説明

Fターム[5F048BE09]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ウェル (5,077) | ウェルに電圧印加 (892)

Fターム[5F048BE09]に分類される特許

41 - 60 / 892


【課題】信頼性の高い半導体装置を提供する。
【解決手段】N型基板10と、N型基板10の一面側に設けられたP型ウェル40と、P型ウェル40に設けられたP型高濃度不純物領域42と、P型ウェル40に設けられたN型のソース・ドレイン領域を有するMOSトランジスタ20と、N型基板10の一面側に設けられ、かつ一方がP型高濃度不純物領域42と電気的に接続し、他方が接地されているソース・ドレイン領域を有するMOSトランジスタ30と、を備える。 (もっと読む)


【課題】 基板表面にパターンニングされたポリシリコン層(ゲート配線や保護ダイオード)が閉ループ状の場合、特にウエハの周辺部分に配置されるチップでは、層間絶縁膜形成時にSOG膜のスピンコートでチップコーナー部分などにおいてSOG液の液だまりが生じ、層間絶縁膜の膜厚が不均一となり、厚膜化した箇所ではコンタクトホールの形成不良が発生する問題があった。
【解決手段】 ゲート配線と保護ダイオードが連続した閉ループ状とならないように、ゲート配線のコーナー部と、ゲート配線および保護ダイオードの隣接部分に開放部を設ける。 (もっと読む)


【課題】ESD耐量を向上させたLDMOSFETを備える半導体装置を提供する。
【解決手段】半導体層200よりも高濃度のP型の押込拡散領域440は、半導体層200の表層から底面まで設けられている。押込拡散領域440よりも低濃度のP型の第1ウェル領域300は、半導体層200に、平面視で一部が押込拡散領域440と重なるように設けられている。N型のドレインオフセット領域540は、半導体層200に、平面視で第1ウェル領域300と接するように設けられている。ドレインオフセット領域540よりも高濃度のN+型のドレイン領域520は、ドレインオフセット領域540内に設けられている。ドレインオフセット領域540よりも高濃度のN型の第2ウェル領域560は、半導体層200のうち、ドレインオフセット領域540の下に位置して、平面視でドレイン領域520と重なる領域に設けられている。 (もっと読む)


【課題】半導体集積回路の微細化に伴い非常に短くなったゲート長を有するトランジスタにおいて、ゲート絶縁膜におけるリーク電流の発生を抑制し、トランジスタとしての機能を高めることが可能な半導体装置を提供する。
【解決手段】主表面を有する半導体基板SUBと、半導体基板SUBの主表面に形成された1対のソース/ドレイン領域と、1対のソース/ドレイン領域に挟まれる領域上であって、主表面に接するように形成されたゲート絶縁膜AFEと、ゲート絶縁膜AFEの上面に接するように形成されたゲート電極POとを備える。上記1対のソース/ドレイン領域の一方から他方へ向かう方向のゲート電極POの長さは45nm未満である。ゲート絶縁膜AFEは反強誘電体膜を有する。 (もっと読む)


【課題】互いに絶縁分離された複数の素子を有する半導体装置の小型化と、その製造コストの低減とを実現できるようにする。
【解決手段】半導体装置は、第1の素子151、第2の素子152、第3の素子153及び第4の素子154を備えている。基板100は、基板を貫通する第1素子分離領域131により互いに分離された第1の区画101及び第2の区画102を有している。第1の区画は、第2素子分離領域132により互いに分離された第1素子領域121及び第2素子領域122を含む。第2の区画は、第3素子分離領域133により互いに分離された第3素子領域123及び第4素子領域124を含み、基板の裏面に露出した裏面拡散層を有している。第3の素子は、第3素子領域に形成され、第4の素子は、第4素子領域に形成され、第3の素子及び第4の素子は、裏面拡散層105を介在させて互いに接続されている。 (もっと読む)


【課題】電源供給が遮断されるIO領域が存在する場合でも、ランダムロジック領域内でのラッチアップの発生を防止するガードバンドセル及びガードバンドを提供すること。
【解決手段】本発明の一態様に係るガードバンドセル11は、NウェルNW1を有する。また、本発明の一態様に係るガードバンドセル11は、NウェルNW1の上に形成された、Nウェル層と同じ導電型であるN型ガードバンド拡散層NGB1を有する。N型ガードバンド拡散層NGB1は、十分な低抵抗の配線により、ランダムロジック領域2の電源電位と接続される。 (もっと読む)


【課題】 半導体装置に発生するノイズを低減する
【解決手段】 シリコン基板100の第1部分110を覆い、シリコン基板100の第1部分110に隣接する第2部分120を覆わない窒化シリコン膜200をマスクとしてシリコン基板100を熱酸化することにより、酸化シリコン膜300を形成する。窒化シリコン膜200をマスクとして酸化シリコン膜300のバーズビーク部310の下へ斜めイオン注入を行うことにより、不純物領域121を形成する。 (もっと読む)


