説明

Fターム[5F048BB06]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ゲート (19,021) | 材料 (10,904) | 多結晶Si (4,558) | N型ドープ多結晶Si (1,205)

Fターム[5F048BB06]に分類される特許

101 - 120 / 1,205


【課題】ゲート絶縁膜の厚さが異なる複数種類の電界効果トランジスタを有する半導体集積回路装置の信頼性を高める。
【解決手段】第1の電界効果トランジスタQ3及び第2の電界効果トランジスタQ4は埋込絶縁膜25によって分離され、ゲート絶縁膜31,32は各々熱酸化膜27、30と堆積膜27,28,29が積層され、第1の電界効果トランジスタの熱酸化膜は第2の電界効果トランジスタの熱酸化膜より厚く、各トランジスタの堆積膜は、各々各トランジスタの熱酸化膜よりも厚く構成され、第1の電界効果トランジスタのゲート電極は、ゲート幅方向における端部が埋込絶縁膜上に引き出され、かつ端部と埋込絶縁膜との間に第1の電界効果トランジスタの堆積膜が設けられ、第2の電界効果トランジスタのゲート電極は、ゲート幅方向における端部が埋込絶縁膜上に引き出され、かつ前記端部と埋込絶縁膜との間に第2の電界効果トランジスタの堆積膜が設けられる。 (もっと読む)


【課題】多層配線構造を使って、キャパシタンスが大きく、かつキャパシタンス値が安定なキャパシタ素子を半導体基板上に集積化する。
【解決手段】多層配線構造18は、少なくとも第1層目の層間絶縁膜16と、第1層目の層間絶縁膜中に埋設された第1配線層と、を含み、第1配線層は、第1の電源に接続され前記第1の層間絶縁膜中に埋設された第1の配線パタ―ン15C1と、第2の電源に接続され前記第1の層間絶縁膜中に埋設された第2の配線パタ―ン15C2と、を含み、第1の配線パタ―ンと前記第2の配線パタ―ンとは容量結合して第1のキャパシタを形成し、第1の配線パタ―ンは積層配線パタ―ン13C上に形成されて、前記第4の電極パターン13Gと容量結合して第2のキャパシタを形成し、第4の電極パターンは第2の配線パタ―ンに電気的に接続されている。 (もっと読む)


【課題】スプリットゲート構造の不揮発性メモリセルを有する半導体装置において、製造歩留まりを向上できる技術を提供する。
【解決手段】給電領域に位置するCGシャント部の選択ゲート電極CGの半導体基板1の主面からの第2高さd2が、メモリセル形成領域の選択ゲート電極CGの半導体基板1の主面からの第1高さd1よりも低くなるように、CGシャント部の選択ゲート電極CGを形成する。 (もっと読む)


【課題】NMOSFETにSiGe層が成長されることを抑制し、かつPMOSFETのSiGe層の形状不良の発生を抑止する。
【解決手段】半導体装置の製造方法は、半導体基板の第1領域に第1ゲート電極6Aを形成し、前記半導体基板の第2領域に第2ゲート電極6Bを形成し、前記第1ゲート電極の側壁に第1サイドウォール12Aを形成し、前記第2ゲート電極の側壁に第2サイドウォール12Bを形成し、前記半導体基板、前記第1ゲート電極、前記第2ゲート電極、前記第1サイドウォール及び前記第2サイドウォールを覆うように酸化膜20を形成し、前記酸化膜上に、前記第1領域を覆うようにレジストを形成し、前記レジストをマスクとして前記酸化膜20をエッチングすることにより、前記第2領域の前記酸化膜20を除去し、前記レジストを除去し、前記半導体基板及び前記第1領域の前記酸化膜20に対して、塩素を含むガスを用いてプラズマ処理を行う。 (もっと読む)


