説明

Fターム[5F092AA11]の内容

ホール/MR素子 (37,442) | 目的、効果 (2,233) | 製造工程の改善 (299)

Fターム[5F092AA11]に分類される特許

101 - 120 / 299


【課題】量産時、TMR素子を用いたMARMの完成品間で、MRAMのメモリー特性にバラツキがあり、不良品発生頻度が高かった。このバラツキは、量産時のTMR素子のMR比がウエハー製品間で一定値に維持されず、変動していたことが原因していたので、バラツキを抑制する製造方法を提供する。
【解決手段】高周波成分カットフィルターにより高周波成分をカットした直流電力印加の下で、強磁性体ターゲットをDCスパッタリングすることによってアモルファス状態の強磁性体膜を成膜し、そして酸化マグネシウムターゲットを高周波スパッタリングすることによって結晶酸化マグネシウム膜を成膜する工程及び該工程を実行する制御プログラムを備えた成膜スパッタリング装置200。 (もっと読む)


【課題】少ない製造工程数でS/N比が良く、資源に無駄を生じない低コストの電流センサを提供する。
【解決手段】InSb等の単結晶基板1とフェライト基板2とを接着し、単結晶基板1の非接着面を厚みが5〜10[μm]になるまで研磨する。この研磨面に、ホール素子パターンとしての複数の感磁性部1aを形成した後、フェライト基板2ごと切断して複数のホール素子チップ5を分割形成する。次に、接着剤7を介しホール素子チップ5をフェライトコア6の段差部6aに接着し、感磁性部1aに電極8及び保護膜9を形成する。フェライトコア6及び感磁性部1aを含む磁気回路を他のLコア、Iコアを組み付けて構成し、電流センサを製造する。 (もっと読む)


【課題】ホール素子チップの厚さを均一化し、感度特性が均一で歩留まりや耐熱性に優れた電流センサの製造方法とする。
【解決手段】InSb単結晶基板13を、エポキシ接着剤12が塗布された支持基板11に接着する。単結晶基板13を面出し表面研磨し、その鏡面研磨面に感磁性部14を形成する。仮接着剤16を均一に塗布した支持基板15の一面と、感磁性部14が形成された単結晶基板13の一面とを仮接着し、支持基板11を除去する。単結晶基板13を感磁性部14が露出するまで研磨し、個々の感磁性部14を支持基板15ごと切断して多数のホール素子チップ17を分割形成する。エポキシ接着剤19を介しホール素子チップ17をフェライトコア18に接着して支持基板15を除去し、感磁性部14に電極21及び保護膜22を形成する。フェライトコア18及び感磁性部14を含む磁気回路を他のコアを組み付けて構成し、電流センサを製造する。 (もっと読む)


【課題】量産時、TMR素子を用いたMRAMの完成品間で、MRAMのメモリー特性にバラツキあり、不良品発生頻度が高かった。このバラツキは、量産時のTMR素子のMR比がウエハー製品間で一定値に維持されず、変動していたことが原因していたので、バラツキを抑制する製造方法及び製造装置を提供する。
【解決手段】低周波成分カットフィルターにより低周波成分をカットした高周波電力印加の下で、酸化マグネシウムを有するターゲットをスパッタリングすることによって酸化マグネシウムの薄膜結晶膜122を成膜し、そして磁性金属(好ましくは強磁性体)のターゲットをスパッタリングすることによって磁性金属薄膜123を成膜する工程及び該工程を実行する制御プログラムを備えた成膜スパッタリング装置。 (もっと読む)


【課題】磁性膜又は反磁性膜をエッチングする際に発生するパーティクルの混入を抑制し、高性能なTMR素子を製造する方法を提供する。
【解決手段】炭化水素類、アルコール類、エーテル類、アルデヒド類、カルボン酸類、エステル類及びジオン類からなるガス化化合物群から選択された少なくとも一種のガス化化合物を0.5×1017分子数/分・m以上、好ましくは2×1017分子数/分・m以上の分子流速の条件下において形成したプラズマ雰囲気下で、磁性膜又は反磁性膜をエッチングする。 (もっと読む)


【課題】エッチング損傷を減少させるべくドライエッチングを用いて磁気素子を製造する。
【解決手段】磁気素子の製造方法と装置を提供する。素子の磁性及び/又は非磁性層はTaのような非有機材マスクを用いNのような不活性ガスと水素ガスの混合ガスによりエッチングされる。結果として、研究例ではMTJテーパ角はほぼ垂直である。 (もっと読む)


【課題】磁性体層又は反磁性体層をエッチングする際のパーティクルの混入を抑制し、高性能なTMR素子を提供する。
【解決手段】炭化水素類ガス、アルコール類ガス、エーテル類ガス、アルデヒド類ガス、カルボン酸類ガス、エステル類ガス及びジオン類ガスからなる化合物ガス群から選択された少なくとも一種の化合物ガス、及び酸素ガスを有する混合ガス中の全炭素原子数Cnと全酸素原子数OnとがOn/Cn>1の関係を満たし、該混合ガスを用いて形成したプラズマ雰囲気下で、磁性体層又は反磁性体層をエッチングする。 (もっと読む)


