説明

Fターム[5F140AA25]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 目的 (9,335) | 高耐圧化 (661)

Fターム[5F140AA25]に分類される特許

121 - 140 / 661


【課題】ドレイン耐圧を向上させる半導体装置及びその製造方法を提供すること。
【解決手段】基板100表面内に第1、第2拡散層206を形成する工程と、前記基板上に第1トランジスタを形成する工程と、前記ゲート電極の第1側壁及び第2側壁にそれぞれ第1、第2絶縁膜202を形成することにより、前記第1、第2拡散層の表面の一部の領域を被覆する工程と、この第2拡散層上に第3絶縁膜203を形成する工程と、前記第1〜第3絶縁膜、ゲート電極201、及び前記基板表面をそれぞれ第4絶縁膜204で被覆する工程と、前記ゲート電極の表面、及び第3絶縁膜に対して前記第2絶縁膜と前記第3絶縁膜との間の第1領域と相対する第2領域における前記第2拡散層の表面を露出しつつ、前記第1領域における前記第2拡散層の表面が露出しないよう前記第4絶縁膜を除去する工程とを具備する。 (もっと読む)


【目的】製造工程数を増加させることなく、高い耐圧の半導体集積装置を製造することが可能な半導体集積装置の製造方法、及び半導体集積装置を提供することを目的とする。
【構成】半導体基板の表面に形成されている拡散領域に接するボディ領域と、埋込拡散層との間に、半導体基板よりも電気抵抗が低いシンカー層を設ける。又、かかるシンカー層を形成すべく半導体基板表面に設けるレジスト膜に対して、その側面と半導体基板の底面との交叉角が90度未満となるテーパー加工処理を施す。 (もっと読む)


【課題】初期故障や偶発故障の発生を低減する。
【解決手段】HFET1は、下層のGaN層13およびGaN層13の一部を露出させるトレンチT1が形成された上層のAlGaN層14よりなるIII族窒化物半導体層と、III族窒化物半導体層上に形成されたゲート絶縁膜15と、ゲート絶縁膜15上に形成されたゲート電極16と、を備える。少なくともゲート絶縁膜15と接触するトレンチT1底部のGaN層13上面には、原子層ステップが形成されている。原子層ステップのテラス幅の平均値は、0.2μm以上1μm未満である。 (もっと読む)


【課題】トランジスタ間の分離性が良好な半導体装置を提供する。
【解決手段】半導体装置において、第1導電型の半導体基板と、前記半導体基板の上層部分を複数の能動領域に区画する素子分離絶縁膜と、前記能動領域の上部に相互に離隔して形成された第2導電型のソース層及びドレイン層と、前記半導体基板上における前記ソース層と前記ドレイン層との間のチャネル領域の直上域に設けられたゲート電極と、前記半導体基板と前記ゲート電極との間に設けられたゲート絶縁膜と、第1導電型であり、実効的な不純物濃度が前記半導体基板の実効的な不純物濃度よりも高く、前記能動領域における前記ソース層及び前記ドレイン層の直下域に形成され、前記ゲート電極の直下域には形成されていないパンチスルーストッパ層と、を設ける。 (もっと読む)


【課題】耐圧性の維持と低オン抵抗化との両立が可能なLDMOSトランジスタを提供する。
【解決手段】半導体装置は、第1導電型のドリフト拡散領域10と、第2導電型のボディ拡散領域2と、第1導電型のソース拡散領域6と、ドリフト拡散領域10の上部に形成されたトレンチ内に埋め込まれ、ボディ拡散領域2とは離間した位置に形成された絶縁膜14と、ドリフト拡散領域10の上部に形成され、絶縁膜14から見てソース拡散領域6と逆の方向に隣接する第1導電型のドレイン拡散領域7と、ボディ拡散領域2上からドリフト拡散領域10上を越えて絶縁膜14上にまで形成されたゲート電極5とを備えている。また、ドリフト拡散領域10は、基板内部領域11と、基板内部領域11よりも高濃度の第1導電型不純物を含む表面領域12とを有している。 (もっと読む)


