説明

Fターム[5F058BC03]の内容

絶縁膜の形成 (41,121) | 無機単層構造絶縁膜の材料 (5,394) | 酸化物 (3,578) | 金属酸化物 (1,240)

Fターム[5F058BC03]に分類される特許

41 - 60 / 1,240


【課題】気化器の液体原料流路内からの有機金属液体原料の除去を促進させ、液体原料流路内の閉塞を抑制する。
【解決手段】基板を収容した処理室内に反応物質を供給することにより基板を処理する工程を有し、反応物質は液体原料を気化部で気化させた原料ガスを含み、基板を処理する工程では、気化部に液体原料を溶解することのできる溶媒と液体原料を供給して気化させる気化動作を間欠的に行い、液体原料の気化動作時以外の時であって、液体原料の気化動作を所定回数行う毎に、気化部に溶媒を、液体原料の気化動作時に供給する溶媒の流量よりも大流量で流す。 (もっと読む)


【課題】higher-k材料であるチタン酸化膜の半導体基板との界面を安定化でき、さらなる微細化に対応できるゲート構造を実現できるようにする。
【解決手段】半導体装置は、半導体基板1の上に形成されたゲート絶縁膜と、該ゲート絶縁膜の上に形成されたゲート電極とを備えている。ゲート絶縁膜は、アナターゼ型酸化チタンを主成分とする高誘電率絶縁膜5であり、ゲート電極は、第1の金属膜6又は第2の金属膜8を含む導電膜から構成されている。 (もっと読む)


【課題】構造物の表面に配置されたナノ粒子センサを利用した構造健全性監視の方法及びシステムを提供する。
【解決手段】構造物30の構造健全性172を監視するシステム170は、構造物30の上に沈着されるナノ粒子インクによる圧電センサアセンブリの分散ネットワーク120を含む。各アセンブリは、ナノ粒子インクによる複数の圧電センサ110及び複数の導電性インク電源及び複数のセンサ110を相互接続する通信線アセンブリ140を有する。このシステムはさらに、構造物30の上にナノ粒子インクによる圧電センサアセンブリの分散ネットワークを沈着させるインク沈着装置142を含む。このシステムはさらに、分散ネットワーク120に電力を供給する電源178を有する。このシステムはさらに、センサ110から一又は複数の信号を介して構造物の構造健全性データ174を読み出して処理するデータ通信ネットワーク179を含む。 (もっと読む)


【課題】ハフニウムおよび/もしくはジルコニウムオキシヒドロキシ化合物を備える薄膜または積層構造体を有する装置およびかかる装置の製造方法を提供する。
【解決手段】ハフニウムおよびジルコニウム化合物は、通常ランタンのような他の金属でドープすることができる。電子装置またはそれを作製し得る構成材の例には、限定することなく、絶縁体、トランジスタおよびコンデンサがある。ポジ型もしくはネガ型レジストまたは装置の機能的構成材としての材料を用いて装置をパターン化する方法、例えば、インプリントリソグラフィー用のマスタープレートを作製することができ、腐食バリアを有する装置の製造方法の実施形態。光学基板およびコーティングを備える光学的装置の実施形態であり、電子顕微鏡を用いて寸法を正確に測定する物理的ルーラーの実施形態。 (もっと読む)


【課題】チタン酸ジルコン酸鉛(PZT)ナノ粒子インクベースの圧電センサを製作する方法を提供する。
【解決手段】チタン酸ジルコン酸鉛(PZT)ナノ粒子インク106を製剤するステップを含む。さらに、噴霧堆積プロセス126および噴霧堆積装置146を有するインク堆積プロセス122によって、PZTナノ粒子インク156を基板101上に堆積して、PZTナノ粒子インクベースの圧電センサ110を形成するステップを含む。 (もっと読む)