【課題】磁電変換素子を極めて容易に短時間で作業性の優れた連続方法で製造することを可能とする。
【解決手段】基板が磁性体の磁電変換素子用ペレットを、リードフレームに接続する工程を備える磁電変換素子の製造方法は、複数の半導体素子を形成したウエハの裏面に樹脂層を設ける工程と、樹脂層を設けたウエハをダイシングして個別の磁電変換素子用ペレットにする工程と、磁電変換素子用ペレットを、樹脂層を介してリードフレームに固着する工程と、磁電変換素子用ペレット上の電極をリードフレームと結線する工程とを具え、該樹脂層が厚み1〜50μmであり、前記樹脂層の樹脂がガラス転移点60〜160℃、接着活性温度170〜350℃、および熱伝導率0.2〜3.5W/m/℃を有している。 (もっと読む)


【課題】高い巨大磁気抵抗(GMR)値と中程度に低い抵抗面積積(RA)とを有する磁気抵抗装置を提供する。
【解決手段】この装置は、第1の磁性層と、第2の磁性層と、第1の磁性層と第2の磁性層との間に位置する電流狭窄(CCP)スペーサ層とを含む。スペーサ層は、第1の磁性層と第2の磁性層との間に延在する銅電流狭窄を酸化マグネシウムの母材中に含む。スペーサ層は、銅と酸化マグネシウムとの混合物によって形成され、この混合物は、銅電流狭窄を酸化マグネシウム母材内に形成するために熱処理される。 (もっと読む)


【課題】スピン消極を引き起こすことなく、また、加熱処理を必要とせずに、[Co/Ni]x積層構造の十分な垂直磁気異方性を確保する。
【解決手段】このスピンバルブ構造は、上部の[Co/Ni]x積層リファレンス層23の垂直磁気異方性を向上させるため、Ta層と、fcc[111]またはhcp[001]構造を有する金属層とを含む複合シード層22を備える。[Co/Ni]x積層リファレンス層23は、CoとNiとの界面の損傷を防止し、これにより垂直磁気異方性を保つため、低いパワーと高圧のアルゴンガスとを用いたプロセスにより成膜する。その結果、薄いシード層を用いることが可能となる。垂直磁気異方性は220℃の温度で10時間にわたって熱処理を行った後であっても維持される。この構造は、CPP−GMR素子やCPP−TMR素子に適用できるほか、スピントランスファー発振器やスピントランスファーMRAMにも適用できる。 (もっと読む)


本発明の具体例にかかる方法は、磁性層(41)と、下部導電性電極(43)と、その反対側で磁性層サブスタックを電気的に接続する上部導電性電極(44)とを含む磁性層サブスタックを含む磁気スタックを形成する工程と、磁気スタックの上に犠牲柱(46)を形成する工程であって、犠牲柱(46)は上に横たわる第2の犠牲材料(45)に対するアンダーカットと、磁気スタックに向かって断面寸法が大きくなる傾斜フットを有する工程と、犠牲柱を磁気スタックのパターニングのために使用する工程と、犠牲柱(46)の周囲に絶縁層(70)を堆積する工程と、犠牲柱を選択的に除去し、これによりパターニングされた磁気スタックに向かってコンタクトホール(80)を形成する工程と、コンタクトホールを電気的な導電性材料(81)で埋める工程とを含む。
(もっと読む)


マルチフェロイック薄膜材料の製造方法。その方法は、マルチフェロイック前駆体溶液を提供する工程、その前駆体溶液をスピンキャスティングしてスピンキャスト膜を製造する工程、およびそのスピンキャスト膜を加熱する工程を有する。前駆体溶液は、ビスマスフェライト膜を製造するために、エチレングリコール中にBi(NO3)3o5H2OおよびFe(NO3)3o9H2Oを含有していてもよい。さらに、薄膜は、情報保存のための記憶デバイスを含む様々な技術分野において利用されうる。 (もっと読む)


【課題】超高密度の新規な磁気記録装置を提供する。
【解決手段】磁気記録装置は、絶縁体層と強磁性体層との周期構造体からなる薄片をその強磁性体層のエッジ同士が対向するように少なくとも2枚、その間に厚さが0.2nm以上10nm以下のトンネル絶縁体層をはさんで重ねた構造を含む。トンネル絶縁体層としては例えばAl2 3 膜、強磁性体層としては例えばCo膜を用いる。絶縁体層および強磁性体層は、典型的にはストリップ状またはリボン状である。 (もっと読む)


【課題】ホール素子を製造するにあたって、半導体単結晶材料の材料効率をよくするとともに、素子と電極との電気的接続を信頼性の高いものとし、また、ダイシングブレードの長寿命化をはかる。
【解決手段】製造上の支持基板側で半導体単結晶薄膜からホール素子のチップ14aを剥離可能に形成し、これとは別工程で、ホール素子の大きさに予め切り出されたコア基板21上に絶縁層22を形成し、その絶縁層22上に導電性接着剤を用いてそれぞれ一対の入力用電極23,23と出力用電極24,24とを含む電極部25を形成し、上記支持基板から剥離したチップ14aをコア基板21の電極部25に実装する。 (もっと読む)


