説明

Fターム[5F048BD01]の内容

MOSIC、バイポーラ・MOSIC (97,815) | チャネル (4,415) | 形状 (1,258)

Fターム[5F048BD01]の下位に属するFターム

Fターム[5F048BD01]に分類される特許

41 - 60 / 986


【課題】素子分離領域を縮小化しつつ、第1のMISトランジスタの閾値電圧を、第2のMISトランジスタの閾値電圧に比べて低くする。
【解決手段】半導体装置は、第1のMISトランジスタTrlと第2のMISトランジスタTrhとを備えている。第1のMISトランジスタTrlは、第1の活性領域1aにおける第1導電型の第1のエクステンション領域8Aの下に形成された第2導電型の第1のポケット領域9Aと、第1の活性領域1aにおける第1のポケット領域9Aの下に形成された拡散抑制不純物を含む第1の拡散抑制領域7Aとを備えている。第2のMISトランジスタTrhは、第2の活性領域に1bおける第1導電型の第2のエクステンション領域8Bの下に形成された第2導電型の第2のポケット領域9Bとを備えている。第1のポケット領域9Aの拡散深さは、第2のポケット領域9Bの拡散深さに比べて浅い。 (もっと読む)


【課題】FETデバイスにおける閾値電圧をより良く制御できるデバイスの提供。
【解決手段】基板101と、基板101の上のSiGe層103と、SiGe層上の半導体層105と、基板、SiGe層及び半導体層に隣接した絶縁層109aと、絶縁層に隣接した一対の第1のゲート構造体111と、絶縁層上の第2のゲート構造体113とを含む電界効果トランジスタ(FET)と、FETを形成する方法である。絶縁層は、SiGe層の側面、並びに半導体層の上面、半導体層の下面及び導体層の側面に隣接していることが好ましい。SiGe層は、炭素を含むことが好ましい。一対の第1のゲート構造体が、第2のゲート構造体に対して実質的に横断方向にあることが好ましい。さらに、第1のゲート構造体の対は、絶縁層によりカプセル封入されることが好ましい。 (もっと読む)


【課題】チャネル領域に歪みを導入して半導体装置の特性を向上するとともに、応力印加膜に覆われたゲート配線の断線を防止する。
【解決手段】半導体装置は、第1の素子形成領域101に形成された第1の活性領域104と、第2の素子形成領域102に形成された第2の活性領域105と、第1の活性領域104上から第2の活性領域105上に亘って延伸するゲート配線103と、第1の活性領域104のうちゲート配線103の直下領域に形成された第1のチャネル領域80と、第2の活性領域のうちゲート配線の直下領域に形成された第2のチャネル領域90とを備える。ゲート配線103は、第1の活性領域104上に形成され、引張り応力又は圧縮応力である第1の応力を有する第1の領域164と、第1の領域164よりも緩和された第1の応力を有する第2の領域162とを有している。 (もっと読む)


【課題】 シリコンビームを使用しかつダブルゲートを有する半導体装置のおけるプロセスばらつきによる抵抗値ばらつきを防止する。
【解決手段】 端部に凹部を有する基板1と、基板1の凹部に一部が埋め込まれた一対のゲート電極4と、基板1の表面であって一対のゲート電極4の間に形成された拡散層7を有し、ゲート電極4と拡散層7の間の電位を変化させることにより、拡散層7の抵抗値を変化させる。 (もっと読む)


【課題】実施形態は、異なる種類の半導体素子のそれぞれに適合した厚さを有する半導体層が1つの絶縁膜上に設けられた半導体基板およびその製造方法、その半導体基板を用いた半導体装置を提供する。
【解決手段】実施形態に係る半導体基板10は、第1絶縁層5と、前記第1絶縁層の上に設けられた半導体層7とを有する半導体基板であって、前記半導体層の中に選択的に設けられ、前記半導体層の表面に平行に延在し、その延在方向の長さが前記第1絶縁層よりも短い第2絶縁層13と、前記半導体層の表面から前記第1絶縁膜に至る深さに延設され、前記半導体層の前記第2絶縁層を含む部分と、前記半導体層の残りの部分と、を電気的に分離する第3絶縁層15と、を備える。 (もっと読む)


