説明

Fターム[5F053AA50]の内容

半導体装置を構成する物質の液相成長 (5,002) | 成長方法 (895) | その他の成長方法 (251)

Fターム[5F053AA50]に分類される特許

41 - 60 / 251


【課題】半導体特性に影響を与えることなく、印刷法により形成される半導体の形状再現性に優れた電界効果型トランジスタの製造方法を提供すること。
【解決手段】基材上に、少なくともゲート電極、ソース電極、ドレイン電極と、半導体層およびゲート絶縁膜とが形成されてなる電界効果型トランジスタの製造方法であって、少なくともゲート絶縁膜上に半導体層を形成する工程を有し、該ゲート絶縁膜は露光によりシランカップリング剤と反応可能な官能基を生成し得る材料で形成されており、該工程の前に、ゲート絶縁膜上の半導体を形成する領域の周囲を露光する工程及び露光部においてフッ化アルキル基を有するシランカップリング剤と該官能基とを反応させる工程を有することを特徴とする。 (もっと読む)


【課題】結晶品質の良いIII族窒化物単結晶を得ると共に、その基板からの自然剥離を促進することで、クラックを更に低減することである。
【解決手段】基板1と、基板1上に形成されたIII族窒化物からなるバッファ層2およびこのバッファ層2上に形成されたIII族窒化物単結晶からなる種結晶膜3を備える複数の育成部9とを備えており、隣り合う複数の育成部9の間に基板1の表面1bが露出している育成用部材7を使用する。育成用部材7をウエットエッチングに供することによってバッファ層2を育成部9の端面からエッチングし、次いでIII族窒化物単結晶を種結晶膜3上にフラックス法によって育成する。 (もっと読む)


【課題】圧電素子用に、組成ずれが少なく結晶性の良好なニオブ酸カリウム混晶系ペロブスカイト型酸化物厚膜を提供する。
【解決手段】ペロブスカイト型酸化物膜1は、基板10上に成膜され、平均膜厚が5μm以上であり、且つ、一般式(P)で表されるペロブスカイト型酸化物を含む。(K1−w−x,A,B)(Nb1−y−z,C,D)O・・・(P)(式中、0<w<1.0,0≦x≦0.2,0≦y<1.0,0≦z≦0.2,0<w+x<1.0。AはK以外のイオン価数が1価のAサイト元素、BはAサイト元素、Cはイオン価数が5価のBサイト元素、DはBサイト元素。A〜Dは各々1種又は複数種の金属元素である。) (もっと読む)


【課題】電気的特性に優れる金属酸化物半導体薄膜を低温でも形成することが可能な金属酸化物半導体粒子分散組成物を提供する。更に、本発明は、該金属酸化物半導体粒子分散組成物を用いた金属酸化物半導体薄膜、透明導電膜及び薄膜トランジスタを提供する。
【解決手段】金属酸化物半導体粒子と分散媒を含有する金属酸化物半導体粒子分散組成物であって、前記金属酸化物半導体粒子は、平均粒子径が1〜50nmであり、かつ、平均粒子径/平均結晶子径が1〜3である金属酸化物半導体粒子分散組成物。 (もっと読む)


【課題】複数の量子ドットを互いに連結させて一体化させて一つの独立した量子ドット連結体を作製する。
【解決手段】互いに異なる量子ドット21と量子ドット22とが混合された波長λ2以下の光照射で硬化する光硬化性溶液に対して、波長λ2より長い波長λ1の光を照射し、照射した波長λ1の光に応じて量子ドット21において励起子を励起させることにより当該量子ドット21の近傍に近接場光を発生させ、量子ドット22が量子ドット21に近接した場合に発生させた近接場光により誘起された非断熱過程に基づいて当該量子ドット22内に励起子を励起させ、量子ドット22において励起された励起子が放出されるエネルギーに応じて波長λ2以下の波長λ3の出力光を生成し、波長λ3の出力光を介して光硬化性溶液を硬化させることにより、互いに近接されている量子ドット21と量子ドット22を互いに連結させる。 (もっと読む)


【課題】塗布等の湿式プロセスによる半導体デバイスの製造において用いることができ、良好な電気特性を有し、安価に製造することができるコアシェル型微粒子を提供する。
【解決手段】コア粒子と、前記コア粒子の表面の少なくとも一部を覆うシェルからなり、前記コア粒子は、バンドギャップが3eV以上である少なくとも1種の金属酸化物(A)からなり、前記シェルは、少なくとも1種の金属酸化物(B)からなる0.01〜1μmのコアシェル型粒子。 (もっと読む)


【課題】印刷法にて、容易にヴィアホール等のパターンを形成する方法を提供する事。
【解決手段】基板上に設けられた第一高分子材料からなる第一薄膜をパターニングする際に、第一高分子材料を溶解する第一溶媒に第二高分子材料を溶解させた高分子溶液を準備し、これを第一薄膜に滴下する高分子溶液滴下工程と、第一溶媒が乾燥した後に第一薄膜を第二溶媒に触れさせる第二溶媒接触工程と、を含み、第二溶媒は第一高分子材料を溶解せず、第二高分子材料を溶解する溶媒とする。 (もっと読む)


