い複合材料、この複合材料からなるリアクトル用コア、このコアを具えるリアクトルを提供する。
【解決手段】リアクトル1は、コイル2と、コイル2の内外に配置されて閉磁路を形成する磁性コア3とを具える。磁性コア3の少なくとも一部は、磁性体粉末と、この粉末を分散した状態で内包する樹脂とを含有する複合材料で構成されている。磁性体粉末は、比透磁率が異なる複数の材質からなる粉末、代表的には純鉄粉と鉄合金粉との双方を含む。異種の材質の磁性体粉末を含有する複合材料からなる磁性コア3を具えることで、リアクトル1は、高い飽和磁束密度と低損失とを両立することができる。 (もっと読む)


【課題】低損失で、飽和磁束密度が高く、製造性に優れる複合材料、この複合材料からなるリアクトル用コア、このコアを具えるリアクトルを提供する。
【解決手段】リアクトル1は、コイル2と、コイル2の内外に配置されて閉磁路を形成する磁性コア3とを具える。磁性コア3の少なくとも一部は、同一材質からなる磁性体粉末と、この粉末を分散した状態で内包する樹脂とを含有する複合材料で構成されている。磁性体粉末の粒度分布をとったとき、複数のピークがある。即ち、磁性体粉末は、微細な粉末と粗大な粉末との双方を高頻度に含有する。微細な粉末を含有することで、この複合材料は、渦電流損を低減できて低損失である。微細な粉末と粗大な粉末との混合粉末により、磁性体粉末の充填率を高められ、この複合材料は、飽和磁束密度が高い。混合粉末とすることで、原料粉末が取り扱い易く、複合材料の製造性に優れる。 (もっと読む)


【課題】 耐酸化性に優れた軟磁性金属粉末、高透磁率で高密度を有する圧粉磁心、およびそれらの製造方法を提供する。
【解決手段】 酸化鉄粉末を固相還元する還元剤として炭素粉末と共にAl粉末を添加することによって得られ、平均粒径が1μm超であり、表面が炭素および酸化アルミで被覆された金属Fe粒子粉末であり、大気中で加熱する熱重量分析における重量上昇が1.0%以上となる温度が450℃以上である軟磁性金属粉末を用いる。この軟磁性金属粉末と、有機樹脂または無機酸化物の少なくとも一方とで、密度が6.0Mg/m以上である圧粉磁心を形成する。 (もっと読む)


【課題】高周波域において低損失な圧粉コア等の作製に好適な低保磁力かつ微細であり、しかも、生産性及び経済性に優れるFe−Ni系合金粉末を提供すること。
【解決手段】FeとNiとを含む酸化物、及び/又はFe系酸化物とNi系酸化物とを含む混合物を還元性ガス中で還元することにより作製されるFe−Ni系合金粉末であり、平均粒径が0.1〜5μmであり、前記Fe−Ni系合金粉末に対してFe及びNiを合計で90wt%以上含有し、Fe及びNiの総量に対するNiの重量比が0.35〜0.90である、Fe−Ni系合金粉末。 (もっと読む)


【課題】本発明により、低磁歪特性を有する高磁束密度の複合軟磁性材を提供できる。
【解決手段】本発明は、膜厚5〜200nmのMg含有絶縁皮膜あるいはリン酸塩皮膜によって絶縁処理された純鉄系の複合軟磁性粉末粒子2と、11〜16質量%のSiを含むFe−Si合金粉末粒子3をこれらの合計全量に対するFe−Si合金粉末粒子3の割合において10〜60質量%含有してなり、前記粒子間に境界層を有してなることを特徴とする。リン酸塩皮膜として、例えば、リン酸亜鉛皮膜、リン酸鉄皮膜、リン酸マンガン皮膜、リン酸カルシウム皮膜を使用できる。 (もっと読む)


【課題】高周波数において広帯域で且つ高効率で使用可能であり、生産性及び経済性に優れた小型アンテナ等を実現し得るアンテナ用磁性材料、並びに、これを用いたアンテナ及び無線通信機器を提供する。
【解決手段】一般式(1):MA・Fe12−x・MB・O19(式中、MAは、Sr及びBaからなる群より選択される少なくとも1種であり、MBは、MC又はMDであり、MCは、Al、Cr、Sc及びInからなる群より選択される少なくとも1種であり、MDは、Ti、Sn及びZrからなる群より選択される少なくとも1種と、Ni、Zn、Mn、Mg、Cu及びCoからなる群より選択される少なくとも1種との等量混合物であり、Xは、1以上5以下の数である。)で表されるM型六方晶フェライトを主相として含み、且つ、平均結晶粒子径が5μm以上である、アンテナ用磁性材料。 (もっと読む)


【課題】温間圧延と同様の集合組織改質効果が得られる方向性電磁鋼板の新規な製造方法を提案する。
【解決手段】C:0.01〜0.10mass%、Si:2.0〜4.5mass%およびMn:0.01〜0.5mass%を含有する鋼スラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回の冷間圧延で圧下率85%以上の圧延をし、あるいは、中間焼鈍を挟む2回以上の冷間圧延で最終冷延圧下率80%以上の圧延をして最終板厚の冷延板とし、その後、一次再結晶焼鈍および二次再結晶焼鈍を施す方向性電磁鋼板の製造方法において、上記冷間圧延における総圧下率が50%以下の段階において、歪速度150s−1以下の低歪速度冷間圧延を最低1パス以上施すことを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】センダストと同等、或いはセンダストを超える高透磁率で、かつセンダストに近似する低鉄損の圧粉磁心とその製造方法とを提供する。
【解決手段】軟磁性粒子の表面に絶縁被膜を有する複数の被覆粒子からなる被覆粉末と、これら被覆粒子を一体化する保形材とを備える。この圧粉磁心は、前記軟磁性粒子は、Fe-Si-Al合金粒子とFe-Ni合金粒子と混合粒子で構成され、当該圧粉磁心をX線回折法により分析した際、次の回折ピーク強度比が0.45以下である。Fe2O3の1stピークの積分強度/{(Fe-Si-AlとFe-Niの重複した1stピークの積分強度×Fe-Si-AlとFe-Niの合計体積に占めるFe-Niの体積分率)+FeNi3の1stピークの積分強度} (もっと読む)


【課題】 高い飽和磁束密度(Bs)を備えるとともにコアロスが小さく、さらには製造コストの低減と環境負荷の低減を可能とするMnZn系フェライトコアを提供する。
【解決手段】 中間原料製品である金属鉄を含有するMnZn系フェライト粉末あるいは顆粒を用いて、MnZn系フェライト焼結体を形成する。 (もっと読む)


41 - 60 / 505