【課題】高移動度と高耐圧を両立し、かつ大電流動作が可能なIII族窒化物半導体を用い
た半導体素子を提供する。
【解決手段】半導体素子は、III族窒化物系化合物半導体からなり、シートキャリア密度
が、1×1012cm−2以上5×1013cm−2以下である半導体動作層と、前記半
導体動作層上に形成された第1の電極及び第2の電極とを備え、前記半導体動作層におけ
る転位密度が1×10cm−2以上、5×10cm−2以下であることを特徴とする
(もっと読む)


【課題】効率的に形成されかつボイドが僅かであるかまたは実質的に存在しないFCC構造を提供する。
【解決手段】基板内で上表面からある深さまで垂直に伸長し、かつ第1の側壁、第1の底部、及びトレンチの当該第1の底部近傍の当該第1の側壁に形成されているパターン215を有する第1のトレンチ210を基板内に形成するステップと、第1のトレンチの第1の側壁及び第1の底部上に酸化層235を形成するステップと、を含むLFCCデバイスの製造方法であって、酸化層は、第1のトレンチ内に配されかつ酸化層によって第1のトレンチから分離されている第2のトレンチをもたらす。第2のトレンチは、パターンを呈さず実質的に垂直な第2の側壁及び実質的に平坦な第2の底部を有する。当該パターンは、第1のトレンチの底部と第1の側壁との間の酸化レートの差を補償する。当該LFCC構造は、当該パターンを有する第1のトレンチを含む。 (もっと読む)


【課題】ゲート絶縁膜の端部にトラップされるホットキャリアの数を抑制し、且つ、面積拡大を抑制しつつ高耐圧のMOSトランジスタを作製する。
【解決手段】第1導電型の半導体基板1上に形成したマスクパターン9をマスクとして、第2導電型の一対の第1低濃度拡散領域4と、第1低濃度拡散領域4よりも深くかつ高濃度の第2導電型の一対の第2低濃度拡散領域3と、を形成する。そして、一対の第1低濃度拡散領域4のうちの一方の第1低濃度拡散領域4上から他方の第1低濃度拡散領域4上に亘ってゲート絶縁膜5を形成し、このゲート絶縁膜5上にゲート電極6を形成する。そして、ゲート電極6をマスクとして、第2低濃度拡散領域3よりも高濃度の第2導電型の一対の高濃度拡散領域8を形成する。 (もっと読む)


【課題】 LDMOSトランジスタにおいて、オン抵抗とのトレードオフ関係で最適化されたオフ耐圧を低下させることなく、チャネル長を短くすることによって飽和電流を増加させる。
【解決手段】 チャネルとなる低濃度ボディ領域10と素子分離膜4の間かつゲート酸化膜8の直下に選択的に低濃度ボディ領域10と逆の極性で濃度が高いショートチャネル領域12を設け、ボディ領域10のゲート酸化膜8直下部分のみを高濃度ソース領域7側に後退させた形状を実現する。 (もっと読む)


【課題】エンハンメント型GaN系HFETの閾値電圧のバラツキを低減する。
【解決手段】窒化物半導体装置80では、第2のリセスエッチングによりアンドープGaN層3の上部に突起部51が設けられる。突起部51上には、上部が第1のリセスエッチングにより形成されたアンドープAlGaN層4aが設けられる。積層部7は、アンドープGaN層3の突起部51、アンドープAlGaN層4a、及び絶縁膜5から構成される。トレンチ部8は、絶縁膜5、アンドープAlGaN層4a、及びアンドープGaN層3表面がリセスエッチングされたものである。積層部7及びトレンチ部8上にはゲート絶縁膜6が設けられる。ゲート絶縁膜6上には、トレンチ部8を覆うようにゲート電極33が設けられる。絶縁膜5はゲート絶縁膜6よりも膜厚が厚く設定されている。 (もっと読む)