【課題】機能性インクの吐出安定性を有するインクジェット法による薄膜製造装置を提供する。
【解決手段】基板202を保持するステージ203と、ステージ203に対向して配置されインクジェット法により機能性インクをノズルから吐出して基板202上に塗布するIJヘッド208と、を有し、ステージ203及び/又はIJヘッド208を相対的に移動させて基板202上に機能性インクを吐出し任意のパターンで塗布する液体吐出塗布機構部と、基板202上の機能性インクを加熱し結晶化させて機能性薄膜とする加熱機構部と、を備え、前記液体吐出塗布機構部におけるステージ203は、IJヘッド208の前記機能性インクを塗布するときの走査行路上に前記ノズルと摺擦するワイピングブレード212を有する。 (もっと読む)


【課題】処理空間内の圧力を高めることができる成膜装置を提供すること。
【解決手段】処理容器2内に、基板であるウエハWの載置領域を備えた載置台3と、この載置台3と対向する天板部材4とを設け、載置台3を昇降機構5により天板部材4側へ上昇させて、載置台3と天板部材4との間で処理空間Sを形成する。載置台3における載置領域の外側領域と天板部材4との少なくとも一方には突起部43が設けられ、前記処理空間Sの形成時にその先端が他方に接触することにより、前記外側領域と天板部材4との間の離間距離が規制され、前記載置領域を囲むように排気用の1mm未満の隙間40が形成される。隙間40が狭小であることから、処理空間S内に反応ガスを封じ込めることができ、処理空間内の圧力が高められる。 (もっと読む)


【課題】 良好な規格化保持時間を有するエピタキシャル成長させて得られた強誘電体膜の作製方法を提供すること。
【解決手段】 チタン酸ストロンチウム単結晶基板又はシリコン単結晶基板上に、電極層を介して、強誘電体膜をエピタキシャル成長させて形成し、次いでエピタキシャル成長させて形成された強誘電体膜を冷却する強誘電体膜の作製方法において、この冷却を、少なくとも冷却を開始した後から該強誘電体のキュリー温度より15%高い温度〜15%低い温度の範囲までの冷却速度をその範囲の温度から室温までの冷却速度より遅くして実施する第1冷却工程と、次いで該第1冷却工程の冷却速度より早い冷却速度で室温まで冷却する第2冷却工程とで実施する。 (もっと読む)


【課題】半導体デバイス設計等では、金属酸化物AOと金属M(あるいはMA)との極性界面が酸素終端になるかそれとも金属終端になるかでこの界面の特性が大きく変化するので、どちらの終端界面が現れるかを事前に高い精度で予測する方法を提供する。
【解決手段】(a)Aの金属M上への吸着エネルギーAonM、Mの金属M上への吸着エネルギーMonMを求める。(b)金属M上への酸素の吸着エネルギーOonMを求める。(c)下記の2つの式(AonM)−(OonM)、{(AonM)−(MonM)}−{(OonM)−(O解離エネルギー)/2}の符号が、両方とも正ならば界面終端元素はA金属、両方とも負ならば界面終端元素は酸素、両者の符合が異なる場合は界面終端元素は実験条件に依存して変化する。 (もっと読む)


【課題】基板面内において均一な膜組成で薄膜を形成することができる薄膜製造方法および薄膜製造装置を提供する。
【解決手段】本発明の一実施形態に係る薄膜製造方法は、基板中央の温度(第1の温度)よりも基板周縁の温度(第2の温度)を高温に維持して成膜するようにしている。このような温度分布を形成することで、基板周縁の蒸気圧が基板中央の蒸気圧よりも高くなり、基板周縁において気相中に含有できる高蒸気圧成分の量を増加させることができる。これにより、基板周縁部上に高濃度に分布するガス種の析出を抑制でき、基板面内において均一な組成の薄膜を形成することが可能となる。 (もっと読む)


