説明

Fターム[5F048BE09]の内容

MOSIC、バイポーラ・MOSIC (97,815) | ウェル (5,077) | ウェルに電圧印加 (892)

Fターム[5F048BE09]に分類される特許

121 - 140 / 892


【課題】高耐圧でオン電圧を低くできる双方向素子および半導体装置を提供すること。
【解決手段】分割半導体領域にpオフセット領域5とその表面に第1、第2nソース領域9、10を形成することで、第1、第2nソース領域9、10の平面距離を短縮してセルの高密度化を図り、トレンチに沿って耐圧を維持させることで高耐圧化を図り、ゲート電極7の電圧を第1、第2nソース電極11、12より高くすることで、トレンチ側壁にチャネルを形成して、双方向へ電流が流れる高耐圧で低オン電圧の双方向LMOSFETとすることができる。 (もっと読む)


【課題】可変容量範囲が広く、単位面積当たりの容量値が大きいMOS型バラクタ素子を備えた半導体集積回路装置を提供する。
【解決手段】半導体集積回路装置において、P型基板PSubの表面にNチャネルトランジスタ1、Pチャネルトランジスタ2及びMOS型バラクタ素子3を設ける。そして、MOS型バラクタ素子3のゲート絶縁膜14を、Nチャネルトランジスタ1及びPチャネルトランジスタ2のゲート絶縁膜4よりも薄くする。また、MOS型バラクタ素子3のウエル端子Vbとゲート端子Vgとの間に印加するゲート電圧の最大値を、Nチャネルトランジスタ1及びPチャネルトランジスタ2に印加するゲート電圧の最大値よりも低くする。 (もっと読む)


【課題】高耐圧の用途に適用可能な交流スイッチ(半導体リレー)を提供する。
【解決手段】交流スイッチ1は、ソース(S)同士を接続した第1化合物半導体MOSFET11および第2化合物半導体MOSFET12と、第1化合物半導体MOSFET11のドレイン(D)に接続された第1出力端子13と、第2化合物半導体MOSFET12のドレイン(D)に接続された第2出力端子14とを含む。交流スイッチ1は、オフ時の第1出力端子13および第2出力端子14の間の耐圧が400V以上(より好ましくは600V以上)であり、オン時の第1出力端子13および第2出力端子14の間の抵抗が20mΩ以下(より好ましくは10mΩ以下)である。 (もっと読む)


【課題】SOI基板上に形成されたMOSFETを有する半導体装置の信頼性を向上させる。また、半導体装置の製造工程を簡略化する。
【解決手段】SOI基板SB上に形成された複数のnチャネル型MOSFETQnを有する半導体装置において、BOX膜の下部の支持基板の上面に拡散層であるn型半導体領域を形成し、n型半導体領域と電気的に接続され、素子分離領域1を貫くコンタクトプラグCT2を形成することで、支持基板の電位を制御する。SOI基板SBの平面において、各nチャネル型MOSFETQnは第1方向に延在しており、第1方向に複数形成されて隣り合うコンタクトプラグCT2同士の間に配置された構造とする。 (もっと読む)


【課題】 LDMOS型トランジスタなどの半導体装置が動作中に生ずる経時的な特性変動を抑制すると共に、高耐圧かつ低オン抵抗が実現される半導体装置およびその製造方法を提供する。
【解決手段】 N型半導体層102に、深さが1μmより小さいP型の第1ドレインオフセット領域103と、深さが第1ドレインオフセット領域103より小さく、不純物濃度が第1ドレインオフセット領域103より大きいP型の第2ドレインオフセット領域105と、第1ドレインオフセット領域103より深いN型のボディ領域106と、N型のソース領域107およびドレイン領域104とを設ける。またLOCOS酸化膜からなる絶縁膜110と、ゲート絶縁膜108を介して形成されたゲート電極109とをN型半導体層102上に備える構造とする。 (もっと読む)


【課題】dv/dtサージにより、支持基板と活性層との間の絶縁膜にて構成される寄生容量を充放電する変位電流による回路誤動作を防止する。
【解決手段】低電位基準回路部LVおよび高電位基準回路部HVを構成する絶縁分離された半導体素子の外周に、n型ガードリング42c等を形成すると共に、活性層2cの埋込絶縁膜2b側にn型ガードリング埋込層42c等と同じ導電型の深いn型拡散領域42b等を形成する。また、活性層2cにて構成されるn-型層42a等の中にp型ウェル42d等を形成し、このp型ウェル42d内に半導体素子を形成する。n型ガードリング42c等とp型ウェル42d等は、それぞれ逆バイアスまたは同電位となるように電位固定する。 (もっと読む)


