説明

Fターム[5F048BB07]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ゲート (19,021) | 材料 (10,904) | 多結晶Si (4,558) | P型ドープ多結晶Si (956)

Fターム[5F048BB07]に分類される特許

41 - 60 / 956


【課題】工程数を削減して生産性を向上できる構造の半導体装置およびその製造方法を提供する。
【解決手段】半導体装置の製造方法は、半導体層1にトレンチ20を形成する工程と、トレンチ2の内壁およびトレンチ2外の表面を覆うように半導体層1上に絶縁膜3を形成する工程と、トレンチ2を埋め尽くし、トレンチ2外の絶縁膜3上に堆積されるように導電性のポリシリコン膜4を形成する工程と、トレンチ2内、およびトレンチ2外の絶縁膜3上の所定領域にポリシリコン膜4が残るように、当該ポリシリコン膜4を選択的に除去するポリシリコンエッチング工程とを含む。 (もっと読む)


【課題】より良い製造工程で良好な特性の半導体装置を製造する技術を提供する。
【解決手段】導電性膜上に第1領域1Asを覆い、第1領域と隣接する第2領域1Adを開口したマスク膜を形成し、導電性膜中に不純物イオンを注入し、導電性膜を選択的に除去することにより、第1領域と第2領域との境界を含む領域にゲート電極GE1を形成する。その後、熱処理を施し、ゲート電極の側壁に側壁酸化膜7を形成し、ゲート電極の第2領域側の端部の下方に位置する半導体基板中にドレイン領域を形成し、ゲート電極の第1領域側の端部の下方に位置する半導体基板中にソース領域を形成する。かかる工程によれば、ドレイン領域側のバーズビーク部7dを大きくし、ソース領域側のバーズビーク部を小さくできる。よって、GIDLが緩和され、オフリーク電流を減少させ、また、オン電流を増加させることができる。 (もっと読む)


【課題】ゲートメタル電極とHigh−k膜とを用いた半導体装置において、低抵抗なゲートメタル電極により仕事関数を調整できるようにする。
【解決手段】半導体装置は、Nウェル102の上に形成された第1のゲート絶縁膜109と、該第1のゲート絶縁膜109の上に形成された第1のゲート電極とを備えている。第1のゲート絶縁膜109は、第1の高誘電体膜109bを含み、第1のゲート電極は、第1の高誘電体膜109bの上に形成され、TiN層110aとAlN層110bとが交互に積層された第1の実効仕事関数調整層110を含む。TiN層110aはAlN層110bよりも抵抗が小さく、且つ、AlN層110bはTiN層110aよりも実効仕事関数の調整量が大きい。 (もっと読む)


【課題】ゲート絶縁膜をHigh−k材料で構成し、ゲート電極をメタル材料で構成するHK/MGトランジスタを有する半導体装置において、安定した動作特性を得ることのできる技術を提供する。
【解決手段】素子分離部2で囲まれた活性領域14に位置し、後の工程でコア用nMISのゲートGが形成される領域Ga1のみに、Nch用ゲートスタック構造NGを構成する積層膜を形成し、上記領域Ga1以外の領域NGa1には、Pch用ゲートスタック構造PGを構成する積層膜を形成する。これにより、コア用nMISのゲートGが形成される領域Ga1へ素子分離部2から引き寄せられる酸素原子の供給量を減少させる。 (もっと読む)


【課題】構造が簡単なトランジスタにより、サステイン耐圧を改善し且つサステイン耐圧のばらつきの抑制及びトランジスタ形成後のドレイン抵抗及び接合プロファイルの調整が可能な、自由度が高い半導体装置を実現できるようにする。
【解決手段】半導体装置は、p型ウェル102に形成され、互いに並行に延びると共に、ゲート長方向の幅が比較的に大きい第1ゲート電極125と、ゲート長方向の幅が比較的に小さい第2ゲート電極126と、p型ウェル102における第1ゲート電極125及び第2ゲート電極126同士の間に形成されたLDD低濃度領域135と、該p型ウェル102における第1ゲート電極125及び第2ゲート電極126のそれぞれの外側に形成されたLDD中濃度領域134とを有している。LDD低濃度領域135の不純物濃度は、LDD中濃度領域134の不純物濃度よりも低い。 (もっと読む)