【課題】短チャネル効果を抑制させつつ微細化を行い、低消費電力化した半導体装置を提供する。
【解決手段】溝部および該溝部を挟んで形成された一対の低抵抗領域を有する半導体基板と、半導体基板上の第1のゲート絶縁膜と、第1のゲート絶縁膜を介し、溝部と重畳するゲート電極と、ゲート電極を覆って設けられた第2のゲート絶縁膜と、第2のゲート絶縁膜上の、溝部を挟んで設けられた一対の電極と、一対の電極と接する半導体膜と、を有し、一対の低抵抗領域の一方と、一対の電極の一方が電気的に接続されている積層されたトランジスタを形成し、一方はn型半導体からなるトランジスタであり、他方はp型半導体からなるトランジスタにより形成させることによって、相補型MOS回路を形成する。 (もっと読む)


【課題】 ESD対策のための特別な工程や専用マスクを増やすことなく、ESD放電能力の向上を図る事が可能な半導体装置を実現する。
【解決手段】
基板上の所定の領域に、MOSFET構造のHVトランジスタ23と保護抵抗回路25からなる高耐圧用のESD保護素子21、及び、MOSFET構造のLVトランジスタ24と保護抵抗回路26からなる低耐圧用のESD保護素子22が形成されている。当該保護抵抗回路25(26)は、ゲート電極8b(8d)を挟んで互いに対抗するようにウェル2(3)の表層に分離形成される抵抗ドリフト領域16(17)の双方が、同導電型の低濃度ドリフト領域5c(5d)により電気的に接続されていることを除き、HVトランジスタ23(LVトランジスタ24)と同一の構造である。 (もっと読む)


【課題】トランジスタを覆うシリコン窒化膜を用いて、該トランジスタの駆動能力をより一層向上することができるようにする。
【解決手段】Pウェル102の上に、NMOSゲート絶縁膜104を介在させて形成されたNMOSゲート電極106と、Pウェル102におけるNMOSゲート電極106の両側方の領域に形成されたn型ソースドレイン領域112と、Pウェル102の上に形成され、NMOSゲート電極106及びn型ソースドレイン領域112を覆うように形成されたシリコン窒化膜118とを有している。シリコン窒化膜118を構成するシリコンは、その同位体29Si又は30Siの比率が50%以上である。 (もっと読む)


【課題】簡易な構成であり且つトランジスタ毎にしきい値電圧が異なる半導体集積回路のトランジスタ素子の提供。
【解決手段】ソース領域16A,16D、ドレイン領域16B,16Cおよびチャネル領域を備えた支持基板(Si基板2)上に、ゲート電極10とゲート電極10を覆う中間膜18とを備える第1および第2のトランジスタ構造を、少なくとも有し、前記第1のトランジスタ構造におけるゲート電極10とチャネル領域とが重なる領域には、中間膜18上に、第1のトランジスタ構造のしきい値電圧に変動を及ぼす範囲でゲート電極10とチャネル領域とが重なる領域の大部分を覆うよう支持基板(Si基板2)に応力を印加する応力膜22を有し、前記第2のトランジスタ構造におけるゲート電極10とチャネル領域とが重なる領域には、中間膜18上に、支持基板(Si基板2)に応力を印加する応力膜22を有さない半導体集積回路のトランジスタ素子。 (もっと読む)


【課題】同じ拡散層に形成されて対照的な動作を行うトランジスタは、拡散層に対して対照的に配置されるのが一般的である。この固定観念を捨てることで、半導体集積回路装置の設計に係る制約の一部を回避し、サイズダウンおよび製造コストの節約を可能とするレイアウトを用いた半導体集積回路装置を提供する。
【解決手段】本発明によれば、同じ拡散層に形成されて対照的な動作を行う2つのトランジスタを、あえて非対称的に配置することで、半導体集積回路装置のさらなるサイズダウンが可能となる。 (もっと読む)


