説明

Fターム[5F033KK18]の内容

Fターム[5F033KK18]に分類される特許

201 - 220 / 1,040


【課題】従来の半導体装置では、パッケージ端部の樹脂層の一部が剥離し、耐湿性が悪化するという問題があった。
【解決手段】本発明の半導体装置では、シリコン基板2の一主面側に再配線層5、5Aと剥離防止層6が配置され、それらを被覆するように樹脂層3が形成される。剥離防止層6は、再配線層5、5Aの無配置領域であり、半導体装置1の外周端部近傍に配置されることで、樹脂層3の樹脂量が低減される。この構造により、樹脂層3の熱収縮力に起因する樹脂の反り上がりが防止し、樹脂層3が、シリコン基板2上から剥離することが防止され、半導体装置1の耐湿性が向上される。 (もっと読む)


【課題】動作速度が低下することを抑制することができる半導体装置を提供する。
【解決手段】半導体装置は、MOSトランジスタ9を有するシリコン基板5と、シリコン基板5上に形成され、配線および絶縁膜により構成された配線層が複数積層された多層配線層と、多層配線層内に埋め込まれた、下部電極(下部電極膜91)、容量絶縁膜92、および上部電極(上部電極膜93)を有しており、メモリ素子を構成する容量素子90と、を備え、容量素子90とMOSトランジスタ9との間にダマシン形状の銅配線(第2層配線25)が少なくとも1層以上形成され、1つの配線(第2層配線25)の上面と容量素子90の下面とが略同一平面上にあり、容量素子90上に銅配線(プレート線配線99)が少なくとも1層以上形成されている。 (もっと読む)


【課題】層間絶縁膜を備えた半導体装置において、膜剥がれの発生及びリークパスの形成を抑制する。
【解決手段】半導体装置は、複数の空孔を含む層間絶縁膜16を備えている。層間絶縁膜16は、単層構造の膜である。層間絶縁膜16における、下面領域に含まれる空孔の空孔径及び上面領域に含まれる空孔の空孔径は、上面領域と下面領域との間に介在する中央領域に含まれる空孔の空孔径よりも小さい。 (もっと読む)


【課題】半導体装置のパッド構造を提供する。
【解決手段】半導体装置200は、半導体基板202、相互接続構造、複数のダミーメタルビア235及びパッド構造を備える。半導体基板202は、内部に複数の微小電子素子が設けられている。相互接続構造は、半導体基板202上に設けられ、複数の金属層210a〜210iと、金属層を隔離する複数のIMD層220とを有する。金属層210a〜210iは、最上金属層210iと、最下金属層210aと、最上金属層210iと最下金属層210aとの間に設けられた少なくとも2層の金属層とを含む。複数のダミーメタルビア235は、少なくとも2層の金属層間に設けられた1層又は2層以上のIMD層220内に形成される。パッド構造は、ダミーメタルビア235の上に直接設けられている。 (もっと読む)


【課題】放熱性に優れ、製造歩留まりの向上を図ることができる半導体装置及びその製造方法を提供することを目的とする。
【解決手段】
半導体装置は、基板1の上方に設けられた化合物半導体層2,3,4と、化合物半導体層2,3,4の上方に設けられた複数のソース電極7及び複数のドレイン電極9と、化合物半導体層2,3,4を貫通し、複数のソース電極7のそれぞれに接続される複数のビア配線22と、化合物半導体層2,3,4を貫通し、複数のドレイン電極9のそれぞれに接続される複数のビア配線23と、複数のビア配線22に接続され、基板1に埋め込まれたソース共通配線18と、複数のビア配線23に接続され、基板1に埋め込まれたドレイン共通配線20とを有する。 (もっと読む)


基板上のデバイスと基板内のクラックストップとを備える装置である。デバイスを形成する方法も開示される。これらの方法は、半導体デバイスのようなデバイスを第1の厚さを有する基板上に設けることと、基板の厚さを第2の厚さまで低減することと、クラックストップを基板内に設けることとを含み得る。基板の厚さを低減することは、この基板を支持用の担体基板に取り付けることと、その後、この担体基板を取り外すこととを含み得る。クラックストップは、クラックがデバイスに到達することを妨げ得る。
(もっと読む)


【課題】表示装置に代表される半導体装置において、画面サイズの大型化や高精細化に対応し、表示品質が良く、安定して動作する信頼性のよい半導体装置を提供することを課題の一つとする。
【解決手段】引き回し距離の長い配線にCuを含む導電層を用いることで、配線抵抗の増大を抑える。また、Cuを含む導電層を、TFTのチャネル領域が形成される半導体層と重ならないようにし、窒化珪素を含む絶縁層で包むことで、Cuの拡散を防ぐことができ、信頼性の良い半導体装置を作製することができる。特に、半導体装置の一態様である表示装置を大型化または高精細化しても、表示品質が良く、安定して動作させることができる。 (もっと読む)