【課題】ダイヤモンド薄膜内に存在する結晶欠陥、不純物等を減少させ、高品質なダイヤモンド薄膜を作製可能なダイヤモンド薄膜作製方法を提供すること。
【解決手段】ダイヤモンドが安定な高圧力下でアニールを行う。これにより、結晶中に含まれる格子欠陥等が回復、除去され、ダイヤモンド結晶薄膜を高品質化する事ができる。「(ダイヤモンドが)安定な、安定に」とは、ダイヤモンドがグラファイト化せずにダイヤモンドの状態を保つ状態を指す。ダイヤモンドが安定にアニール出来る領域内でアニールを行う温度(アニール温度、とも呼ぶ)Tおよびアニールを行う圧力(アニール圧力、とも呼ぶ)Pが決定される。この領域は、図21に示される、P>0.71+0.0027TまたはP=0.71+0.0027Tを満たし、なおかつP≧1.5GPaの領域である。このような領域は、図21中の斜線部分である。 (もっと読む)


【課題】ゲートポリ電極とソース及びドレイン高濃度拡散層との間での位置合わせズレを防止し、素子特性や信頼性の均一化を図ることができる。
【解決手段】半導体基板と、前記半導体基板上に形成した酸化膜と、前記半導体基板上に形成した前記酸化膜の除去された領域の寸法に対応して画定したゲート長を有するゲート電極と、前記半導体基板の内部にチャンネル領域を含む位置に配設し、長さは前記酸化膜の幅に対応して決定したオフセット層と、前記オフセット層の内部に配設し、前記ゲート長方向に、前記チャンネル領域から離隔し、前記オフセット層の低濃度不純物より高濃度の不純物を含むソース及びドレイン高濃度不純物拡散層と、前記オフセット層の前記ゲート長方向の両端部に配設し、ソース及びドレイン高濃度拡散層を形成するための不純物のイオン注入に対してのマスクとなる厚さを有する酸化膜とを備えている。 (もっと読む)


【課題】占有面積が小さく、所望の耐圧と熱破壊の防止を両立した保護トランジスタを提供する。
【解決手段】ゲート長方向の一方の側でゲート直下の領域に隣接しているゲート・ドレイン間領域REgdが、ゲート幅方向に互いに隣接する領域として、第1領域REgd1と第2領域REgd2とを有する。第1領域は、ドレイン耐圧が相対的に大きく、第2領域は、ドレイン電極(ドレインコンタクト部に設けられているシリサイド層10D)からの距離が平面視で第1領域より遠く、ドレイン耐圧が相対的に小さい。このため、耐圧が低いゲート・ドレイン間領域REgd2の加熱部分Aからドレインコンタクト部が遠いが、面積は小さく(または拡大しない)構造となっている。 (もっと読む)


【課題】 チャネルのしきい値電圧がより高いエンハンスメント型の電界効果型トランジスタを提供する。
【解決手段】 複数層の窒化物半導体を有する電界効果トランジスタにおいて、複数層の窒化物半導体のうち、電界効果トランジスタのキャリアが走行するチャネル層半導体102と、チャネル層半導体102よりも下層にあって、チャネル層半導体102よりもバンドギャップの大きい窒化物半導体からなる下方障壁層半導体104と、チャネル層半導体102と下方障壁層半導体104との間にあって、バンドギャップが下方障壁層半導体104のバンドギャップより大きい薄高障壁層半導体103とを設ける。 (もっと読む)


【課題】素子面積が小さくしかも素子の耐圧の高い半導体装置およびその製造方法を提供する。
【解決手段】基板11と、基板上に設けられた一導電型の第1の半導体層13と、第1の半導体層上に設けられた一導電型で低不純物濃度の第2の半導体層15と、アイソレーション領域50によって分離された素子領域71内に形成されたMOSトランジスタ75と、素子領域内に一主面から第1の半導体層に達して設けられた一導電型で高不純物濃度の領域17と、領域17とMOSトランジスタのドレイン領域35との間に設けられた絶縁領域60であって、一主面10から第1の半導体層13に達し、基板11に達していない絶縁領域60とを備える。 (もっと読む)