【課題】製造プロセスが複雑になるといったことを防ぎつつ、n型及びp型MOSトランジスタについて両方の性能を向上させた半導体装置を提供する。
【解決手段】半導体基板1の面内に、n型MOSトランジスタと、p型MOSトランジスタとを備える半導体装置であって、n型MOS型トランジスタが形成される第1の拡散層2aの間を絶縁分離する第1の絶縁層3aと、p型MOS型トランジスタが形成される第2の拡散層2cの間を絶縁分離する第2の絶縁層3bとを備え、第1の絶縁層3aは、半導体基板1の表層に形成された第1の溝部4aに、シリコン窒化膜5と、このシリコン窒化膜5の上にシリコン酸化膜6とを埋め込むことによって形成され、第2の絶縁層3bは、半導体基板1の表層に第1の溝部4aよりも幅広となるように形成された第2の溝部4bに、シリコン酸化膜6を埋め込むことによって形成されている。 (もっと読む)


【課題】 層間絶縁膜をCMP法で研磨、平坦化する際、MOS型トランジスタのチャネル領域に応力を与えるためにゲート電極を覆うように形成される応力ライナー膜が研磨されて、トランジスタ特性の変動やバラツキが発生しないようにする。
【解決手段】 第1活性領域(例えばPチャネルトランジスタ形成領域)上のゲート電極(シリコン膜14と金属シリサイド膜15との積層膜)上には第1応力膜(圧縮応力ライナー膜)16のみを形成し、第2活性領域(例えばNチャネルトランジスタ領域)上のゲート電極上には第2応力膜(引っ張り応力ライナー膜)18のみを形成する。一方、素子分離10上のゲート電極上には第1および第2応力膜16、18の積層膜を形成する。層間絶縁膜20のCMP法による研磨は、素子分離10上の第2応力膜18の露出後に停止する。 (もっと読む)


【課題】製造効率の向上、コストダウン、信頼性の向上を実現する。
【解決手段】第1導電型の第1電界効果トランジスタを第1基板に設ける。そして、第1導電型と異なる第2導電型の第2電界効果トランジスタを第2基板に設ける。そして、第1基板と第2基板とのそれぞれを対面させて貼り合わせる。そして、第1電界効果トランジスタと第2電界効果トランジスタとの間を電気的に接続させる。 (もっと読む)


【課題】多層配線を形成する際における配線の加工に要する工程を簡便にすることを課題
とする。また、開口径の比較的大きいコンタクトホールに液滴吐出技術やナノインプリン
ト技術を用いた場合、開口の形状に沿った配線となり、開口の部分は他の箇所より凹む形
状となりやすかった。
【解決手段】高強度、且つ、繰り返し周波数の高いパルスのレーザ光を透光性を有する絶
縁膜に照射して貫通した開口を形成する。大きな接触面積を有する1つの開口を形成する
のではなく、微小な接触面積を有する開口を複数設け、部分的な凹みを低減して配線の太
さを均一にし、且つ、接触抵抗も確保する。 (もっと読む)


【課題】複雑な工程を経ることなく、通常の半導体製造装置を使用して、低コストで、半導体装置の、低電圧動作、高集積性を実現する。
【解決手段】次の工程(1)〜(5)で半導体装置を製造する。(1)シリコン結晶製の半導体支持基板の表面を洗浄し、酸化被膜を除去して、結晶面を露出させる工程、(2)該結晶面上に高誘電率非晶質薄膜を低温で堆積する工程、(3)該高誘電率非晶質薄膜の結晶化開始温度よりも低いプレアニール温度で該高誘電率非晶質薄膜をプレアニールする工程、(4)該半導体支持基板を選択的に急速加熱することにより該高誘電率非晶質薄膜内部に基板界面から該薄膜表面方向に向けて温度が低くなる急峻な温度勾配を形成することにより該高誘電率非晶質薄膜を結晶化して、エピタキシャル薄膜を形成する工程、(5)該エピタキシャル薄膜の上面に半導体結晶の配向膜を形成する工程を有する。 (もっと読む)