【課題】 ESD対策のための特別な工程や専用マスクを増やすことなく、ESD放電能力の向上を図る事が可能な半導体装置を実現する。
【解決手段】
基板上の所定の領域に、MOSFET構造のHVトランジスタ23と保護抵抗回路25からなる高耐圧用のESD保護素子21、及び、MOSFET構造のLVトランジスタ24と保護抵抗回路26からなる低耐圧用のESD保護素子22が形成されている。当該保護抵抗回路25(26)は、ゲート電極8b(8d)を挟んで互いに対抗するようにウェル2(3)の表層に分離形成される抵抗ドリフト領域16(17)の双方が、同導電型の低濃度ドリフト領域5c(5d)により電気的に接続されていることを除き、HVトランジスタ23(LVトランジスタ24)と同一の構造である。 (もっと読む)


【課題】ブートストラップ方式のドライブ回路を有する半導体装置において、ブートストラップダイオードの順バイアス時にp-基板側に流れるホールによるリーク電流を抑制することができる半導体装置を提供することにある。
【解決手段】ブートストラップダイオードDb下にSON構造の空洞3を形成し、ブートストラップダイオードDbとグランド電位(GND)となるGNDp領域4との間のn-エピ層2にその空洞3に達するフローティングp領域5を形成することで、外部のブートストラップコンデンサC1充電時のp-基板1へのホールによるリーク電流を抑えることができる。 (もっと読む)


【課題】耐久性が高い半導体装置及びDC−DCコンバータを提供する。
【解決手段】実施形態に係る半導体装置は、高電位側電源電位に接続するための第1の配線と、前記高電位側電源電位に接続するための、前記第1の配線とは別の第2の配線と、前記第1の配線に一端が接続され、他端が出力端子に接続されるスイッチングトランジスタと、前記高電位側電源電位と前記低電位側電源電位との間で前記スイッチングトランジスタと並列に接続される保護素子とを備える。前記保護素子は、前記第1の配線に接続される、第1のp形半導体領域と、前記第2の配線に接続される、前記第1のp形半導体領域に接したn形半導体領域と、前記n形半導体領域に接し、前記第1のp形半導体領域から離隔し、前記低電位側電源電位に接続するための配線に接続される第2のp形半導体領域と、を有する。 (もっと読む)


【課題】ウェル給電領域の面積を縮小して、半導体装置の微細化を行う。素子形成領域間のウェル電位のばらつきを抑制する。分離部の幅を細くする。
【解決手段】半導体装置は、半導体基板の表面に形成され、底部がウェル領域内に位置する溝状の分離部を有する。分離部は、ウェル領域と電気的に接続された導体配線と、底部に導体配線を埋め込む絶縁膜とを有する。分離部に囲まれるようにして区画されたウェル領域の一部は素子形成領域を形成し、素子形成領域には半導体素子が配置される。 (もっと読む)


【課題】安定したボディ固定動作と共に、高集積化、低寄生容量化や配線容量の低減化を図ることができる、SOI基板上に形成される半導体装置を得る。
【解決手段】ソース領域1,ドレイン領域2及びゲート電極3で形成されるMOSトランジスタにおいて、ゲート一端領域及びゲート他端領域に部分分離領域11a及び11bが形成され、部分分離領域11aに隣接してタップ領域21aが形成され、部分分離領域11bに隣接してタップ領域21bが形成される。部分分離領域11a,11b、タップ領域21a,21b及び活性領域1,2の周辺領域は全て完全分離領域10が形成される。 (もっと読む)


【課題】急峻なS値特性を有するとともに、ソース/ドレイン領域が同じ導電型となる対称構造を有する電界効果トランジスタを提供する。
【解決手段】本実施形態による電界効果トランジスタは、半導体層と、前記半導体層に離間して設けられたソース領域およびドレイン領域と、前記ソース領域と前記ドレイン領域との間の前記半導体層上に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に設けられたゲート電極と、前記ソース領域および前記ドレイン領域側の前記ゲート電極の少なくとも一方の側面に設けられた高誘電体のゲート側壁と、を備え、前記ソース領域および前記ドレイン領域は前記ゲート電極の対応する側面から離れている。 (もっと読む)


【課題】横型二重拡散構造を有する電界効果トランジスタの高集積化を可能とする半導体装置を提供する。
【解決手段】半導体装置1Nは、ゲート電極17の幅方向両側のうちの一方の側で延在するP型ボディ領域20Pと、他方の側で延在するN型ボディ領域20Nと、その一方の側に形成されてP型ボディ領域20Pと接合するP型不純物拡散領域32Pと、その他方の側でP型不純物拡散領域32Pと対向する位置に形成されてN型ボディ領域20Nと接合するN型不純物拡散領域32Nと、その一方の側に形成されてP型ボディ領域30Nと接合するN型不純物拡散領域31Nと、その他方の側でN型不純物拡散領域31Nと対向する位置に形成されてN型ボディ領域20Nと接合するP型不純物拡散領域31Pとを備える。 (もっと読む)