【課題】
本発明は、印刷法によって薄膜のほぼ全領域が単一の単結晶からなる単結晶性有機半導体薄膜を作製することを課題とする。
【課題を解決するための手段】
有機半導体に親和性の高い有機溶媒に該有機半導体を高濃度に溶解して得た第1のインクと、該有機半導体に親和性の低い有機溶媒からなる第2のインクを用意する工程と、該第1及び第2のインクを基板上で混合し、インクを貯留する領域を形成する工程とを含む単結晶性有機半導体薄膜の製造方法であって、
該インクを貯留する領域の一部に種結晶が高効率に発生する形状を付与し、そこを起点としてインクを貯留する領域のほぼ全領域にわたり単結晶を成長させることを特徴とする単結晶性有機半導体薄膜の製造方法。 (もっと読む)


【課題】厚さおよび大きさを制御しながら単結晶の有機薄膜を迅速かつ容易に形成することが可能な有機薄膜の形成方法を提供する。
【解決手段】温度制御可能な支持体1により支持された製膜用基体10の一面(幅広の溶液蓄積領域11およびそれに連結された幅狭の溶液絞込領域12)に有機溶液20を供給したのち、支持体1とは独立して温度制御可能な移動体4を有機溶液20に接触させながら支持体1の表面に沿って移動させる。支持体1の温度TSは、有機溶液20に関する溶解度曲線と過溶解度曲線との間に位置する温度に設定されると共に、移動体4の温度TMは、溶解度曲線よりも高温側に位置する温度に設定される。 (もっと読む)


【課題】
本発明は、単成分の有機分子からなる有機半導体薄膜を、印刷法により製造するに際し、ある決められた領域内に周縁部を含めて膜質と膜厚が均質、かつピンホールのきわめて少ない均質な有機半導体薄膜の製造方法を提供することを課題とする。
【課題を解決するための手段】
有機半導体に親和性の高い有機溶媒に該有機半導体を高濃度に溶解して得た第1のインクと、該有機半導体に親和性の低い有機溶媒からなる第2のインクを用意する工程と、該第1及び第2のインクを各インクヘッドから同時又は交互に吐出させ基板上で混合する工程とを含む有機半導体薄膜の製造方法。 (もっと読む)


【課題】結晶核の形成位置および結晶の成長方向を制御して単結晶の有機薄膜を形成することが可能な有機薄膜の形成方法を提供する。
【解決手段】有機溶液20の温度TSが溶解度曲線よりも高温側に位置するT1になると共に、その有機溶液20の周辺環境の蒸気圧PがT1における飽和蒸気圧になるようにして、幅広の溶液蓄積領域11およびそれに連結された幅狭の溶液絞込領域12に有機溶液20を供給する。こののち、有機溶液20の温度TSをT1から溶解度曲線と過溶解度曲線との間に位置するT2まで低下させる。 (もっと読む)


【課題】多結晶シリコンウエハと単結晶ウエハの双方の機能又は機能の異なる2以上の多結晶シリコンウエハを備えたハイブリッドシリコンウエハを提供する。
【解決手段】一方を溶融状態とし他方を固体状態として相互に一体化した、同心円状の比抵抗が2桁以上異なる2種類以上の単結晶シリコン又は多結晶シリコンを主成分とするウエハからなることを特徴とするハイブリッドシリコンウエハであり、高比抵抗のシリコン又はシリコンを主成分とするインゴット1を、坩堝2内の中心部又は偏芯させた一部に配置すると共に、前記坩堝とインゴット周囲の空隙部に、前記インゴットよりも比抵抗が2桁以上低いナゲット3又は粉末状のシリコンを充填し、前記ナゲット又は粉末状のシリコンを選択的に溶解して、前記インゴットと一体化させて複合体とし、これをさらにウエハ状に切り出すことを特徴とする。 (もっと読む)


【課題】所定量の半導体粉末からなる小塊を溶融して球状溶融体を形成し、これを冷却凝固させて半導体粒子を製造する方法において、質量バラツキが小さい多数の小塊を相互に確実に離間させた状態で加熱用基板上に形成する。これにより、半導体粒子の高品質化と生産性向上が可能となる。
【解決手段】相互に間隔を設けて型板の表側に形成された所定形状の多数の凹部内に半導体粉末を充填し、その型板の表側に加熱用基板の平面部を重ね合わせる。その状態を維持しつつ表裏を反転させる。次いで、加熱用基板上に配置されている型板を上方に引きあげて、凹部に充填された半導体粉末を加熱用基板上に転写する。上記の凹部の横断面積は開口部に近いほど大きいことが好ましい。 (もっと読む)


【課題】オン/オフ比が高く、しかも構造も簡単な、半導体酸化グラフェンを用いた電界効果トランジスタを低コストかつ高い歩留まりで製造することができる電界効果トランジスタの製造方法を提供する。
【解決手段】基板11上に形成された絶縁膜12上にアミノ基を有する分子からなる分子層13を形成した後、この分子層13上に酸化グラフェン14を形成する。酸化グラフェン14を熱的または化学的に還元することにより半導体酸化グラフェン15を形成する。半導体酸化グラフェン15をチャネル層に用いて電界効果トランジスタを製造する。酸化グラフェン14を熱的に還元する際の雰囲気としては例えば大気を用いる。 (もっと読む)