【課題】複数のスタンダードセルを有する半導体装置のチップ面積をさらに小さくする。
【解決手段】半導体装置SD1は第1および第2スタンダードセルSC1,SC2を備える。第1スタンダードセルSC1は、拡散領域An11、拡散領域An11に対向する機能素子領域FE1、および金属層MT11を有する。第2スタンダードセルSC2は、拡散領域An11に連続する拡散領域An21、拡散領域An21に対向する機能素子領域FE2、ならびに拡散領域An21および機能素子領域FE2の間に形成された拡散領域CR21を有する。金属層MT11および機能素子領域FE2は、拡散領域An11、拡散領域An21、および拡散領域CR21通して電気的に接続される。 (もっと読む)


【課題】フォトリソグラフィ工程で生じる光近接効果に起因するゲート長のばらつきとゲートの寄生容量のばらつきを抑制し、標準セルの実際の特性を反映させたライブラリを設計可能とし、これにより設計マージンを小さくして高性能な半導体集積回路を提供する。
【解決手段】標準セルSc1を配列して半導体集積回路を設計する方法において、標準セルSc1を構成するゲートパターン5の端部に、該ゲートパターン5と垂直な方向にダミーパターン3を配置し、該ダミーパターン3の配置により、ゲートパターン5の端部での該ゲートパターンの占有密度の低下を補う。 (もっと読む)


【課題】キャリアのライフタイム制御に関わらず、寄生バイポーラトランジスタの動作を抑制し、耐量を向上させることができる構造の半導体装置を提供する。
【解決手段】ダイオード構造が形成された領域において、n-型ドリフト層1の裏面側に、p+型不純物領域2だけでなく部分的にn+型不純物領域3を形成する。これにより、p+型不純物領域2の幅が狭くなり、その結果、p+型不純物領域2のうちn+型不純物領域3との境界部から最も離れる場所までの距離が短くなる。したがって、n-型ドリフト層1の内部抵抗が小さくなることでバイアス電圧が小さくなり、寄生バイポーラトランジスタの動作を抑制することが可能となる。よって、キャリアのライフタイム制御に関わらず、寄生バイポーラトランジスタの動作を抑制し、耐量を向上させることが可能となる。 (もっと読む)


【課題】電源配線の電位の変動に起因するボディ領域の電位の変動を抑制し得る半導体装置を得る。
【解決手段】シリコン層4の上面内には、パーシャルトレンチ型の素子分離絶縁膜5が選択的に形成されている。電源配線21は、素子分離絶縁膜5の上方に形成されている。電源配線21の下方において、素子分離絶縁膜5には、絶縁層3の上面に達する完全分離部分23が形成されている。換言すれば、半導体装置は、電源配線21の下方において、シリコン層4の上面から絶縁層3の上面に達して形成された完全分離型の素子分離絶縁膜を備えている。 (もっと読む)


【課題】占有面積の小さい、SGTを用いた2段以上に直列に接続されたCMOSインバータ結合回路を提供する。
【解決手段】CMOSインバータ結合回路は、SGTを用いた2段以上に直列に接続されたCMOSインバータから構成される。複数のCMOSインバータは、基板のソース拡散層106a、107aを共用する。ゲート配線111a〜111f上に形成されるコンタクト121の構造が異なるCMOSインバータが交互に隣接して配置されている。CMOSインバータ同士は、最小間隔で配置されている。CMOSインバータの出力端が次段のCMOSインバータのコンタクト121を介して、次段のCMOSインバータの配線層125に接続される。 (もっと読む)


【課題】半導体装置の性能を向上させる。また、半導体装置の信頼性を確保する。また、半導体装置のチップサイズの縮小を図る。特に、SOI基板上に形成されたMOSFETを有する半導体装置の信頼性を損なわずにゲート電極の下部のウエルの電位を制御し、寄生容量の発生を防ぐ。また、MOSFETにおける欠陥の発生を防ぐ。
【解決手段】ゲート電極配線3に形成された孔部27内を通るウエルコンタクトプラグ8により、ゲート電極2の下部のウエルの電位を制御することで寄生容量の発生を防ぐ。また、ゲート電極2に沿って素子分離領域4を延在させることで、ゲッタリング効果によりゲート絶縁膜における欠陥の発生を防ぐ。 (もっと読む)