【課題】モリセル領域内と周辺回路領域内およびそれらとの間に実施的に段差がない状態でメタル積層配線を形成し、段差部でメタル積層配線が断線する問題を回避する。センスアンプを構成するNMOSトランジスタとPMOSトランジスタのアンバランス動作を解消して動作遅延を軽減する。
【解決手段】半導体装置は、半導体基板上にメモリセル領域と周辺回路領域とを有し、メモリセル領域と周辺回路領域に跨って延在し、メモリセル領域ではビット線を構成し、周辺回路領域では周辺回路用配線の一部とゲート電極の一部を構成するメタル積層配線を有する。メモリセル領域に配置されるメタル積層配線の底面の半導体基板上面からの高さが、周辺回路領域に配置されるメタル積層配線の底面の半導体基板上面からの高さと実質的に同じである。 (もっと読む)


【課題】1つの半導体基板上に形成されるMOSFETとCMD素子との性能向上の両立を図る。
【解決手段】画素領域を形成するCMD素子のゲート電極には低い不純物濃度を与えて変換効率を向上させる。一方、ロジック領域を形成するMOSFETのゲート電極には高い不純物濃度を与えてオン/オフ特性を向上させる。製造工程においては、半導体基板400の画素領域110とロジック領域120に対して共通に形成した電極材料層500に対してCMD素子のゲート電極に対応する不純物濃度を与えるためのイオン注入を行う。次に、画素領域110をマスキングしてイオン注入を行って、ロジック領域120の電極材料層500にMOSFETのゲート電極に対応する不純物濃度を与える。その後、電極材料層500からゲート電極を形成する。 (もっと読む)


【課題】CMOSトランジスタにおいて、ボロンの染み出しを抑制して閾値電圧を安定させると共に、ノイズを低減できるようにした半導体装置及びその製造方法を提供する。
【解決手段】CMOSトランジスタをシリコン基板1上に備える半導体装置であって、
シリコン基板1上に設けられ、窒素とフッ素とを含有するシリコン酸化膜からなるゲート酸化膜5と、ゲート酸化膜5上に設けられ、ポリシリコンからなるゲート電極7、8と、を有し、ゲート酸化膜5中のゲート電極7、8近傍の位置に窒素濃度のピークがあり、ゲート酸化膜5とシリコン基板1との界面付近の窒素濃度は0.5atom%以下であり、ゲート酸化膜5中におけるフッ素濃度は1atom%以上であり、当該フッ素によりゲート酸化膜5とシリコン基板1との界面のダングリングボンドが終端化されている。 (もっと読む)


【課題】コンタクトホールの位置合わせが容易で、コンタクト抵抗の低いフィン型の電界効果型トランジスタを有する半導体装置に提供する。
【解決手段】フィン型の電界効果型トランジスタであって、ソース/ドレイン領域503の少なくともその幅が最も大きい部分では半導体領域502の幅よりも大きく、かつソース/ドレイン領域503の最上部側から基体側に向かって連続的に幅が大きくなっている傾斜部510を有し、該傾斜部表面にシリサイド膜504が形成されていることを特徴とする半導体装置とする。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】本発明の半導体装置は、面方位が(110)のシリコン基板1と、pMIS領域1Bに形成されたpチャネル型電界効果トランジスタを有する。このpチャネル型電界効果トランジスタは、ゲート絶縁膜3を介して配置されたゲート電極GE2と、ゲート電極GE2の両側のシリコン基板1中に設けられた溝g2の内部に配置され、Siより格子定数が大きいSiGeよりなるソース・ドレイン領域と、を有する。上記溝g2は、ゲート電極GE2側に位置する側壁部において、第1の斜面と、第1の斜面と交差する第2の斜面と、を有する。このように、溝g2の形状をΣ形状とすることで、pチャネル型電界効果トランジスタのチャネル領域に加わる圧縮歪みを大きくすることができる。 (もっと読む)