【課題】デバイスの縁部に沿って相対的な電流量を増大させた磁気トンネル接合デバイスおよびその製造方法を提供する。
【解決手段】磁気トンネル接合デバイスは、パターニング配線層402の上に、磁気トンネル接合(MTJ)積層物を形成する。その上に低伝導率層416および導電ハード・マスク418を形成する。低伝導率層416とは異なる電気伝導率を含むスペーサ材料420を堆積する。スペーサ材料420をエッチングして、ハード・マスク418およびスタッドの側壁上のみにスペーサ材料が残るようにする。エッチング・プロセスを実行して、低伝導率層416の周りに、自由磁性層412と導電ハード・マスク418との間の導電リンクとして、側壁スペーサ材料416を残す。スタッドとスペーサ材料420との間の電気伝導率の差によって、自由層412の縁部に沿った、側壁上に形成されたスペーサ材料420を通る電流が増大する。 (もっと読む)


磁気トンネル接合(MTJ)デバイスおよび製作方法が、開示される。特定の実施形態では、底部キャップ層および垂直軸を有する底部金属充填トレンチを含む構造体上に磁気トンネル接合(MTJ)デバイスを形成するステップを含む方法が、開示され、磁気トンネル接合デバイスは、底部電極、磁気トンネル接合層、磁気トンネル接合シール層、上部電極、およびロジックキャップ層を含み、磁気トンネル接合デバイスは、垂直軸からオフセットしているMTJ軸を有する。
(もっと読む)


【課題】プラズマ生成部と成膜処理部の間に隔壁を配することによって被成膜基板にプラズマ生成部で発生する高エネルギー粒子が入射するのを抑制する構成を有する装置において、成膜分布を改善することを課題とする。
【解決手段】基板処理装置を、プラズマが生成される第一の空間、基板を載置する為の基板ホルダを有する第二の空間、第一の空間と第二の空間を分離する、内部に第三の空間を有する隔壁、第一の空間と第二の空間を繋ぐ前記隔壁に形成された複数の第一の孔、第二の空間と第三の空間を結ぶ前記隔壁の第二の空間に接する面に形成された複数の第二の孔、第一の空間に第一のガスを導入する第一のガス導入手段及び第三の空間に第二のガスを導入する第二のガス導入手段を有し、第一の孔に係わる単位面積当たりの開口率は、中心部より周辺部で大きい構成とする。 (もっと読む)


【課題】生産効率や品質管理上の信頼性を向上させることができ、省エネルギー化、小型化や軽量化を図ることができる磁場中熱処理装置、及び、磁場中熱処理方法の提供を目的とする。
【解決手段】磁場中熱処理装置1は、永久磁石2、断熱部3、予備加熱ヒーター4、メインヒーター5、冷却部6、基板搭載部10を有するコンベア8、及び、磁気シールド11などを備え、永久磁石2を利用し、半導体基板104を永久磁石2の内部で加熱しながら、永久磁石2の中心軸方向(処理方向)へ搬送することによって、半導体基板104を一枚ずつ連続的に処理する。 (もっと読む)


【課題】ダイシングストリートにGaAsが露出している場合、結果ダイシング時に素子のチッピング、電極や磁性体の剥離、溶解したGaAsによる電極接合部の汚染が発生し、さらにGaAs基板裏面もエッチングされるためGaAsの溶解による電極接合部の汚染の課題がある。
【解決手段】本発明は、ホール素子が設けられたGaAs基板と、GaAs基板上に設けられた磁気増幅機能を有する磁性体とを備える磁気デバイスにおいて、上記ホール素子上に絶縁層と、上記絶縁層上にTi系金属層と、上記Ti系金属層の上にCu系金属層とを有し、ダイシングストリート上を少なくとも無機絶縁材料乃至有機絶縁材料もしくはその両方でカバーさせGaAsを露出させず、またさらにGaAs基板裏面にも有機絶縁膜でカバーすることにより本課題を解決した。 (もっと読む)


【課題】低コストで実現することができ、かつ生産性を向上させることができる、方向検出ホールICの検査工程を含む方向検出ホールICの製造方法を提供する。
【解決手段】ヘルムホルツ・コイル30が生成する磁界のうち、磁束密度勾配を有する周辺領域(検査位置P1、P2)に、方向検出特性検査対象のホールIC5a、5bが配置され、均一な磁束密度を有する中心領域(検査位置P3)に磁界検出特性検査対象のホールIC5cが配置される。当該状態でヘルムホルツ・コイル30に通電して磁界を発生させるとともに当該磁界による磁束密度を変動させて、ホールIC5a、5bの方向検出特性とホールIC5cの磁界検出特性が同時に測定される。測定完了後に搬送ライン62を一方向に移動させ、各ホールICを検査位置P1、P2、P3のそれぞれで測定が行われる。 (もっと読む)


101 - 120 / 299