【課題】IGBTのESD耐性を高くしつつ、IGBTのバイポーラトランジスタを確実に動作させる。
【解決手段】シンカー層115は第1導電型ウェル102に接しており、かつ第1導電型コレクタ層108及び第2導電型ドリフト層104から離れている。シンカー層115の表層には、第2導電型拡散層(第2の第2導電型高濃度拡散層)116が形成されている。第2導電型拡散層116はシンカー層115より不純物濃度が高い。第2導電型拡散層116と第1導電型コレクタ層108は、素子分離絶縁膜16を介して互いに分離している。 (もっと読む)


【課題】パワーMOSFETを備える半導体装置のコストの低減を図る。
【解決手段】半導体装置1では、P型の半導体基板2上に、N型の半導体層3が積層されている。そして、半導体装置1は、LDMOS領域5に、ボディ領域8、ドレインバッファ領域9、ソース領域11およびゲート電極14などからなるLDMOSFETを備えている。すなわち、半導体装置1は、LDMOSFETを備えながら、厚膜SOI基板ではなく、N型の半導体層3が直上に設けられたP型の半導体基板2を採用している。そして、フィールド絶縁膜13上に7つのフィールドプレート15が設けられ、そのフィールドプレート15の間隔がボディ領域8側(ソース領域11側)ほど小さくされている。 (もっと読む)


【課題】高耐圧かつ、電流駆動能力が高く、かつ電流集中による素子破壊の起こりにくい誘電体分離型半導体装置を提供する。
【解決手段】半導体支持基板の上に、絶縁された第一導電型の半導体領域とを有する誘電分離基板に形成した誘電体分離型半導体装置において、第一導電型の半導体領域と絶縁分離領域の間と、前記第1導電型の半導体領域の基板表面側と、に形成されたドレイン領域と、第一導電型のソースと第二導電型の半導体領域のチャネルからなる複数個の単位ソース領域と、第一導電型の半導体領域の基板表面側に形成されたドレイン領域と前記複数個の単位ソース領域の間を制御する複数個のゲート電極とを、備え、隣接する前記単位ソース領域間に絶縁分離領域が、基板底面側から基板表面側に向けて突き出した形状とされ、この絶縁分離領域上の素子表面領域が前記第一導電型の半導体領域より抵抗値が高い。 (もっと読む)


【課題】LDMOSトランジスタのオフ時における耐圧を高めること。
【解決手段】LDMOSトランジスタ300は、P型基板301の表面に形成されたN型ドリフト領域302と、N型ドリフト領域302の表面上のフィールド酸化膜303と、N型ドリフト領域302の表面上にフィールド酸化膜303に隣接して配置されたN+型ドレイン領域304と、P型基板301の表面上のN+型ソース領域305と、P型基板301のフィールド酸化膜303とN+型ソース領域305との間の表面を覆うゲート電極306とを備える。ゲート電極306はP型基板301の表面と絶縁体により分離されている。フローティング電極307は、ゲート電極306及びN型ドリフト領域302とそれぞれ容量結合するように配置されている。 (もっと読む)


【課題】ゲート絶縁膜の絶縁破壊を抑制または防止できる構造を有する窒化物半導体素子を提供する。
【解決手段】電界効果トランジスタ1(窒化物半導体素子)は、窒化物半導体の積層構造部3と、ゲート絶縁膜15と、ゲート電極16と、ソース電極18と、ドレイン電極19と、ガードリング層11とを含む。積層構造部3は、n型GaN層4,5、p型GaN層6およびn型GaN層7を積層して構成されている。ゲート絶縁膜15は、n型GaN層5、p型GaN層6およびn型GaN層7に跨るように、積層構造部3の壁面9に形成されている。ゲート電極16は、ゲート絶縁膜15を挟んでp型GaN層6に対向している。ガードリング層11は、p型GaN層6における壁面9に間隔を開けて対向するようにn型GaN層5上に形成されたp型GaN層からなる。 (もっと読む)


121 - 140 / 661