【課題】半導体装置の特性を向上させる。
【解決手段】本発明の半導体装置は、面方位が(110)のシリコン基板1と、pMIS領域1Bに形成されたpチャネル型電界効果トランジスタを有する。このpチャネル型電界効果トランジスタは、ゲート絶縁膜3を介して配置されたゲート電極GE2と、ゲート電極の両側のシリコン基板1中に設けられた溝g2の内部に配置され、Siより格子定数が大きいSiGeよりなるソース・ドレイン領域と、を有する。上記溝g2は、ゲート電極側に位置する側壁部において、面方位が(100)の第1の斜面と、第1の斜面と交差する面方位が(100)の第2の斜面と、を有する。上記構成によれば、基板の表面(110)面と(100)面とのなす角は45°となり、比較的鋭角に第1斜面が形成されるため、効果的にpチャネル型のMISFETのチャネル領域に圧縮歪みを印加することができる。 (もっと読む)


【課題】高性能・高信頼性を実現しうる半導体装置の製造方法を提供する。
【解決手段】半導体基板にアライメントマークとなる溝を形成し、アライメントマークに位置合わせして素子分離領域となる領域を露出し素子領域となる領域を覆うマスク膜を形成し、マスク膜をマスクとして半導体基板を異方性エッチングし、半導体基板の素子分離領域となる領域に素子分離溝を形成し、素子分離溝を絶縁膜で埋め込み素子分離絶縁膜を形成する半導体装置の製造方法において、溝を形成する工程では、マスク膜の厚さに相当する深さよりも浅い溝を形成する。 (もっと読む)


【課題】トランジスタのチャネル不純物の拡散を抑制し、高性能・高信頼性を実現しうる半導体装置の製造方法を提供する。
【解決手段】半導体基板第1及び第2の領域に非晶質化のためのイオン注入を行い、第1の領域及び第2の領域に第1の不純物及び第2の不純物をそれぞれイオン注入し、注入した不純物を活性化して第1の不純物層及び第2の不純物層を形成し、不純物層を形成した半導体基板上に半導体層をエピタキシャル成長し、第1及び第2の領域上にゲート絶縁膜を成長し、第1及び第2のゲート絶縁膜上に第1及び第2のゲート電極をそれぞれ形成する。 (もっと読む)


【課題】低廉なプロセスにて高性能・高信頼性を実現しうる半導体装置及びその製造方法を提供する。
【解決手段】第1の領域に形成された第1の不純物層及び第1のエピタキシャル半導体層と、第1のエピタキシャル半導体層上にゲート絶縁膜を介して形成された第1のゲート電極と、第1の領域に形成された第1のソース/ドレイン領域とを有する第1のトランジスタと、第2の領域に形成された第2の不純物層及び第1のエピタキシャル半導体層よりも薄い第2のエピタキシャル半導体層と、第2のエピタキシャル半導体層上にゲート絶縁膜を介して形成された第2のゲート電極と、第2の領域に形成された第2のソース/ドレイン領域とを有する第2のトランジスタとを有する。 (もっと読む)


【課題】金属電極と該金属電極の上に形成されたシリコン電極とを有するゲート電極を備えた電界効果型トランジスタを実現する際に、金属電極とシリコン電極との界面に生じる界面抵抗を低減できるようにする。
【解決手段】半導体装置は、半導体基板100における第1の活性領域103aに形成されたP型の電界効果型トランジスタを備えている。第1の電界効果型トランジスタは、第1の活性領域103aの上に形成された第1のゲート絶縁膜106aと、第1のゲート絶縁膜106aの上に形成された第1のゲート電極115aとを有している。第1のゲート電極115aは、第1のゲート絶縁膜106aの上に形成された第1の金属電極107aと、該第1の金属電極107aの上に形成された第1の界面層110aと、該第1の界面層110aの上に形成された第1のシリコン電極111aとを有している。 (もっと読む)