【課題】大量の商業マイクロエレクトロニクスメーカーがアクセスし易い最先端の基礎設備を使用して、高性能且つ費用対効果に優れた耐放射線性集積回路(RHICs)を提供する。
【解決手段】様々な形式の放射線エネルギーによって引き起こされる有害な影響を減少し、又は排除するために、従来の設計及びプロセスを使用する一方で特殊構造を含んで半導体デバイスを作成する。このような半導体デバイスは本願で開示された1台以上の寄生的な分離デバイス、及び/又は、埋め込みガードリング構造を含む。これら新規な構造に対応する設計、及び/又は、工程ステップの導入には、従来のCMOS製作工程との互換性がある。したがって、比較的低い費用で比較的簡単に実施することができる。 (もっと読む)


【課題】論理回路をできるだけ小さな回路面積で形成可能な半導体回路を提供する。
【解決手段】半導体回路は、第1および第2のトランジスタで共有されるゲート領域と、ゲート領域に接するように配置されるゲート絶縁膜と、ゲート絶縁膜に接するように配置される半導体層と、を備える。半導体層は、ゲート領域に対向するように配置され、第1のトランジスタのチャネルとして用いられる反転層形成領域と、反転層形成領域に沿って、あるいは反転層形成領域と交差するように形成され、第2のトランジスタのチャネルとして用いられる導通路形成領域と、を有する。導通路形成領域は、ゲート領域が所定の電圧範囲のときには、反転層形成領域から伸びる空乏層により遮断される。 (もっと読む)


【課題】信頼性と電気的特性の確保を両立した半導体装置を提供する。
【解決手段】同一の半導体基板1上に形成されたパワーMOSFETと保護回路を備える。パワーMOSFETがトレンチゲート縦型PチャネルMOSFETであって、そのゲート電極6の導電型をP型とする。また、保護回路がプレーナゲート横型オフセットPチャネルMOSFETを備え、そのゲート電極10の導電型をN型とする。これらゲート電極6とゲート電極10は別工程で形成される。 (もっと読む)


【課題】埋め込み絶縁層により活性層と支持基板とが電気的に絶縁された半導体基板において、支持基板の電位を活性層の表面から取り出すための基板コンタクトの低抵抗化を図ることができる半導体装置およびその製造方法を提供すること。
【解決手段】活性層16に素子領域4およびコンタクト領域5が形成された厚膜SOI基板2において、CMOSトランジスタ7のB/L層29およびL/I層37、npnバイポーラトランジスタ8のコレクタ層49と同一層に、n型基板コンタクト12の貫通コンタクト58を取り囲むn型コンタクト埋め込み層57を形成する。 (もっと読む)


【課題】パワー変換器に於けるシンクロナス整流器として適するMOSFETスイッチを提供する。
【解決手段】互いに接続されソース及びボディが、ドレンよりはより正の側に高い電圧にバイアスされたN−チャネルパワーMOSFETを製造する。ゲートはスイッチ(1184)により制御され、ゲートを、ソース及び当該MOSFETのチャネルを完全にオンにするのに十分な電圧(VCP)のいずれか一方に選択的に接続する。ゲートがソースに接続されたとき、デバイスは、比較的低い電圧でオンし、従来のPN接合よりは低い導通抵抗を有する「擬似ショットキー」ダイオードとして機能する。ゲートが、前記した正の電圧に接続されたとき、MOSFETのチャネルは完全にオンとなる。このMOSFETスイッチは、電力損及び“break-before-make”時間に於ける蓄積電荷を低減する。 (もっと読む)


【課題】低電圧領域として使用されるSOI型MISFETと、高電圧領域として使用されるバルク型MISFETとが共存する半導体装置であっても半導体装置全体を縮小でき、更にプロセスが複雑化することなく作製できる半導体装置と製造方法を提供する。
【解決手段】単結晶半導体基板1、単結晶半導体基板から薄い埋め込み絶縁膜4で分離された薄い単結晶半導体薄膜(SOI層)3を持つSOI基板を用い、SOI型MISFET100およびバルク型MISFET200のウエル拡散層領域6と、ドレイン領域9、11、14、16と、ゲート絶縁膜5と、ゲート電極20とを同一工程にて形成する。バルク型MISFETとSOI型MISFETとを同一基板上に形成できるので、基板の占有面積を縮小できる。SOI型MISFETとバルク型MISFETとの作製工程の共通化により簡易プロセスを実現することができる。 (もっと読む)


41 - 60 / 892