【課題】酸化物半導体層を用いた、表示装置に代表される半導体装置において、画面サイズの大型化や高精細化に対応し、表示品質が良く、安定して動作する信頼性のよい半導体装置を提供することを課題の一つとする。
【解決手段】引き回し距離の長い配線にCuを含む導電層を用いることで、配線抵抗の増大を抑える。また、Cuを含む導電層を、TFTのチャネル領域が形成される酸化物半導体層と重ならないようにし、窒化珪素を含む絶縁層で包むことで、Cuの拡散を防ぐことができ、信頼性の良い半導体装置を作製することができる。特に、半導体装置の一態様である表示装置を大型化または高精細化しても、表示品質が良く、安定して動作させることができる。 (もっと読む)


【課題】貫通電極およびこれと一体的に形成された裏面電極を有する半導体装置において、貫通電極の膜厚と裏面電極の膜厚とを独立に制御することにより、貫通電極の剥離の問題と裏面配線の剥離の問題を同時に解消することができる半導体装置およびその製造方法を提供する。
【解決手段】半導体基板10と、半導体基板の上方に形成された少なくとも1層からなる配線層13と、半導体基板の裏面から配線に達する貫通電極30と、半導体基板の裏面に設けられて貫通電極に接続された裏面配線40と、裏面配線に接続された外部端子50と、を含む半導体装置であり、裏面配線は、少なくとも外部端子との接続部を含む部分の膜厚が、貫通電極の膜厚よりも厚く形成されている。 (もっと読む)


【課題】グラフェンのバリスティック伝導性を利用した低抵抗配線を備え、配線と配線接続部材の接続部分の構成の複雑化を抑えた半導体装置およびその製造方法を提供する。
【解決手段】本発明の一態様に係る半導体装置100は、基板と、基板の上方に設けられ、積層された複数のグラフェンナノリボンシート122からなるグラフェンナノリボン層121を含む下層配線12と、複数のグラフェンナノリボンシート122の少なくとも1枚を貫通し、下層配線12と上層配線13とを接続するビア14およびバリアメタル15と、を有する。 (もっと読む)


【課題】MIPS構造を採るメタル膜とコンタクトプラグとの界面抵抗を低減できるようにする。
【解決手段】まず、半導体基板1の上に、ゲート絶縁膜3を形成し、形成したゲート絶縁膜3の上に、TiN膜4及びポリシリコン膜5を順次形成する。続いて、ポリシリコン膜5にTiN膜4を露出するコンタクトホール5aを形成する。続いて、ポリシリコン膜5における第1のコンタクトホール5aの少なくとも底面及び壁面上に金属膜7を形成する。 (もっと読む)


【課題】TEG上のパッド部の浸食を防止し、また、実デバイスのパッド部の半田のぬれ性や半田形成後のシェア強度の向上を図る。
【解決手段】半導体ウエハのチップ領域CAの第3層配線M3およびスクライブ領域SAの第3層配線M3を、それぞれ、TiN膜M3a、Al合金膜M3bおよびTiN膜M3cで構成し、チップ領域CAの再配線49上の第2パッド部PAD2を洗浄し、もしくはその上部に無電界メッキ法でAu膜53aを形成する。さらに、Au膜53a形成後、リテンション検査を行い、その後、さらに、Au膜53bを形成した後、半田バンプ電極55を形成する。その結果、TiN膜M3cによってTEGであるスクライブ領域SAの第3層配線M3の第1パッド部PAD1のメッキ液等による浸食を防止でき、また、Au膜53a、53bによって第2パッド部PAD2の半田のぬれ性や半田形成後のシェア強度の向上を図ることができる。 (もっと読む)


半導体基板に集積された回路と、基板と、ヒートシンクとしての支持体と、基板および支持体をはんだ付けにより接続する熱伝導性接続部とを備えた電子モジュールを提案する。ここでは、基板で用いられる後面金属化部として、まず第1の厚いAu層(23)、ついでバリア層(24)、最後に第2の薄いAu層(25)が堆積される。バリア層の材料は、はんだ付け過程において、第2のAu層の領域のAuSn液相のSnないしAuSnが第1のAu層(23)へ浸入することを阻止するように選定される。また、基板の貫通孔にも、後面金属化部の積層体が堆積される。ここで、第2のAu層の表面は、バリア層から拡散する材料によって、はんだ付け材料に対する低減された濡れ性を有する。
(もっと読む)