【課題】従来の気相成長法とは異なる、固液界面へのレーザー光照射による液相成長反応に基づく半導体薄膜パターンの製造方法、半導体薄膜パターンおよび結晶性半導体薄膜パターンを提供する。
【解決手段】レーザー光照射時において液体状の半導体原料を用い、連続発振(CW)レーザーあるいはパルス発振レーザーを光源として、レーザー光の波長の光に吸収を有する固体基板を用いる場合には、液体原料側から固体基板と液体状原料との固液界面にレーザー光を合焦し照射することにより、また、透明性の高い固体基板を用いる場合には、固体基板側から固液界面にレーザー光を合焦し照射することにより、半導体薄膜パターンの形成を行う。固体基板の種類、レーザー光照射条件の制御によって、結晶化を同時に行い、結晶性の半導体薄膜パターンの形成を行う。 (もっと読む)


【課題】特性を向上できる赤外LED用のエピタキシャルウエハおよび赤外LEDを提供する。
【解決手段】赤外LED用のエピタキシャルウエハ1cは、主表面11aと、主表面11aと反対側の裏面11bとを有するAlxGa(1-x)As層(0≦x≦1)を含むAlyGa(1-y)As基板(0≦y≦1)と、AlxGa(1-x)As層の主表面11a上に形成され、かつ活性層を含むエピタキシャル層20とを備える。AlxGa(1-x)As層において、主表面11aのAlの組成比xは、裏面11bのAlの組成比xよりも低い。AlxGa(1-x)As層において、主表面11aの不純物濃度は、裏面11bの不純物濃度よりも高い。 (もっと読む)


【課題】結晶の結晶片又はその集合体における被形成体に対する付着力が高い、有機結晶構造物を提供すること。
【解決手段】基板12に直接接触して設けられた有機化合物の単結晶の結晶14と、結晶14が設けられた基板12の面18と同一面20に直接接触し、かつ、前記結晶14における周囲の少なくとも一部に直接接触して設けられた、有機化合物の非晶質の薄膜16と、を有する、有機結晶構造物10である。 (もっと読む)


【課題】従来よりも大幅に少ない原材料及び製造エネルギーを用いて、かつ、従来よりも短工程で製造することが可能な機能性デバイスの製造方法を提供する。
【解決手段】熱処理することにより機能性固体材料となる機能性液体材料を準備する第1工程と、基材上に機能性液体材料を塗布することにより、機能性固体材料の前駆体組成物層を形成する第2工程と、前駆体組成物層を80℃〜200℃の範囲内にある第1温度に加熱することにより、前駆体組成物層の流動性を予め低くしておく第3工程と、前駆体組成物層を80℃〜300℃の範囲内にある第2温度に加熱した状態で前駆体組成物層に対して型押し加工を施すことにより、前駆体組成物層に型押し構造を形成する第4工程と、前駆体組成物層を第2温度よりも高い第3温度で熱処理することにより、前駆体組成物層から機能性固体材料層を形成する第5工程とをこの順序で含む機能性デバイスの製造方法。 (もっと読む)


【課題】良好な電気的性能を有する半導体デバイスを効率よく製造可能な金属アルコキシド溶液を提供する。
【解決手段】下記一般式Iで表される金属アルコキシド化合物と、それぞれ一般式IIで表される金属アルコキシド化合物であって一般式II中のMが異なる2種の金属アルコキシド化合物と、が連結して形成された複合アルコキシドを含有し、前記複合アルコキシド全体における比率Zn/Mが0.2〜1.5の範囲であり且つ前記Mで表される2つの元素の比率が0.05〜20の範囲であり、1〜100mPa・sの粘度を有する半導体デバイス用金属アルコキシド溶液。
Zn(OR ・・・[I]
M(OR ・・・[II]
(式中、Mはアルミニウム、鉄、インジウム及びガリウムの中のいずれか1つの元素であり、R及びRはそれぞれ同一でも異なってもよく、炭素数が1〜20の置換又は無置換のアルキル基を表す。) (もっと読む)


【課題】GaN結晶の転位密度を減少させることが可能な、Naフラックス法によるGaN結晶の製造方法を提供する。
【解決手段】種結晶18として、サファイア基板100と、サファイア基板100上に形成されたGaN層101と、によって構成されたテンプレート基板を用い、GaN層101上に15μm/h以上の成長速度でGaN結晶102を成長させた。インクルージョン103によって転位104の伝搬が阻止されるため、GaN結晶102の転位密度が減少する。次に、GaN結晶102上に7μm/h以下の成長速度でGaN結晶105を成長させた。GaN結晶105はステップフロー成長し、転位104はGaN結晶105中において曲げられるため、転位密度がさらに減少する。 (もっと読む)


41 - 60 / 251