【課題】メモリアレイのワードライン・ドライバ回路として使用できる、大きくなく、低消費電力の回路を提供する。
【解決手段】半導体・オン・インシュレータ(SeOI)基板上に形成された回路であって、電源電位を印加する為の第1、第2の端子間に第2のチャネル型のトランジスタと直列の第1のチャネル型のトランジスタを含み、トランジスタの各々が薄層におけるドレイン領域およびソース領域と、ソース領域とドレイン領域間に延びるチャネルと、チャネルの上方に配置されたフロント・コントロール・ゲートとを備え、各トランジスタが、トランジスタのチャネルの下方のベース基板に形成され、かつトランジスタの閾値電圧を調整する為にバイアスされうるバック・コントロール・ゲートを有し、トランジスタのうちの少なくとも1つが閾値電圧を十分に調整するバックゲート信号の作用の下、空乏モードで動作するように構成される。 (もっと読む)


【課題】静電気保護用の抵抗を使用せずに静電気放電から保護することのできる静電気保護回路及び集積回路を提供する。
【解決手段】端子P1が複数のトランジスター21に接続され、端子P2が入出力パッドに接続されており、所定範囲のレベルの電気信号に対して端子P1と端子P2との間を通すトランスミッションゲート10Aを備え、トランスミッションゲート10Aは、前記所定範囲外のレベルの電気信号を前記所定範囲のレベルの電気信号に変更可能なクランプダイオード14Aを有する。 (もっと読む)


【課題】静電保護素子である保護トランジスタのサイズを縮小することができ、ゲート端子の抵抗成分を同程度に抑え、時定数を増加させることなく、保護トランジスタの回路動作スピードの低下を防ぐことができるとともに、電荷集中を緩和し、静電破壊耐量を向上させることができる。
【解決手段】本発明に係る半導体装置は、ソース・ドレイン領域と、ソース・ドレイン領域の上方に形成されたゲート電極と、ゲート電極の側面に形成されたサイドウォールと、ソース・ドレイン領域の上面に、サイドウォールから所定の距離だけ離間して形成された第1のシリサイド膜と、ゲート電極の上面に、サイドウォールから所定の距離だけ離間して形成された第2のシリサイド膜とを備える。 (もっと読む)


【課題】バックゲートを有するMOSを、回路の動作特性に応じて使い分け、幅広い温度範囲にて高速かつ低電力なLSIを実現する。
【解決手段】薄膜埋め込み酸化膜層を持つFD−SOIを使用し、薄膜埋め込み酸化膜層の下層半導体領域をバックゲートとし、論理回路ブロックにおいてブロック中の負荷の軽い論理回路にはバックゲートの電圧をブロック活性化に合わせてブロック外から制御する。このバックゲート駆動信号を発生する回路、及び回路ブロック出力部など負荷の重い論理回路には、ゲートとバックゲートとを接続したトランジスタを用い、そのゲート入力信号でバックゲートを直接制御する。 (もっと読む)



【課題】 本発明は、従来の製造方法と比較し、同一ウエハまたは製品上において複数のデバイス耐圧帯と良好なオン抵抗をもったLDMOSを備えた半導体装置およびその製造方法を提供することを目的とするものである。
【解決手段】 第1電界緩和用酸化膜24と第2電界緩和用酸化膜25と素子分離用LOCOS酸化膜17の膜厚を別々に最適化することにより、同一ウエハにおいて複数のデバイス耐圧と良好なオン抵抗を実現する。 (もっと読む)


【課題】工程数の増加を回避し得る半導体装置及びその製造方法を提供する。
【解決手段】低濃度ドレイン領域28hを形成するためのドーパント不純物が導入される所定領域を除く領域に、所定領域から離間するようにチャネルドープ層22dを形成する工程と、半導体基板10上にゲート絶縁膜24を介してゲート電極26dを形成する工程と、ゲート電極の一方の側の半導体基板内に低濃度ソース領域28gを形成し、ゲート電極の他方の側の半導体基板の所定領域に低濃度ドレイン領域28hを形成する工程とを有している。 (もっと読む)


【課題】半導体装置の耐圧を向上させ、より高速のスイッチング動作を可能にする。
【解決手段】第1導電型の半導体層の第1主面側に選択的に設けられた第2導電型のベース領域と、ベース領域内に選択的に設けられた第1導電型の拡散領域と、拡散領域に接触しベース領域を貫通して半導体層にまで到達するトレンチ内に絶縁膜を介して設けられた制御電極と、半導体層の第1主面側から第2主面側の方向に延伸し、ベース領域とは離間して設けられた、少なくとも1つの第2導電型の第1の半導体領域と、隣り合うトレンチ間に、トレンチとは離間して設けられた第2導電型の第2の半導体領域と、拡散領域、半導体層、第1の半導体領域および第2の半導体領域に電気的に接続された第1の主電極と、半導体層の第2主面側に電気的に接続された第2の主電極と、を備え、第2の半導体領域は、ベース領域を貫通して半導体層にまで到達している。 (もっと読む)


121 - 140 / 892