【課題】デュアルゲート構造を有する半導体装置の製造技術において、MISFETのしきい値電圧の上昇を抑制することができる製造技術を提供する。
【解決手段】ポリシリコン膜PF1上にレジスト膜FR2を形成する。そして、レジスト膜FR2に対して露光・現像処理を施すことにより、レジスト膜FR2をパターニングする。その後、パターニングしたレジスト膜FR2をマスクにしたイオン注入法により、露出しているnチャネル型MISFET形成領域NTRのポリシリコン膜PF1にアルゴン(Ar)を導入する。このアルゴン注入工程により、nチャネル型MISFET形成領域NTRのポリシリコン膜PF1はアモルファス化する。 (もっと読む)


【課題】サリサイドプロセスで金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】ゲート電極GEと上部に金属シリサイド層11bが形成されたソース・ドレイン領域とを有するMISFETが半導体基板1の主面に複数形成されている。金属シリサイド層11bは、Pt,Pd,V,Er,Ybからなる群から選択された少なくとも一種からなる第1金属元素およびニッケルのシリサイドからなる。半導体基板1の主面に形成された複数のMISFETのソース・ドレイン領域のうち、ゲート長方向に最も近接して隣り合うゲート電極GE間に配置されたソース・ドレイン領域のゲート長方向の幅W1cよりも、金属シリサイド層11bの粒径が小さい。 (もっと読む)


【課題】半導体装置の性能を向上させる。また、半導体装置の信頼性を確保する。また、半導体装置のチップサイズの縮小を図る。特に、SOI基板上に形成されたMOSFETを有する半導体装置の信頼性を損なわずにゲート電極の下部のウエルの電位を制御し、寄生容量の発生を防ぐ。また、MOSFETにおける欠陥の発生を防ぐ。
【解決手段】ゲート電極配線3に形成された孔部27内を通るウエルコンタクトプラグ8により、ゲート電極2の下部のウエルの電位を制御することで寄生容量の発生を防ぐ。また、ゲート電極2に沿って素子分離領域4を延在させることで、ゲッタリング効果によりゲート絶縁膜における欠陥の発生を防ぐ。 (もっと読む)


【課題】プラズマエッチングチャンバ内でデュアルドープゲート構造をエッチングするための方法を提供する。
【解決手段】エッチングされるポリシリコンフィルムを保護するパターンを設ける工程、次いで、プラズマが点火され、保護されていないポリシリコンフィルムのほぼすべてがエッチングされる。次いで、シリコン含有ガスを導入しつつポリシリコンフィルムの残りをエッチングする。また、エッチング処理中にシリコン含有ガスを導入するよう構成されたエッチングチャンバ。 (もっと読む)


【課題】サリサイドプロセスにより金属シリサイド層を形成した半導体装置の性能を向上させる。
【解決手段】全反応方式のサリサイドプロセスを用いず、部分反応方式のサリサイドプロセスによりゲート電極8a,8b、n型半導体領域9bおよびp型半導体領域10bの表面に金属シリサイド層41を形成する。金属シリサイド層41を形成する際の熱処理では、ランプまたはレーザを用いたアニール装置ではなく、カーボンヒータを用いた熱伝導型アニール装置を用いて半導体ウエハを熱処理することにより、少ないサーマルバジェットで精度良く薄い金属シリサイド層41を形成し、最初の熱処理によって金属シリサイド層41内にNiSiの微結晶を形成する。 (もっと読む)


【課題】ゲート絶縁膜の一部を高誘電体膜で構成した場合に好適な2種ゲート構造を提供する。
【解決手段】基板1上に窒化シリコン膜よりも比誘電率が大きい高誘電体膜、例えば酸化チタン膜6(内部回路のゲート絶縁膜)を堆積した後、酸化チタン膜6の上部に窒化シリコン膜7を堆積する。窒化シリコン膜7は、次の工程で基板1の表面を熱酸化する時に酸化チタン膜6が酸化されるのを防ぐ酸化防止膜として機能する。次に、内部回路領域に窒化シリコン膜7と酸化チタン膜6を残し、I/O回路領域の窒化シリコン膜7と酸化チタン膜6を除去した後、基板1を熱酸化することによって、I/O回路領域の基板1の表面に酸化シリコン膜8(I/O回のゲート絶縁膜)を形成する。 (もっと読む)