【課題】横型二重拡散構造を有する電界効果トランジスタの高集積化を可能とする半導体装置を提供する。
【解決手段】半導体装置1Nは、ゲート電極17の幅方向両側のうちの一方の側で延在するP型ボディ領域20Pと、他方の側で延在するN型ボディ領域20Nと、その一方の側に形成されてP型ボディ領域20Pと接合するP型不純物拡散領域32Pと、その他方の側でP型不純物拡散領域32Pと対向する位置に形成されてN型ボディ領域20Nと接合するN型不純物拡散領域32Nと、その一方の側に形成されてP型ボディ領域30Nと接合するN型不純物拡散領域31Nと、その他方の側でN型不純物拡散領域31Nと対向する位置に形成されてN型ボディ領域20Nと接合するP型不純物拡散領域31Pとを備える。 (もっと読む)


【課題】半導体・オン・インシュレータ構造(10)を形成するための新規な方法を提供する。
【解決手段】本発明は、III/V族材料から作られる半導体層(3)を含む半導体・オン・インシュレータ構造(10)を形成するための方法に関し、(a)緩和ゲルマニウム層(2)をドナー基板(1)上に成長させるステップと、(b)III/V族材料から作られる少なくとも1つの層(3)をゲルマニウム層(2)上に成長させるステップと、(c)劈開面(6)を緩和ゲルマニウム層(2)内に形成するステップと、(d)ドナー基板(1)の劈開された部分を支持基板(4)に転写するステップであって、その劈開された部分が、劈開面(6)において劈開されたドナー基板(1)の一部分でありかつIII/V族材料から作られる少なくとも1つの層(3)を備える、ステップと、を備えることを特徴とする。 (もっと読む)


【課題】特性の良好な半導体装置を形成する。
【解決手段】薄膜領域TA1中に第1の素子領域、第2の素子領域および第1の分離領域を有し、厚膜領域TA2中に第3の素子領域、第4の素子領域および第2の分離領域を有する半導体装置を次のように製造する。(a)絶縁層1bを介してシリコン層1cが形成された基板を準備する工程と、(b)基板の第1の分離領域および第2の分離領域のシリコン層中に素子分離絶縁膜3を形成する工程と、を有するよう製造する。さらに、(c)薄膜領域TA1にハードマスクを形成する工程と、(d)ハードマスクから露出した、第3の素子領域および第4の素子領域のシリコン層上に、それぞれシリコン膜7を形成する工程と、(e)第3の素子領域および第4の素子領域のシリコン膜7間に、素子分離絶縁膜11を形成する工程と、を有するよう製造する。 (もっと読む)


【課題】所望の温度特性を有することによって回路規模を小さくできるMOSトランジスタを提供する。
【解決手段】ゲート電極はP型半導体層及びN型半導体層からなるので、P型半導体層とN型半導体層との接合面に、空乏層13が生じる。温度が変化すると、空乏層13の領域の面積が変化し、P型半導体層11及びN型半導体層12の領域の面積もそれぞれ変化することで、MOSトランジスタに所望の温度特性を与えられる。その結果、温度補正回路を簡単にする、あるいは不要にすることができる。 (もっと読む)


【課題】低廉なプロセスにて高性能・高信頼性を実現しうる半導体装置及びその製造方法を提供する。
【解決手段】第1の領域に形成された第1導電型の不純物層及び第1のエピタキシャル半導体層と、第1のエピタキシャル半導体層上に第1のゲート絶縁膜を介して形成された第1のゲート電極と、第1の領域に形成された第1のソース/ドレイン領域とを有する第1のトランジスタと、第2の領域に形成された第2導電型の不純物層及び第1のエピタキシャル半導体層とは膜厚の異なる第2のエピタキシャル半導体層と、第2のエピタキシャル半導体層上に第1のゲート絶縁膜と同じ膜厚の第2のゲート絶縁膜を介して形成された第2のゲート電極と、第2の領域に形成された第2のソース/ドレイン領域とを有する第2のトランジスタとを有する。 (もっと読む)


41 - 60 / 986