【課題】漏れ電流の大きいキャパシタを電気的に切断することができるキャパシタ・モジュールを含む半導体構造、これを製造する方法、およびこれを動作させる方法を提供する。
【解決手段】モジュール化したキャパシタ・アレイは複数のキャパシタ・モジュールを含む。各キャパシタ・モジュールは、キャパシタと、このキャパシタを電気的に切断するように構成されたスイッチング・デバイスと、を含む。スイッチング・デバイスは、キャパシタの漏れのレベルを検出するように構成された検知ユニットを含み、漏れ電流が所定のレベルを超えるとスイッチング・デバイスがキャパシタを電気的に切断するようになっている。各キャパシタ・モジュールは、単一のキャパシタ・プレート、2つのキャパシタ・プレート、または3つ以上のキャパシタ・プレートを含むことができる。漏れセンサおよびスイッチング・デバイスを用いて、漏れを生じたキャパシタ・アレイのキャパシタ・モジュールを電気的に切断し、これによってキャパシタ・アレイを過剰な電気的漏洩から保護する。 (もっと読む)


【課題】欠陥を内在する炭化珪素半導体を用いても、大面積半導体装置の高歩留りを安定して実現可能な半導体装置の製造方法を提供する。
【解決手段】炭化珪素半導体基板上に炭化珪素半導体層をエピタキシャル成長する工程と、炭化珪素半導体層表面を研磨する工程と、研磨する工程の後に、炭化珪素半導体層に不純物をイオン注入する工程と、不純物を活性化するための熱処理をする工程と、熱処理をする工程の後に、炭化珪素半導体層表面に第1の熱酸化膜を形成する工程と、第1の熱酸化膜を化学的に除去する工程と、炭化珪素半導体層上に電極層を形成する工程と、を有することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】電気的抵抗が低い相互接続構造、および、かかる相互接続構造を形成する方法を提供する。
【解決手段】相互接続構造は、少なくとも1つの開口を含む誘電物質を含む。少なくとも1つの開口内には、任意のバリア拡散層、結晶粒成長促進層、凝集めっきシード層、任意の第2のめっきシード層、および導電性構造が配置される。典型的にはCuである金属含有導電性物質を含む導電性構造は、バンブー微細構造を有し、平均グレイン・サイズが0.05ミクロンよりも大きい。いくつかの実施形態では、導電性構造は、(111)結晶方位を有する導電性結晶粒を含む。 (もっと読む)


【課題】カーボンナノチューブを有するプラグ配線において良好な電気的接続を得ることができるカーボンナノチューブ配線及びその製造方法を提供する。
【解決手段】第1配線層12上に層間絶縁膜13が形成され、層間絶縁膜13上に第2配線層14が形成されている。第1配線層12と第2配線層14との間の層間絶縁膜13内にはコンタクト孔15が形成される。コンタクト孔15内には、一端が第1配線層12に接続され、他端が第2配線層14に接続された複数のカーボンナノチューブ16が形成されている。さらに、層間絶縁膜13と第2配線層14との間にはストッパ膜17が形成され、ストッパ膜17の一部は複数のカーボンナノチューブ16の前記他端間に充填されている。 (もっと読む)


【課題】スルーホールの深さを正確に制御して、特定の配線層に選択的にエアギャップを形成した半導体装置を提供する。
【解決手段】本発明の一態様に係る半導体装置100は、半導体素子を有する半導体基板1と、半導体基板1の上方に形成され、配線10a、10b、10c、10d、配線10c、10dの周囲のエアギャップ101、およびエアギャップ101に連続するスルーホール102含む配線構造と、スルーホール102下に形成されたスルーホールストッパー103と、を有する。 (もっと読む)


【課題】信頼性の高い回路基板を低コストで供給する。
【解決手段】開口部101を介してチップ取り出し電極2を含む基板1の一部表面が露出するようメタルマスク100を基板1に被せ、イオンプレーティング法により金属導体を形成した後、メタルマスク100を剥離することによって、基板1の一部表面に形成された金属導体からなる配線層21を形成する。これにより、フォトリソグラフィー法を用いることなく、基板上に配線層21を直接形成することができるため、生産性が高く低コストな回路基板を提供することが可能となる。 (もっと読む)


【課題】同一の半導体基板上に容量素子を備えたメモリ回路部と論理回路部を有する半導体集積回路装置において、論理回路部のみからなる半導体集積回路装置と完全互換の配線設計パラメーターを確保し、かつ微細化が進んでもセル容量を確保する。
【解決手段】容量素子を備えたメモリ回路部と論理回路部を同一の半導体基板上に有する半導体集積回路装置において、論理回路部に形成される多層配線を絶縁分離する層間絶縁膜の少なくとも複数の配線層にまたがる領域に該容量素子を埋め込むことで、該容量素子の接続に必要な配線をすべて論理回路部の多層配線で構成することにより、論理回路部の設計パラメーターを、該メモリ回路部を有しない半導体集積回路装置と完全に同一とする。また多層配線の複数層に渡るように該容量素子を配置させることで該容量素子の高さを確保し、スケーリングが進んでも必要な容量値を確保する。 (もっと読む)


201 - 220 / 1,040