【課題】ポリシリコン抵抗体の上に急速熱酸化処理により形成され、シリサイド化ブロック用酸化膜の一部として用いる熱酸化膜の膜厚が多種のポリシリコン抵抗体間でばらつくことにより、ポリシリコン抵抗体が部分的にシリサイド化されることを回避する。
【解決手段】多種のポリシリコン抵抗体全てにおいて、急速熱酸化処理によりポリシリコン抵抗体上に生成される熱酸化膜の膜厚と、ポリシリコン抵抗体を含む非シリサイド化領域に形成された保護酸化膜の膜厚との和が、シリサイド化ブロック用酸化膜としてのブロック性能を確保するために必要な膜厚以上となるように、保護酸化膜の膜厚を決定する。多種のポリシリコン抵抗体間で急速熱酸化処理により生成される熱酸化膜の膜厚に差が生じる場合でも、熱酸化膜と保護酸化膜とをシリサイド化ブロック用酸化膜として用いることにより、充分なブロック性能を確保することができる。 (もっと読む)


【課題】N型トランジスタ及びP型トランジスタの双方で可及的に製造工程を共通にして、工程数の可及的な削減を図るも、N型トランジスタ及びP型トランジスタの夫々に適合した応力を適宜印加し、トランジスタ性能の大幅な向上を実現する。
【解決手段】N型トランジスタでは、ゲート電極14a及びサイドウォール絶縁膜17を覆うようにN型領域10aの全面に引張応力膜22を形成し、P型トランジスタでは、サイドウォール17絶縁膜上のみに引張応力膜22を形成し、更にゲート電極14b及び引張応力膜22を覆うようにP型領域10bの全面に圧縮応力膜24を形成する。 (もっと読む)


【課題】MOSトランジスタ、容量素子を有する半導体装置の製造コストを削減できる製造方法を提供する。
【解決手段】MOSトランジスタのゲート電極が第1のポリシリコン膜から成り、容量が第1のポリシリコン膜と容量膜と第2のポリシリコン膜から成り、ノーマリーオフトランジスタと容量下部電極の低抵抗化を同時に行い、N型MOSトランジスタと容量上部電極の低抵抗化を同時に行うことを特徴とする半導体回路装置の製造方法。 (もっと読む)


【課題】高速動作が可能な絶縁ゲート型FETによる駆動回路で表示装置を形成し、さらに、単位画素当たりの画素電極の面積を小さくしても十分な保持容量が得られるアクティブマトリクス型表示装置を提供することを目的とする。
【解決手段】単結晶半導体を活性層とした絶縁ゲート型電界効果トランジスタによるアクティブマトリクス回路を備えた半導体装置において、前記絶縁ゲート型電界効果トランジスタ上に有機樹脂絶縁層を形成し、該有機樹脂絶縁層上に形成された遮光層と、該遮光層に密接して形成された誘電体層と、前記絶縁ゲート型電界効果トランジスタに接続された光反射性電極とから保持容量を形成する。 (もっと読む)


【課題】ゲート電極の不純物分布のバラツキを抑え、STIエッジ部分への電界集中をより効果的に制御でき、実効チャネル幅が狭くなることを抑制できる半導体装置およびその製造方法を提供する。
【解決手段】P型のシリコン基板10の一主面11に、トレンチ22と絶縁物24とを有する素子分離領域25と、素子分離領域25に囲まれた素子領域12であって、シリコン基板10の側面上部17が、トレンチ25に露出した素子領域12を形成し、ゲート絶縁膜40をシリコン基板10の上面14から側面上部17に延在して形成し、N型ポリシリコン32とN型ポリシリコン32の両側のP型ポリシリコン34と、P型ポリシリコン34の下側の側面上部17に沿って設けられたN型ポリシリコン36とを有するゲート電極30を形成する。 (もっと読む)