【課題】ゲート閾値の変動を抑制または防止できる半導体素子を提供する。
【解決手段】半導体素子1は、n型エピタキシャル層8と、n型エピタキシャル層8の表層部に形成されたボディ領域12と、ボディ領域12の表層部に形成されたn型ソース領域16と、n型エピタキシャル層8上に形成されたゲート絶縁膜19と、ゲート絶縁膜19上に形成されたゲート電極20およびゲート保護ダイオード30とを含む。ゲート保護ダイオード30は、第1のp型領域31とn型領域32と第2のp型領域33とを含む。第1のp型領域31とn型領域32によって第1のダイオード30Aが構成されている。n型領域32と第2のp型領域33によって第2のダイオード30Bが構成されている。第1のp型領域31はゲート電極20に接続されている。第2のp型領域33はソース電極27を介してソース電極27に接続されている。 (もっと読む)


【課題】1つのチップ内に、高駆動性が求められるpMISFET及び高信頼性が求められるpMISFETの両方を形成してCMOSトランジスタの品質向上をはかる。
【解決手段】Siチャネルを有する第1のpMISFET領域121、Siチャネルを有する第2のpMISFET領域122、及びSiチャネルを有するnMISFET領域123を備えた半導体装置であって、第1のpMISFET領域121に、Siチャネルを挟んで該Siチャネルに第1の圧縮歪みを与える第1のSiGe層321が埋め込み形成され、第2のpMISFET領域122に、Siチャネルを挟んで該Siチャネルに第1の圧縮歪みとは大きさの異なる第2の圧縮歪みを与える第2のSiGe層322が埋め込み形成されている。 (もっと読む)


【課題】半導体装置の製造方法において工程数の削減を図ること。
【解決手段】領域HVp、LVn、LLnに第1〜第3のゲート電極36a〜36cを形成する工程と、領域LVnを覆い、かつ、領域HVpと領域LLnを露出するマスクパターン40を形成する工程と、マスクパターン40をマスクにしたイオン注入でp型ソースドレインエクステンション41とp型ポケット領域42を形成する工程と、マスクパターン40をマスクにしたイオン注入でn型ソースドレインエクステンション45を形成する工程と、領域HVpと領域LLnを覆い、かつ、第2の領域LVnを露出するマスクパターン52を形成する工程と、マスクパターン52をマスクにしてインジウムをシリコン基板1にイオン注入し、p型ポケット領域54を形成する工程とを有する半導体装置の製造方法による。 (もっと読む)


【課題】トランジスタの耐圧を向上し得る半導体装置及びその製造方法を提供する。
【解決手段】半導体基板10上にゲート絶縁膜16を介して形成されたゲート電極18cと、ゲート電極の一方の側の半導体基板に形成された第1導電型のドレイン領域54aと、ゲート電極の他方の側の半導体基板に形成された第1導電型のソース領域54bと、ドレイン領域からゲート電極の直下に達する第1導電型の第1の不純物領域56と、ソース領域と第1の不純物領域との間に形成された、第1導電型と反対の第2導電型の第2の不純物領域58とを有し、ゲート電極は、第1導電型の第1の部分48aと、第1の部分の一方の側に位置する第2導電型の第2の部分48bとを含み、ゲート電極の第2の部分内に、下端がゲート絶縁膜に接する絶縁層24が埋め込まれている。 (もっと読む)


【課題】イオン注入で所定の元素をゲート電極に導入して、異なる仕事関数を有するゲート電極のMOSトランジスタを形成する際に、製造工程の増加を抑制して低コストの半導体装置を提供する。
【解決手段】半導体装置の製造方法では、導電膜上5a,5bにおいて、第1の領域1aから第2の領域1bまでを覆う第1のマスク6b、第2の領域の上方にスペース部7b、及び第2の領域1bから第3の領域1cまでを覆う第2のマスク6cを有するマスクパターンを設ける。スペース部内、並びに第1及び第2のマスクの第1の側面にサイドウォール膜7aを設ける。第1の側面に接するサイドウォール膜の下に位置する導電膜の領域内に不純物を注入する。サイドウォール膜をマスクに用いて異方性エッチングを行うことによりゲート絶縁膜及びゲート電極を形成してMOSトランジスタ。 (もっと読む)


41 - 60 / 956