【課題】少ない工程数で生産性良く、アルミ酸化膜を誘電膜とする容量の大きいキャパシタを製造する。
【解決手段】キャパシタ1の製造方法は、Alを含む第1電極30を形成する工程と、第1電極30を覆う層間絶縁膜40を形成する工程と、層間絶縁膜40において第1電極30上の少なくとも一部に開口部41を形成して、第1電極30の表面の少なくとも一部を露出させる工程と、開口部41内の第1電極30の露出部30Aをアノードとして陽極酸化を実施して、酸化膜31を形成する工程と、開口部41内にプラグ60を形成する工程と、プラグ60上に第2電極71を形成する工程とを有する。 (もっと読む)


【課題】簡易なプロセスでパターン欠陥を抑制することが可能な金属パターンの製造方法を提供する。
【解決手段】アルミニウムを含む金属パターン20を製造する際に、真空雰囲気下にて、気相法により、基板上にアルミニウムを含む金属膜21を成膜する工程(1)と、金属膜21の表面に酸化処理により酸化膜22を形成する工程(2)と、酸化膜22上に金属パターンに対応したレジストパターン30を形成する工程(3)と、レジストパターン30をマスクとして、金属膜21をエッチングする工程(4)とを順次実施する。工程(1)と工程(2)との間において、少なくとも工程(2)の実施直前には、基板の雰囲気を真空雰囲気とする。 (もっと読む)


【課題】フォトリソグラフィでは形成が困難な超微細な導電体パターンを形成しうる導電体パターンの形成方法を提供する。
【解決手段】 基体上に、第1の比抵抗を有する金属酸化物膜を形成し、金属酸化物膜に電極を接触又は所定の距離まで近づけ、この状態で電極と金属酸化物膜との間に第1の電圧を印加することにより、金属酸化物膜の比抵抗を局所的に変化させ、金属酸化物膜の表面側に、第1の比抵抗よりも高い第2の比抵抗を有する高抵抗領域を形成し、金属酸化物膜に電極を接触又は所定の距離まで近づけ、この状態で電極と金属酸化物膜との間に第2の電圧を印加することにより、金属酸化物膜の比抵抗を局所的に変化させ、高抵抗領域の表面側に、第2の比抵抗よりも低い第3の比抵抗を有する導電体パターンを形成する。 (もっと読む)


【課題】耐久性に優れ、かつ光電変換効率の低下を抑制することができる光電変換素子を提供する。
【解決手段】本発明の太陽電池用薄膜の成膜方法は、第1の温度で加熱されるガラス基板の表面上にアルカリバリア膜を形成する工程と、第2の温度で加熱されるガラス基板の表面上のアルカリバリア膜上に透明導電膜を形成する工程とを備える。アルカリバリア膜を形成する工程において、ガラス基板の表面に向けて冷却された原料溶液(A)を噴霧し、アルカリバリア膜は酸化アルミニウムからなり、原料溶液(A)において、主溶媒は水であり、アルミニウムトリアセチルアセトナートを含有する。 (もっと読む)


【課題】シリコン基板を用いた太陽電池素子の製造工程において、シリコン基板中の内部応力、基板の反りを発生させることなくp型拡散層を形成し、工程を簡略化しても充分なオーミックコンタクトが得られるp型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池素子の製造方法の提供。
【解決手段】本発明のp型拡散層形成組成物は、アクセプタ元素を含むガラス粉末と、分散媒と、を含有する。このp型拡散層形成組成物を塗布し熱拡散処理を施すことで、p型拡散層、及びp型拡散層を有する太陽電池素子が製造される。 (もっと読む)


【課題】従来に比べて緻密な金属酸化膜を形成することができる、プラズマを用いた原子層成長方法及び原子層成長装置を提供する。
【解決手段】 有機金属のガスを原料ガスとして用いて基板に金属酸化膜を形成するとき、成膜空間内に配置された基板の上方に有機金属のガスを原料ガスとして流すことにより、基板に前記有機金属を吸着させ、前記有機金属に対して化学反応しない第1ガスを用いて前記成膜空間でプラズマを発生させ、前記第1ガスを排気した後、酸化ガスを第2ガスとして前記成膜空間に導入して酸化ガスを用いて前記成膜空間でプラズマを発生させることで、前記基板に前記有機金属の金属成分が酸化し金属酸化膜を形成する。 (もっと読む)