【課題】微細化されたMISFETのゲート電極の加工精度を向上することができる技術を提供する。
【解決手段】シリコン上にニッケルプラチナ合金膜を形成する(S101)。そして、第1加熱処理を実施する(S102)。このとき、第1加熱処理において、加熱温度は250℃〜270℃であり、加熱時間は30秒未満である。続いて、未反応のニッケルプラチナ合金膜を除去する(S103)。その後、第2加熱処理を実施する(S104)。このとき、第2加熱処理において、加熱温度は、450℃〜600℃である。 (もっと読む)


【課題】占有面積が小さく、所望の耐圧と熱破壊の防止を両立した保護トランジスタを提供する。
【解決手段】ゲート長方向の一方の側でゲート直下の領域に隣接しているゲート・ドレイン間領域REgdが、ゲート幅方向に互いに隣接する領域として、第1領域REgd1と第2領域REgd2とを有する。第1領域は、ドレイン耐圧が相対的に大きく、第2領域は、ドレイン電極(ドレインコンタクト部に設けられているシリサイド層10D)からの距離が平面視で第1領域より遠く、ドレイン耐圧が相対的に小さい。このため、耐圧が低いゲート・ドレイン間領域REgd2の加熱部分Aからドレインコンタクト部が遠いが、面積は小さく(または拡大しない)構造となっている。 (もっと読む)


【課題】高誘電率ゲート絶縁膜、及び、ゲート電極としてメタル膜を含む半導体装置において、逆短チャネル効果の発生を防止して高性能化を実現する。
【課題手段】半導体装置は、半導体基板101の上に形成されたランタンを含有する高誘電率ゲート絶縁膜102と、高誘電率ゲート絶縁膜102の上に形成されたキャップ膜103と、キャップ膜103の上に形成されたメタル膜104と、メタル膜104の上に形成されたポリシリコン膜105と、高誘電率ゲート絶縁膜102、キャップ膜103、メタル膜104、及びポリシリコン膜105それぞれの両側面に形成されたランタンを含有するゲート側壁絶縁膜106とを備えている。 (もっと読む)


【課題】 チャネルカット領域を形成するために、バーズビークの下方または近傍に選択的にイオン注入を行う工程が必要である。製造コスト低減のために、工程数の削減が求められている。
【解決手段】 半導体基板の表面に、活性領域を画定する素子分離絶縁膜が形成されている。活性領域の外周線から、素子分離絶縁膜と半導体基板との界面に沿って隙間が形成されている。半導体基板の上に、活性領域と交差し、両端が素子分離絶縁膜の上まで延在するゲートパターンが形成されている。ゲートパターンは、活性領域上においては、第1の酸化膜と電極とを含み、ゲート電極が素子分離絶縁膜の上まで延在する。隙間内の半導体基板の表面に、第1の酸化膜に連続する第2の酸化膜が形成されている。隙間が、ゲート電極に連続する半導体部材で埋め込まれている。 (もっと読む)


【課題】リソグラフィーパターン転写に存在する変動性によって発生する問題の解決、STIを使用せず、構造を厳密化して空間を節約すること、転写されるべきより規則的かつ緻密な構造の提供。
【解決手段】SeOI基板上に形成された半導体デバイスであり、電界効果トランジスタから形成された行の形で配置されパターンのアレイを備え、電界効果トランジスタのチャンネル領域の上方に形成されたフロント・コントロール・ゲート領域を備え、各行に含まれるソース領域およびドレイン領域も同じ寸法を有し、かつ所定の寸法を有するフロント・コントロール・ゲート領域だけ隔てられ、パターンに含まれる少なくとも1つのトランジスタT〜Tがチャンネル領域の下方に存在するベース基板内に形成されたバック・コントロール・ゲート領域を有し、トランジスタのしきい電圧をシフトさせて、バック・コントロール・ゲート領域がバイアスされることを可能とする。 (もっと読む)


101 - 120 / 1,205