【課題】信頼性が高く、ソースとドレインの間にリーク電流が生じにくく、コンタクト抵抗が小さい半導体装置を提供する。
【解決手段】酸化物半導体膜により形成されるトランジスタの電極膜上に酸化物半導体膜に接して設けられた第1の絶縁膜、及び第2の絶縁膜を積層して形成し、第2の絶縁膜上にエッチングマスクを形成し、エッチングマスクの開口部と重畳する部分の第1の絶縁膜及び第2の絶縁膜をエッチングして電極膜を露出する開口部を形成し、第1の絶縁膜及び第2の絶縁膜の開口部をアルゴンプラズマに曝し、エッチングマスクを除去し、第1の絶縁膜及び第2の絶縁膜の開口部に導電膜を形成し、第1の絶縁膜は加熱により酸素の一部が脱離する絶縁膜であり、第2の絶縁膜は第1の絶縁膜よりもエッチングされにくく、第1の絶縁膜よりもガス透過性が低い。または逆スパッタリングを行ってもよい。 (もっと読む)


【課題】酸化物半導体層の保護膜側界面のキャリア密度がゲート絶縁層側のキャリア密度より小さく、および酸化物半導体層の膜厚が最適化された薄膜トランジスタおよびその製造方法を提供する。
【解決手段】酸化物半導体層上に保護膜として酸化物絶縁体を形成する際に、酸化性ガスが含まれる雰囲気で成膜し、酸化物半導体の界面付近のキャリア密度を絶縁層側のキャリア密度より小さくする。また、酸化物半導体膜の設計膜厚を30nm±15nmにすることにより、電界効果移動度μ、On/Off比、S値を最適化する。 (もっと読む)


【課題】流動体を付着させて熱処理を行う工程を繰り返し行うことにより微細パターンの膜を所望の膜厚で精密に作製可能とするパターン形成用基板と、パターン形成用基板を用いた圧電アクチュエータの製造方法を提供する。
【解決手段】所定の流動体を特定領域に付着させて熱処理を行うことによりパターン化された膜を形成するためのパターン形成用基板10で、特定領域を親和性とし、それ以外の領域を非親和性とする表面改質をおこなう。パターン形成用基板10の表面改質処理対象となる金属膜はPt膜53を積層し、基体として、Ti,Ta,Zr,V,Nb,Mo,Wから選ばれる少なくとも1つの金属元素、酸素元素および炭素元素から構成されるMOC膜52を用いる。 (もっと読む)


【課題】ゲート絶縁膜を形成する際に、界面準位を低減しつつ、EOTのさらなる低減が実現可能な金属酸化物高誘電体エピタキシャル膜の製造方法、および基板処理装置を提供すること。
【解決手段】単結晶領域102を有する基板101上に、金属膜であって、該金属膜の酸化物の誘電率が酸化シリコン膜よりも高く、かつ金属膜の酸化物が単結晶領域102とエピタキシャル関係を有する金属膜103を、単結晶領域102と金属膜103とが界面反応しない基板温度で形成する(図1(b))。金属膜103が形成された基板101を、上記界面反応しない基板温度で、単結晶領域102と金属膜103とが界面反応しない酸素分圧の酸素ガス雰囲気に暴露する(図1(c))。酸素ガス雰囲気に暴露された基板103を、上記酸素分圧の酸素ガス雰囲気に保持し、金属膜の酸化物である金属酸化物高誘電体膜が結晶化する基板温度で熱処理する(図1(d)。 (もっと読む)


41 - 60 / 1,240